
High-Performance Signal Detection for Adverse Drug Events using

MapReduce Paradigm

Kai Fan

1
, MS, Xingzhi Sun

2
, PhD, Ying Tao

2
, PhD, Linhao Xu

2
, PhD, Chen Wang

2
, PhD, Xianling Mao

1
,

MS, Bo Peng
1
, PhD, Yue Pan

2
, PhD

1
Institute of Network Computing and Information System of Peking University, China

2
IBM Research China, ZGC Software Park 19A, Beijing, China

Abstract

Post-marketing pharmacovigilance is important for

public health, as many Adverse Drug Events (ADEs)

are unknown when those drugs were approved for

marketing. However, due to the large number of

reported drugs and drug combinations, detecting

ADE signals by mining these reports is becoming a

challenging task in terms of computational

complexity. Recently, a parallel programming model,

MapReduce has been introduced by Google to

support large-scale data intensive applications. In

this study, we proposed a MapReduce-based

algorithm, for common ADE detection approach,
Proportional Reporting Ratio (PRR), and tested it in

mining spontaneous ADE reports from FDA. The

purpose is to investigate the possibility of using

MapReduce principle to speed up biomedical data

mining tasks using this pharmacovigilance case as

one specific example. The results demonstrated that

MapReduce programming model could improve the

performance of common signal detection algorithm

for pharmacovigilance in a distributed computation

environment at approximately liner speedup rates.

Introduction

Adverse Drug Events (ADEs) are serious problems

for public health. Adverse drug reactions are

associated with 10.7% of hospital admissions in older

adults (1, 2). Every year, ADEs cause more than

100,000 deaths in the United States, making ADEs

the fourth leading cause of death in the United States

(3). However, many ADEs are not known when those

drugs were approved for marketing by FDA, because

premarketing studies are usually limited in

generalizability due to their limited size, short

duration, and exclusively selected patient groups.

For example, in 2004, five years after FDA’s

approval in 1999, Merck & Co., Inc. withdrew Vioxx

(Rofecoxib) from the market due to associated

increased risk of heart attack and stroke (4, 5).

Therefore, post-marketing pharmacovigilance has

become increasingly important. Over recent years,

collecting ADEs electronically and detecting signals

of unknown drug side effects using data mining

approach have become popular (6). For example,

FDA has established an on-line voluntary reporting

system, the Adverse Event Reporting System (AERS).

This system is designed to support the FDA’s post-

marketing safety surveillance for all approved drugs.

Among the data mining algorithms, the mostly used

is the measures of disproportionality (6). Calculations

of measures of disproportionality are primarily based

upon a two-by-two contingency table (see Table 1).

 Target AE(s) Other AE(s)

Target Drug(s) A B

Other Drug(s) C D

Table 1. The contingency table for ADE detection

The commonly used measures for detecting ADEs

based on Table 1 are summarized in Table 2.

 Definition

Reporting Odds Ratio (ROR)
A/C
B/D

Proportional reporting ratio (PRR)
A/(A+C)
B/(B+D)

Yules Q ratio
AD-BC

AD+BC

Table 2. Summary of measures of disproportionality

However, due to the large volume and rapid growth

of ADE reports and the large number of reported

drugs and adverse effects, mining these reports is

becoming a challenging task in terms of

computational complexity. For example, in the ADE

reports collect from FDA, the number of reported

drugs and adverse effects are 237,579 and 14,401

respectively. Theoretically, we have 3,421,375,179

number of 1-drug and 1-effect combinations. This

number will increase exponentially if the

combinations of arbitrary number of drugs and

effects are considered. Different from previous

studies which targeted on a limited number of

selected drugs, our work on mining ADE reports is to

evaluate all combinations for any existing drugs and

effects. This becomes a computational intensive task,

and practically is often beyond the capacity of a

single computer node in terms of CPU and storage.

Therefore, the distributed high performance

computation model is necessary for this task.

Recently, MapReduce programming model has been

introduced by Google to support large-scale data

intensive applications, such as large-scale indexing

for search engine (7). The typical MapReduce

systems are Google MapReduce (7), Microsoft Dryad

AMIA 2010 Symposium Proceedings Page - 902

(8) and Apache Hadoop (9). In general, MapReduce

includes two steps: map and reduce. In the map phase,

a given problem is divided into smaller sub-problems

where each sub-problem can be solved independently

to others. In the reduce phase, the answers of all sub-

problems are combined in a way to get the output

which is the final answer of the original problem.

