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Abstract 

Post-marketing pharmacovigilance is important for 

public health, as many Adverse Drug Events (ADEs) 

are unknown when those drugs were approved for 

marketing. However, due to the large number of 

reported drugs and drug combinations, detecting 

ADE signals by mining these reports is becoming a 

challenging task in terms of computational 

complexity. Recently, a parallel programming model, 

MapReduce has been introduced by Google to 

support large-scale data intensive applications. In 

this study, we proposed a MapReduce-based 

algorithm, for common ADE detection approach, 
Proportional Reporting Ratio (PRR), and tested it in 

mining spontaneous ADE reports from FDA. The 

purpose is to investigate the possibility of using 

MapReduce principle to speed up biomedical data 

mining tasks using this pharmacovigilance case as 

one specific example. The results demonstrated that 

MapReduce programming model could improve the 

performance of common signal detection algorithm 

for pharmacovigilance in a distributed computation 

environment at approximately liner speedup rates. 

Introduction 

Adverse Drug Events (ADEs) are serious problems 

for public health. Adverse drug reactions are 

associated with 10.7% of hospital admissions in older 

adults (1, 2). Every year, ADEs cause more than 

100,000 deaths in the United States, making ADEs 

the fourth leading cause of death in the United States 

(3). However, many ADEs are not known when those 

drugs were approved for marketing by FDA, because 

premarketing studies are usually limited in 

generalizability due to their limited size, short 

duration, and exclusively selected patient groups.  

For example, in 2004, five years after FDA’s 

approval in 1999, Merck & Co., Inc. withdrew Vioxx 

(Rofecoxib) from the market due to associated 

increased risk of heart attack and stroke (4, 5). 

Therefore, post-marketing pharmacovigilance has 

become increasingly important. Over recent years, 

collecting ADEs electronically and detecting signals 

of unknown drug side effects using data mining 

approach have become popular (6). For example, 

FDA has established an on-line voluntary reporting 

system, the Adverse Event Reporting System (AERS). 

This system is designed to support the FDA’s post-

marketing safety surveillance for all approved drugs. 

Among the data mining algorithms, the mostly used 

is the measures of disproportionality (6). Calculations 

of measures of disproportionality are primarily based 

upon a two-by-two contingency table (see Table 1). 

 Target AE(s) Other AE(s) 

Target Drug(s) A B 

Other Drug(s) C D 

Table 1. The contingency table for ADE detection 

The commonly used measures for detecting ADEs 

based on Table 1 are summarized in Table 2.  

 Definition 

Reporting Odds Ratio (ROR) 
A/C 
B/D 

Proportional reporting ratio (PRR) 
A/(A+C) 
B/(B+D) 

Yules Q ratio 
AD-BC 

AD+BC 

Table 2.  Summary of measures of disproportionality 

However, due to the large volume and rapid growth 

of ADE reports and the large number of reported 

drugs and adverse effects, mining these reports is 

becoming a challenging task in terms of 

computational complexity. For example, in the ADE 

reports collect from FDA, the number of reported 

drugs and adverse effects are 237,579 and 14,401 

respectively. Theoretically, we have 3,421,375,179 

number of 1-drug and 1-effect combinations. This 

number will increase exponentially if the 

combinations of arbitrary number of drugs and 

effects are considered. Different from previous 

studies which targeted on a limited number of 

selected drugs, our work on mining ADE reports is to 

evaluate all combinations for any existing drugs and 

effects. This becomes a computational intensive task, 

and practically is often beyond the capacity of a 

single computer node in terms of CPU and storage. 

Therefore, the distributed high performance 

computation model is necessary for this task. 

Recently, MapReduce programming model has been 

introduced by Google to support large-scale data 

intensive applications, such as large-scale indexing 

for search engine (7). The typical MapReduce 

systems are Google MapReduce (7), Microsoft Dryad 
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(8) and Apache Hadoop (9). In general, MapReduce 

includes two steps: map and reduce. In the map phase, 

a given problem is divided into smaller sub-problems 

where each sub-problem can be solved independently 

to others. In the reduce phase, the answers of all sub-

problems are combined in a way to get the output 

which is the final answer of the original problem. 