Note that the results of the map phase are partitioned

and all map results from different map nodes

(mapper) but with the same key are assigned to the

same reduce node (reducer). The advantage of

MapReduce is that it exploits parallelism from low-

cost workstation clusters to process both map and

reduce operations and thus achieve comparable

performance to high-end servers. Comparing with the

centralized systems, MapReduce offers far better

scalability and reliability at an affordable cost.

Although MapReduce has been widely used for

massive data analytics, very little information exists

on the application of MapReduce in the biomedical

domain. In this study, we designed and implemented

an association rule algorithm using the MapReduce

paradigm and demonstrated how our approach can

help in mining the spontaneous ADE reports from

FDA. Therefore, the purpose of this paper is to

investigate the possibility of using the MapReduce

principle to speed up the process of detecting the

ADE signals for pharmacovigilance and to introduce

the MapReduce paradigm to the machine learning

community in biomedicine.

Methods

The data for ADE analysis are from FDA, including

the AERS reports collected from 1st quarter, 2004 to

4th quarter, 2009, totally 22 data files. The drug

names in the reports can be classified into two types:

accurate name and report name. While the former is

the standard name with confirmation, the latter is the

original name input by reporter, which could be

inaccurate. In the ADE reports, there are 5,694 types

of accurate drug names, 233,242 types of report drug

names, and 14,401 types of effect names.

Considering data quality, we generate two datasets:

AERS-1 consists of the reports that only contain

accurate drug name, and AERS-2 is the complete set

of reports. Table 3 lists the features of these datasets.

With the purpose of identifying the possible

associations between drugs and adverse effects, we

take the ADE analysis task as a risk pattern discovery

problem. A risk pattern is in the form of (DrugSet,

EffectSet), where DrugSet and EffectSet are the set of

drug(s) and adverse effect(s) respectively.

Similar as the work (12), besides applying PRR≥2

and Chi-square≥4 as the measures to evaluate the

significance of the risk pattern, we adopt the

important condition called minimum count. The

minimum count condition requires that the number of

ADE reports that contain the drugs and effects,

denoted as N(DrugSet∪EffectSet), is no less than 3

(set by domain expert). This condition is imposed for

excluding the patterns with extremely rare

occurrences, because they could be unconvinced as

signals statistically.

 AERS-1 AERS-2

Number of reports 1,236,951 1,963,588

Total number of drug items 2,411,984 6,720,986

Total number of effect items 4,091,686 7,487,581

Avg. number of drug items 1.95 3.42

Avg. number of effect items 3.30 3.81

Avg. number of items per report 5.25 7.24

Size 46M 109M

Table 3: Features of AERS datasets.

Thanks to minimum count condition, our MapReduce

approach can be divided into two tasks.

• Task 1 finds all sets of drugs, effects, or drug-

effect combinations that occur in at least 3 ADE

reports. We call these sets of items frequent

itemsets. The output of Task 1 is all frequent

itemsets with their count, denoted as {<itemset,

N(itemset)>}. Apparently, the itemset could be

DrugSet, EffectSet, or DrugSet∪EffectSet. Task

count

(threshold=3)

2

Step2: Candidate 3-itemset tree is

grown based on 2-itmeset tree by

intersecting the sibling leaf node.

9 3 7 3

1

2 3 4 5

3 4 5 4 5 5

Root

1

3 4 5 2

Step1: scan data for finding the count

for each 2-itemset. Itemset {1,6}

(node “6”) is infrequent and pruned.

Others are output with count.

Step3: Candidate 3-itemset tree is

split by the path “Root-2-3-6”. Two

sub-trees are output.

6

2

3 4 5

4 5 6 5 6 6

6

6 3 3 5

2

4 5 6 3

Root

1

2 3 4

3 4 5 4 5 5

2

3 4 5

4 5 6 5 6 6

Root

2

Root

 Figure 1: Example of map phase in Task 1

AMIA 2010 Symposium Proceedings Page - 903

1 is the key to ADE analysis because it not only

extracts the candidate risk patterns by

eliminating the large number of invalid drug-

effect combinations, but also gets the counts for

computing PRR and Chi-Square.

• Task 2 computes the PRR and Chi-square for the

all candidate risk patterns and output significant

ones.

Task 1: Finding frequent itemsets. Finding frequent

itemset is an important task of data mining. Apriori

approach (10) is a classic solution for this problem.

However, it does not work for the ADE analysis due

to the large number of drug-effect combinations and

the low minimum count threshold. Therefore, we

proposed and implemented a MapReduce-based

approach, DistApriori, on Hadoop platform (9).