Note that the results of the map phase are partitioned 

and all map results from different map nodes 

(mapper) but with the same key are assigned to the 

same reduce node (reducer). The advantage of 

MapReduce is that it exploits parallelism from low-

cost workstation clusters to process both map and 

reduce operations and thus achieve comparable 

performance to high-end servers. Comparing with the 

centralized systems, MapReduce offers far better 

scalability and reliability at an affordable cost. 

Although MapReduce has been widely used for 

massive data analytics, very little information exists 

on the application of MapReduce in the biomedical 

domain. In this study, we designed and implemented 

an association rule algorithm using the MapReduce 

paradigm and demonstrated how our approach can 

help in mining the spontaneous ADE reports from 

FDA. Therefore, the purpose of this paper is to 

investigate the possibility of using the MapReduce 

principle to speed up the process of detecting the 

ADE signals for pharmacovigilance and to introduce 

the MapReduce paradigm to the machine learning 

community in biomedicine. 

Methods 

The data for ADE analysis are from FDA, including 

the AERS reports collected from 1st quarter, 2004 to 

4th quarter, 2009, totally 22 data files. The drug 

names in the reports can be classified into two types: 

accurate name and report name. While the former is 

the standard name with confirmation, the latter is the 

original name input by reporter, which could be 

inaccurate. In the ADE reports, there are 5,694 types 

of accurate drug names, 233,242 types of report drug 

names, and 14,401 types of effect names. 

Considering data quality, we generate two datasets: 

AERS-1 consists of the reports that only contain 

accurate drug name, and AERS-2 is the complete set 

of reports. Table 3 lists the features of these datasets. 

With the purpose of identifying the possible 

associations between drugs and adverse effects, we 

take the ADE analysis task as a risk pattern discovery 

problem. A risk pattern is in the form of (DrugSet, 

EffectSet), where DrugSet and EffectSet are the set of 

drug(s) and adverse effect(s) respectively.  

Similar as the work (12), besides applying PRR≥2 

and Chi-square≥4 as the measures to evaluate the 

significance of the risk pattern, we adopt the 

important condition called minimum count.  The 

minimum count condition requires that the number of 

ADE reports that contain the drugs and effects, 

denoted as N(DrugSet∪EffectSet), is no less than 3 

(set by domain expert). This condition is imposed for 

excluding the patterns with extremely rare 

occurrences, because they could be unconvinced as 

signals statistically. 

 AERS-1 AERS-2 

Number of reports 1,236,951 1,963,588 

Total number of drug items 2,411,984 6,720,986 

Total number of effect items 4,091,686 7,487,581 

Avg. number of drug items 1.95 3.42 

Avg. number of effect items 3.30 3.81 

Avg. number of items per report 5.25 7.24 

Size 46M 109M 

Table 3: Features of AERS datasets. 

Thanks to minimum count condition, our MapReduce 

approach can be divided into two tasks. 

• Task 1 finds all sets of drugs, effects, or drug-

effect combinations that occur in at least 3 ADE 

reports. We call these sets of items frequent 

itemsets. The output of Task 1 is all frequent 

itemsets with their count, denoted as {<itemset, 

N(itemset)>}. Apparently, the itemset could be 

DrugSet, EffectSet, or DrugSet∪EffectSet. Task 

count 

(threshold=3) 

2 

Step2: Candidate 3-itemset tree is 

grown based on 2-itmeset tree by 

intersecting the sibling leaf node. 

9 3 7 3 

1 

2 3 4 5 

3 4 5 4 5 5 

Root 

1 

3 4 5 2 

Step1: scan data for finding the count 

for each 2-itemset.  Itemset {1,6} 

(node “6”) is infrequent and pruned. 

Others are output with count. 

Step3: Candidate 3-itemset tree is 

split by the path “Root-2-3-6”. Two 

sub-trees are output. 

6 

2 
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6 
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Root 

  Figure 1: Example of map phase in Task 1 
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1 is the key to ADE analysis because it not only 

extracts the candidate risk patterns by 

eliminating the large number of invalid drug-

effect combinations, but also gets the counts for 

computing PRR and Chi-Square. 

• Task 2 computes the PRR and Chi-square for the 

all candidate risk patterns and output significant 

ones.  

Task 1: Finding frequent itemsets. Finding frequent 

itemset is an important task of data mining. Apriori 

approach (10) is a classic solution for this problem. 

However, it does not work for the ADE analysis due 

to the large number of drug-effect combinations and 

the low minimum count threshold. Therefore, we 

proposed and implemented a MapReduce-based 

approach, DistApriori, on Hadoop platform (9). 

DistApriori follows the basic steps of Apriori. The 

key property utilized by this approach is that any 

subset of a frequent itemset must be frequent. For 

example, if a 3-itemset {1, 2, 3} is frequent, all of its 

sub 2-itemsets {1, 2}, {1, 3}, and {2, 3} must be 

frequent. According to this property, DistApriori 

firstly finds the frequent 1-itemsets by scanning the 

ADE reports. Then it iteratively uses k-itemset (k is 

the length of itemset and k≥1) to generate candidate 

(k+1)-itemsets, and scans the data to find the frequent 

(k+1)-itemsets. This iteration stops until no candidate 

(k+1)-itemset can be generated. Compared with 

Apriori, the key difference of DistApriori is that in 

each iteration, the generated candidate itemsets are 

partitioned so that each computer in the cluster can 

effectively process a fragment of them.  

Candidate itemset tree: In order to effectively 

partition the candidate itemsets, we organize the 

candidate itemsets as a lexicographic ordered tree. 

Each node in a candidate itemset tree is an item id. 

For a candidate k-itemset tree, each path from root to 

leaf forms a k-candidate pattern. The nodes on the 

tree are ordered numerically according to item id, i.e., 

the parent node is smaller than child node and the 

sibling node on the left is smaller than that on the 

right. For example, in Figure 1, the left tree is a 

candidate 2-itemset tree and leaf node “2” represents 

a candidate itemset {1,2}. 

When generating the candidate itemset tree, if the 

tree becomes too large for a single computer, 

DistApriori will split the tree and assign the sub-trees 

to different computer nodes.  This process can be 

implemented as a map phase only (i.e., no reduce 

phase required). Figure 1 illustrates the three steps of 

the map phase in an iteration. 

1. A candidate k-itemset tree is loaded and ADE 

reports are scanned to find the count for each 

candidate k-itemset. Frequent k-itemsets are 

output, and infrequent ones are pruned from the 

tree. 

2. Candidate (k+1)-itemset tree are generated by 

intersecting leaf items with the same parent node.  

3. Candidate (k+1)-itemset tree is split to ensure 

each sub-tree could be fit in memory for 

processing. And the sub-trees are output to 

distributed file system as the input of next round. 

Task 2: Computing PPR and Chi-Square for risk 
patterns. For each frequent itemset including both 

drugs and effects (DrugSet∪EffectSet), we need to 

find the count of DrugSet and EffectSet. This is not 

an easy task because we are processing millions or 

even billions of itemsets. So we design a two-round 

MapReduce process for Task 2. 

• First round MapReduce. In this round, we 

aggregate all data entries by drugs to get the 

count of drug set for each drug-effect entry. The 

main process is depicted in Figure 2. In map 

phase, we simply output each entry directly. 

Then, we design the partition such that all entries 

containing the same drug set DSi are sent to the 

same reducer, including the entry of DSi itself.  

In reduce phase, for the drug set DSi, we get its 

count Ni and append it to drug-effect entries that 

contain the drug set DSi. 

• Second round MapReduce. In this round, we 

aggregate entries (output of 1
st
 round) by effects 

using the similar process as the first round, and 

get the count of effect set for each drug-effect 

entry. In reduce phase, after getting the values 

for A, B, C and D in Table 1, we calculate PRR 

and Chi-square for each drug-effect entry. 

Finally, the drug-effect entries which meet the 

criteria are output as risk patterns. 