DistApriori follows the basic steps of Apriori. The

key property utilized by this approach is that any

subset of a frequent itemset must be frequent. For

example, if a 3-itemset {1, 2, 3} is frequent, all of its

sub 2-itemsets {1, 2}, {1, 3}, and {2, 3} must be

frequent. According to this property, DistApriori

firstly finds the frequent 1-itemsets by scanning the

ADE reports. Then it iteratively uses k-itemset (k is

the length of itemset and k≥1) to generate candidate

(k+1)-itemsets, and scans the data to find the frequent

(k+1)-itemsets. This iteration stops until no candidate

(k+1)-itemset can be generated. Compared with

Apriori, the key difference of DistApriori is that in

each iteration, the generated candidate itemsets are

partitioned so that each computer in the cluster can

effectively process a fragment of them.

Candidate itemset tree: In order to effectively

partition the candidate itemsets, we organize the

candidate itemsets as a lexicographic ordered tree.

Each node in a candidate itemset tree is an item id.

For a candidate k-itemset tree, each path from root to

leaf forms a k-candidate pattern. The nodes on the

tree are ordered numerically according to item id, i.e.,

the parent node is smaller than child node and the

sibling node on the left is smaller than that on the

right. For example, in Figure 1, the left tree is a

candidate 2-itemset tree and leaf node “2” represents

a candidate itemset {1,2}.

When generating the candidate itemset tree, if the

tree becomes too large for a single computer,

DistApriori will split the tree and assign the sub-trees

to different computer nodes. This process can be

implemented as a map phase only (i.e., no reduce

phase required). Figure 1 illustrates the three steps of

the map phase in an iteration.

1. A candidate k-itemset tree is loaded and ADE

reports are scanned to find the count for each

candidate k-itemset. Frequent k-itemsets are

output, and infrequent ones are pruned from the

tree.

2. Candidate (k+1)-itemset tree are generated by

intersecting leaf items with the same parent node.

3. Candidate (k+1)-itemset tree is split to ensure

each sub-tree could be fit in memory for

processing. And the sub-trees are output to

distributed file system as the input of next round.

Task 2: Computing PPR and Chi-Square for risk
patterns. For each frequent itemset including both

drugs and effects (DrugSet∪EffectSet), we need to

find the count of DrugSet and EffectSet. This is not

an easy task because we are processing millions or

even billions of itemsets. So we design a two-round

MapReduce process for Task 2.

• First round MapReduce. In this round, we

aggregate all data entries by drugs to get the

count of drug set for each drug-effect entry. The

main process is depicted in Figure 2. In map

phase, we simply output each entry directly.

Then, we design the partition such that all entries

containing the same drug set DSi are sent to the

same reducer, including the entry of DSi itself.

In reduce phase, for the drug set DSi, we get its

count Ni and append it to drug-effect entries that

contain the drug set DSi.

• Second round MapReduce. In this round, we

aggregate entries (output of 1
st
 round) by effects

using the similar process as the first round, and

get the count of effect set for each drug-effect

entry. In reduce phase, after getting the values

for A, B, C and D in Table 1, we calculate PRR

and Chi-square for each drug-effect entry.

Finally, the drug-effect entries which meet the

criteria are output as risk patterns.

 Ni is the count of DrugSet DSi

Nij is the count of drugs-effects combination DSi∪ESj

Map Reduce Partition

<DS1; N1>

<DS2; N2>

<DS3; N3>

<DS1∪ES1; N1,1>

<DS1,∪ ES2; N1,2>

<DS2∪ES1; N2,1>

<DS2∪ES2; N2,2>

<DS1; N1>

<DS1∪ES1; N1,1>

<DS1∪ES2; N1,2>

<DS2; N2>

<DS2∪ES1; N2,1>

<DS2∪ES2; N2,2>

<DS3; N3>

<DS1∪ES1; N1,1, N1>

<DS1∪ES2; N1,2, N1>

<DS2∪ES1; N2,1, N2>

<DS2∪ES2; N2,2, N2>

Figure 2: MapReduce process of Task 2

AMIA 2010 Symposium Proceedings Page - 904

Results

We conduct our studies on top of a Hadoop cluster,

which has 20 computer nodes interconnected by 1GB

Ethernet. Each node is a Dell server with Intel Xeon

2.8GHz CPU (4 cores inside), 4GB RAM and 1TB

7200RPM hard driver. The operating system of all

nodes is Red Hat Enterprise Linux AS 4 (RHEL4)

and the version of the Hadoop platform is 0.20.1.

Although we applied the MapReduce approach, the

required data storage for AERS analysis is beyond of

the capacity of our cloud cluster. To control the data

size, mainly the number of candidate itemsets, we

add a constraint on the length of ADE reports based

on preliminary experiment results. Any report whose

item length is greater than a threshold will be ignored.

Dataset
Length

threshold

report

(percentage)

frequent

itemsets

risk

patterns

AERS-1 16
1,196,078

(96.7%)
25,385,057 18,697,485

AERS-1 20
1,213,531

(98.11%)
160,422,115 124,047,300

AERS-2 16
1,799,862

(91.66%)
84,503,728 65,830,916

AERS-2 20
1,867,855

(95.12%)
573,712,809 476,610,821

Table 4: Analysis result

Nodes

Dataset and settings

5 10 15 20

Task 1 59.53 32.12 26.12 20.17

Task 2 27.26 14.12 10.18 7.88 AERS-1-16

Total 86.79 46.24 36.30 28.06

Task 1 97.21 49.25 38.39 29.63

Task 2 83.80 44.45 34.56 22.97 AERS-1-20

Total 181.01 93.71 72.94 52.60

Task 1 223.26 111.48 79.96 58.63

Task 2 65.04 34.06 23.61 17.41 AERS-2-16

Total 288.30 145.53 103.57 76.04

Task 1 439.99 230.05 156.00 114.23

Task 2 274.70 143.99 102.07 85.48 AERS-2-20

Total 714.70 374.03 258.07 199.71

Table 5: Execution time (minute)

The analysis result is shown in Table 4. We set the

length threshold of ADE reports as 16 and 20

respectively. For example, for AERS-1 dataset, we

get 96.7% (1196078) of all records when the

threshold is16. In each experiment, a large number of

risk patterns are discovered and ordered by PRR.

Note that with the increase of minimum count

threshold (now it is 3), the number of risk patterns

can be significantly reduced.

Scalability We evaluate the scalability of our

approach in terms of the number of nodes in the

cluster. For four different dataset settings, we conduct

the tests on the clusters with 5, 10, 15, and 20 nodes

respectively. Table 5 gives the execution time for

Task 1, Task 2, and Total for each test.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20

Nodes

Sp
e
ed

up
 R

at
e

AERS-1-16

AERS-1-20

AERS-2-16

AERS-2-20

Theoretical

Figure 3: Scalability Evaluation

Figure 3 depicts the speedup rate of our approach in

terms of the number of nodes in the cluster. We can

see that for all four dataset settings, our MapReduce-

based approach reaches the linear scalability.

Importantly, it means that we can improve the

performance proportionally when more computers

are added into the cluster.

Comparison To compare the performance of cloud-

based approach and the centralized approach, we

implement a serialized algorithm
1
 for ADE detection.

We run the algorithm on a single computer for the

dataset AERS-1 and AERS-2 dataset, with the length

threshold as 20. The results of running time are

338.32 minutes and 1505.47 minutes respectively.

Compared with the corresponding results from the

cloud with 5 nodes (181.01 minutes and 714.7

minutes), the ratios are 1.87 and 2.10 respectively. It

seems that the cloud-based approach does not explore

the full computation power of each node. However,

this is reasonable because in the cloud, there will be

the additional cost for parallel computation, such as

network I/O, backup I/O, and sorting process. So, we

still can be confident that MapReduce is effective for

improving the performance of data processing,

especially when the computation over a larger dataset

is improbable in a single machine.

A preliminary manual evaluation has been conducted

on the first 100 patterns obtained from AERS-2

dataset with the highest Chi square values.

Interestingly, we found that most of the 100 patterns

are about chemotherapies which contain two to five

chemotherapeutic drugs, including dexamethasone

acetate, Oncovin, Alkeran, Endoxan, and doxorubicin

hydrochloride. This may demonstrate that

chemotherapeutic drugs can lead to more adverse

events than other drugs. The major detected adverse

events include instillation site pruritus, a common

effect in patients with long-term instillation, and

1 The serialized algorithm follows the basic steps and the

partitioning methods in our MapReduce approach, but

processes the data partitions in serial rather than in parallel.

AMIA 2010 Symposium Proceedings Page - 905

accessory nerve disorder, a possible result of

peripheral neuropathy.

Discussion

The results have successfully demonstrated that

MapReduce programming model could be used to

improve the performance of common signal detection

algorithm for pharmacovigilance in a distributed

computation environment. Our proposed approach

has the following advantages over single computer

platforms. First, the MapReduce approach provides a

solution to the computation-intensive task of

pharmacovigilance that could be very difficult or

even impossible for a single regular PC server.