 

         Ni is the count of DrugSet DSi 

Nij is the count of drugs-effects combination DSi∪ESj 

Map Reduce Partition 

<DS1; N1> 

<DS2; N2> 

<DS3; N3> 

<DS1∪ES1; N1,1> 

<DS1,∪ ES2; N1,2> 

<DS2∪ES1; N2,1> 

<DS2∪ES2; N2,2> 

<DS1; N1> 

<DS1∪ES1; N1,1> 

<DS1∪ES2; N1,2> 

<DS2; N2> 

<DS2∪ES1; N2,1> 

<DS2∪ES2; N2,2> 

<DS3; N3> 

<DS1∪ES1; N1,1, N1> 

<DS1∪ES2; N1,2, N1> 

<DS2∪ES1; N2,1, N2> 

<DS2∪ES2; N2,2, N2> 

Figure 2: MapReduce process of Task 2 
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Results 

We conduct our studies on top of a Hadoop cluster, 

which has 20 computer nodes interconnected by 1GB 

Ethernet. Each node is a Dell server with Intel Xeon 

2.8GHz CPU (4 cores inside), 4GB RAM and 1TB 

7200RPM hard driver. The operating system of all 

nodes is Red Hat Enterprise Linux AS 4 (RHEL4) 

and the version of the Hadoop platform is 0.20.1. 

Although we applied the MapReduce approach, the 

required data storage for AERS analysis is beyond of 

the capacity of our cloud cluster. To control the data 

size, mainly the number of candidate itemsets, we 

add a constraint on the length of ADE reports based 

on preliminary experiment results. Any report whose 

item length is greater than a threshold will be ignored. 

Dataset 
Length 

threshold 

# report 

(percentage) 

# frequent 

itemsets 

# risk 

patterns 

AERS-1 16 
1,196,078 

(96.7%) 
25,385,057 18,697,485 

AERS-1 20 
1,213,531 

(98.11%) 
160,422,115 124,047,300 

AERS-2 16 
1,799,862 

(91.66%) 
84,503,728 65,830,916 

AERS-2 20 
1,867,855 

(95.12%) 
573,712,809 476,610,821 

Table 4: Analysis result 

 

# Nodes 

 

Dataset and settings 

5 10 15 20 

Task 1 59.53  32.12  26.12  20.17  

Task 2 27.26  14.12  10.18  7.88  AERS-1-16 

Total 86.79  46.24  36.30  28.06  

Task 1 97.21  49.25  38.39  29.63  

Task 2 83.80  44.45  34.56  22.97  AERS-1-20 

Total 181.01  93.71  72.94  52.60  

Task 1 223.26  111.48  79.96  58.63  

Task 2 65.04  34.06  23.61  17.41  AERS-2-16 

Total 288.30  145.53  103.57  76.04  

Task 1 439.99  230.05  156.00  114.23  

Task 2 274.70  143.99  102.07  85.48  AERS-2-20 

Total 714.70  374.03  258.07  199.71  

Table 5: Execution time (minute) 

The analysis result is shown in Table 4. We set the 

length threshold of ADE reports as 16 and 20 

respectively. For example, for AERS-1 dataset, we 

get 96.7% (1196078) of all records when the 

threshold is16. In each experiment, a large number of 

risk patterns are discovered and ordered by PRR. 

Note that with the increase of minimum count 

threshold (now it is 3), the number of risk patterns 

can be significantly reduced. 

Scalability We evaluate the scalability of our 

approach in terms of the number of nodes in the 

cluster. For four different dataset settings, we conduct 

the tests on the clusters with 5, 10, 15, and 20 nodes 

respectively. Table 5 gives the execution time for 

Task 1, Task 2, and Total for each test.  
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Figure 3: Scalability Evaluation 

Figure 3 depicts the speedup rate of our approach in 

terms of the number of nodes in the cluster. We can 

see that for all four dataset settings, our MapReduce-

based approach reaches the linear scalability. 

Importantly, it means that we can improve the 

performance proportionally when more computers 

are added into the cluster. 

Comparison To compare the performance of cloud-

based approach and the centralized approach, we 

implement a serialized algorithm
1
 for ADE detection. 

We run the algorithm on a single computer for the 

dataset AERS-1 and AERS-2 dataset, with the length 

threshold as 20. The results of running time are 

338.32 minutes and 1505.47 minutes respectively. 

Compared with the corresponding results from the 

cloud with 5 nodes (181.01 minutes and 714.7 

minutes), the ratios are 1.87 and 2.10 respectively. It 

seems that the cloud-based approach does not explore 

the full computation power of each node. However, 

this is reasonable because in the cloud, there will be 

the additional cost for parallel computation, such as 

network I/O, backup I/O, and sorting process. So, we 

still can be confident that MapReduce is effective for 

improving the performance of data processing, 

especially when the computation over a larger dataset 

is improbable in a single machine. 

A preliminary manual evaluation has been conducted 

on the first 100 patterns obtained from AERS-2 

dataset with the highest Chi square values. 

Interestingly, we found that most of the 100 patterns 

are about chemotherapies which contain two to five 

chemotherapeutic drugs, including dexamethasone 

acetate, Oncovin, Alkeran, Endoxan, and doxorubicin 

hydrochloride. This may demonstrate that 

chemotherapeutic drugs can lead to more adverse 

events than other drugs. The major detected adverse 

events include instillation site pruritus, a common 

effect in patients with long-term instillation, and 

                                                 
1 The serialized algorithm follows the basic steps and the 

partitioning methods in our MapReduce approach, but 

processes the data partitions in serial rather than in parallel. 
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accessory nerve disorder, a possible result of 

peripheral neuropathy. 

Discussion  

The results have successfully demonstrated that 

MapReduce programming model could be used to 

improve the performance of common signal detection 

algorithm for pharmacovigilance in a distributed 

computation environment. Our proposed approach 

has the following advantages over single computer 

platforms. First, the MapReduce approach provides a 

solution to the computation-intensive task of 

pharmacovigilance that could be very difficult or 

even impossible for a single regular PC server. 

Second, the proposed approach has a very good 

extensibility. More computational capability could be 

easily acquired by adding more workstations to the 

networked environment. The result of our experiment 

on a 20-node environment has shown pretty liner 

speedup rates. Third, because all the workstations can 

use ordinary x86 PCs, this provides an affordable and 

easy solution for high-performance computation. For 

example, the computation environment could even be 

setup in a regular computer class-room of a 

university. Forth, the environment has innate fault-

tolerance since the task of a node could be transferred 

to other nodes when the workstation at the node 

experiences a hardware failure. 

Our study demonstrated MapReduce methodology 

for biomedical data mining task by one specific 

example in detecting ADEs for pharmacovigilance. 

We are aware of the following limitations in this 

study. First, we conducted the experiment on a 

cluster platform of only 20 nodes. Although the 

results have shown approximately linear speedup 

rates, whether the linear speedup can still be 

maintained in hundred or thousands nodes is still 

unconfirmed.  Furthermore, rewriting regular mining 

algorithm according to MapReduce model needs 

additional programming work. This may affect the 

general use of MapReduce in biomedical domain. 

Additionally, MapReduce model has its own 

limitations in that it requires the task is dividable into 

small sub-tasks so that they can be processed at 

different nodes. Some studies have reported that the 

characteristics of different machine learning 

algorithm may lead to different speedup rates (11). 

Although applied for detecting ADEs for 

pharmacovigilance, we believe that the use of 

MapReduce paradigm can be extended to solve other 

data mining tasks in biomedical domain. First, some 

experiments have corroborated that MapReduce can 

speed up a variety of common machine learning 

algorithms, such as naïve Bayes, k-means, logistic 

regression, neural network, principal components 

analysis, support vector machine, and so on (11). On 

the other hand, the rapidly growing electronic data in 

biomedicine, such as electronic medical record, will 

provide the rich material and topics for data mining 

explorations.  We hope that this report on a specific 

example could arouse the general interest of 

biomedical data mining community in this new 

parallel programming model, MapReduce. 

Conclusion 

As an early study of using MapReduce approach in 

biomedical data mining task, we demonstrated that 

MapReduce programming model could improve the 

performance of common signal detection algorithm 

for pharmacovigilance in a distributed computation 

environment at an approximately liner speedup rate. 

MapReduce paradigm represents a promising 

direction for computation-intensive biomedical tasks. 
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