Second, the proposed approach has a very good

extensibility. More computational capability could be

easily acquired by adding more workstations to the

networked environment. The result of our experiment

on a 20-node environment has shown pretty liner

speedup rates. Third, because all the workstations can

use ordinary x86 PCs, this provides an affordable and

easy solution for high-performance computation. For

example, the computation environment could even be

setup in a regular computer class-room of a

university. Forth, the environment has innate fault-

tolerance since the task of a node could be transferred

to other nodes when the workstation at the node

experiences a hardware failure.

Our study demonstrated MapReduce methodology

for biomedical data mining task by one specific

example in detecting ADEs for pharmacovigilance.

We are aware of the following limitations in this

study. First, we conducted the experiment on a

cluster platform of only 20 nodes. Although the

results have shown approximately linear speedup

rates, whether the linear speedup can still be

maintained in hundred or thousands nodes is still

unconfirmed. Furthermore, rewriting regular mining

algorithm according to MapReduce model needs

additional programming work. This may affect the

general use of MapReduce in biomedical domain.

Additionally, MapReduce model has its own

limitations in that it requires the task is dividable into

small sub-tasks so that they can be processed at

different nodes. Some studies have reported that the

characteristics of different machine learning

algorithm may lead to different speedup rates (11).

Although applied for detecting ADEs for

pharmacovigilance, we believe that the use of

MapReduce paradigm can be extended to solve other

data mining tasks in biomedical domain. First, some

experiments have corroborated that MapReduce can

speed up a variety of common machine learning

algorithms, such as naïve Bayes, k-means, logistic

regression, neural network, principal components

analysis, support vector machine, and so on (11). On

the other hand, the rapidly growing electronic data in

biomedicine, such as electronic medical record, will

provide the rich material and topics for data mining

explorations. We hope that this report on a specific

example could arouse the general interest of

biomedical data mining community in this new

parallel programming model, MapReduce.

Conclusion

As an early study of using MapReduce approach in

biomedical data mining task, we demonstrated that

MapReduce programming model could improve the

performance of common signal detection algorithm

for pharmacovigilance in a distributed computation

environment at an approximately liner speedup rate.

MapReduce paradigm represents a promising

direction for computation-intensive biomedical tasks.

References

1. Moore TJ. Prescription for disaster: the Hidden

Dangers in Your Medicine Cabinet. New York, NY: Simon

& Schuster; 1998.

2. Kongkaew C, Noyce PR, Ashcroft DM. Hospital

admissions associated with adverse drug reactions: a

systematic review of prospective observational studies.

Ann Pharmacother. 2008 Jul;42(7):1017-25.

3. Lazarou J, Pomeranz BH, Corey PN. Incidence of

adverse drug reactions in hospitalized patients: a meta-

analysis of prospective studies. Jama. 1998 Apr

15;279(15):1200-5.

4. Mukherjee D, Nissen SE, Topol EJ. Risk of

cardiovascular events associated with selective COX-2

inhibitors. Jama. 2001 Aug 22-29;286(8):954-9.

5. Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-

Vargas R, Davis B, et al. Comparison of upper

gastrointestinal toxicity of rofecoxib and naproxen in

patients with rheumatoid arthritis. VIGOR Study Group. N

Engl J Med. 2000 Nov 23;343(21):1520-8.

6. Wilson AM, Thabane L, Holbrook A. Application of

data mining techniques in pharmacovigilance. Br J Clin

Pharmacol. 2004 Feb;57(2):127-34.

7. Dean J, Ghemawat. S. MapReduce: simplified data

processing on large clusters. Proc of the 6th Symposium

on Operating Systems Design & Implementation (OSDI'04);

2004; 2004.

8. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad:

distributed data-parallel programs from sequential building

blocks. SIGOPS. 2007;41(3).

9. Apache Hadoop. http://hadoop.apache.org.

10. Agrawal R, Srikant R. Fast Algorithms for Mining

Association Rules. . Int Conf Very Large Data Bases; 1994;

1994.

11. Chu C-T, Kim SK, Lin Y-A, Yu Y, Bradski G, Ng A,

et al. Map-Reduce for Machine Learning on Multicore.

NIPS; 2006; 2006.

12. Evans SJ, Waller PC, Davis S. Use of proportional

reporting ratios (PRRs) for signal generation from

spontaneous adverse drug reaction reports.

Pharmacoepidemiol Drug Saf. 2001 Oct-Nov;10(6):483-6.

AMIA 2010 Symposium Proceedings Page - 906

