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Abstract 
Chronic Lymphocytic Leukemia (CLL) is the most 
common adult leukemia in the U.S., and is currently 
incurable.  Though a small number of biomarkers 
that may correlate to risk of disease progression or 
treatment outcome in CLL have been discovered, few 
have been validated in prospective studies or adopted 
in clinical practice. In order to address this gap in 
knowledge, it is desirable to discover and test 
hypotheses that are concerned with translational 
biomarker-to-phenotype correlations.  We report 
upon a study in which commonly available ontologies 
were utilized to support the discovery of such 
translational correlations.  We have specifically   
applied a technique known as constructive induction 
to reason over the contents of a research data 
repository utilized by the NCI-funded CLL Research 
Consortium.  Our findings indicate that such an 
approach can produce semantically meaningful 
results that can inform hypotheses about higher-level 
relationships between the types of data contained in 
such a repository. 

Introduction 
Chronic Lymphocytic Leukemia (CLL) is the most 
common adult leukemia in the United States, and is 
associated with an increasing incidence rate [1].  Due 
to its highly heterogeneous clinical course and 
phenotypic presentation, there are no known curative 
strategies. As such, current clinical best practices 
emphasize delaying treatment until a patient 
demonstrates either symptomatic or progressive 
disease, an approach that does not necessarily 
correlate with optimal treatment outcomes or long-
term survival [2].  Recent studies have identified 
several bio-molecular markers, including leukemic-
cell expression of CD38 surface markers, mutational 
status of immunoglobulin heavy chain variable 
region genes (IgVH), zeta-chain associated protein 
(ZAP-70) expression level and specific chromosomal 
abnormalities, which can be used to identify those 
patients most at risk or requiring early intervention 
for progressive CLL [2].  While these bio-molecular 
markers have been demonstrated in a small number 
of studies to significantly correlate with risk of 
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progressive disease, none have been shown to 
correlate with treatment outcome in prospective 
clinical trials [2].  Given the benefits of employing 
adaptive therapies based upon a patient’s phenotypic 
characteristics as established with other hematologic 
malignancies, the further exploration and validation 
of prognostic bio-molecular markers in CLL is highly 
desirable.  

The utility of informatics-based approaches to the 
discovery and validation of biomarker-to-phenotype 
correlations has been reported in the literature on 
numerous occasions.  One such approach involves 
the use of conceptual knowledge engineering 
techniques to identify potential relationships between 
data types in large-scale, multidimensional 
biomedical data sets [3].  Conceptual knowledge 
engineering targets the identification and 
manipulation of conceptual knowledge structures or 
collections that consist of atomic units of knowledge, 
or “facts” (e.g., “increased white blood cell count”, 
“chromosome 11 abnormality”, etc.) and the network 
of relationships among those units [4].    

We report upon the application of such conceptual 
knowledge engineering techniques in order to address 
the gap in knowledge concerning the identification of 
biomarkers capable of supporting adaptive therapy in 
CLL. Given this motivation, in the following sections 
we will:  
1) Provide additional definitions and details on 

conceptual knowledge engineering-based 
approaches to knowledge discovery in databases, 

2) Introduce an experimental context for our work, 
specifically a collaboration with the CLL 
Research Consortium (CRC), and  

3) Present results from a feasibility and validity 
evaluation in which a knowledge discovery in 
databases approach known as constructive 
induction was used to support the analysis of a 
CLL-specific multi-dimensional bio-molecular 
and phenotypic data set. 

The specific aim of the feasibility and validity 
evaluation that we will report on is to develop a 
conceptual knowledge collection that corresponds to 



the contents of a research data repository maintained 
by the CRC, and in doing so evaluate the hypothesis 
that constructive induction is a feasible technique for 
generating valid and potentially novel hypotheses 
concerning bio-marker-to-phenotype relationships 
that are comprised of “facts” corresponding to the 
contents of the CRC research data repository. 

Background 
The following section further describes the specific 
conceptual knowledge engineering techniques used in 
our study, as well as the experimental content: 

Knowledge Engineering (KE) is a process by which 
knowledge is collected, represented and subsequently 
used by computational agents to replicate expert 
human performance in an application domain.  
Conceptual knowledge, one of three primary types of 
knowledge that can be targeted by KE, can be 
defined as a combination of atomic units of 
information (e.g., “facts”) and the meaningful 
relationships among those units [4].  Conceptual 
knowledge collections in the biomedical domain 
include ontologies, controlled terminologies, 
semantic networks and database schemas.  

Knowledge discovery in databases (KDD) is a 
specific type of conceptual knowledge engineering 
technique that is used to elicit both atomic units of 
knowledge and the relationships among them from 
the contents of a database construct [4]. Domain-
specific knowledge collections, such as ontologies, 
are commonly used during KDD in order to augment 
meta-data contained in the targeted database schema. 
This overall approach is the basis for a specific KDD 
methodology known as constructive induction [5] 
(Figure 1). 

 
Figure 1: Constructive induction methodology. 

In constructive induction, distinct data types (i.e., 
“facts”) defined by a database schema are mapped to 
concepts defined in one or more ontologies.  
Subsequently, the relationships included in these 
ontologies are used to induce semantically 
meaningful linkages between the mapped data types.  
If a concept is included in the ontology, but does not 
map to a data type in the database, it can be used as 
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an intermediate concept in order to induce new 
semantically related concept triplets or high-order 
relationships that begin and terminate with data types 
contained in the source database schema. By 
exploiting the transitive closure principle that is 
applicable when representing an ontology as a graph 
system, this induction process generates conceptual 
knowledge constructs (CKCs) that are defined in 
terms of data elements and the semantic relationships 
that link them together, as encoded in the source 
ontologies being utilized.  The resulting CKCs can 
then be used to inform potential hypotheses about 
relationships between data types contained in the 
source database [5].   

The CLL Research Consortium (CRC; 
http://cll.ucsd.edu) is an NCI-funded research 
consortium consisting of eight sites, which coordinate 
and facilitate basic and clinical research on the 
genetic, biochemical and immunologic bases of CLL.  
The ultimate goal of the CRC is to discover and 
evaluate novel biologic and pharmacologic 
treatments for CLL, and examine phenotypic ↔ bio-
molecular relationships that may improve clinical 
staging and/or assist in evaluating patient responses 
to such novel therapies.  The CRC utilizes an 
integrated information management system, known 
as CIMS, that incorporates a shared data repository 
and multiple task-specific web portal interfaces 
supporting clinical trials, basic science and tissue 
bank data management. Currently, CIMS is being 
used to collect, manage and analyze data for over 
4000 patients involved in multiple clinical trial 
modalities, as well as hundreds of thousands of CLL-
specific tissue samples.  Given its unique capabilities, 
the CRC is well positioned to investigate high-
priority bio-molecular markers (e.g., ZAP70 
expression levels) utilizing large-scale basic science, 
clinical and epidemiologic studies.  However, doing 
so relies heavily on the ability to reason about and 
infer meaning from the data collected via CIMS. 

Methods 

The following sections summarize a three-step 
methodology (Figure 2) that was employed and 
formal validity evaluation that was conducted during 
the course of the study reported on in this manuscript. 

Step 1 - Concept Selection and Mapping 
A corpus of phenotypic and bio-molecular data 
element definitions was extracted from the CIMS 
data repository model.  A subject matter expert 
(SME) used the Unified Medical Language System 
Knowledge Source Server (UMLSKS) [6] free text 
search engine and The Systematized Nomenclature of 
Medicine Clinical Terms (SNOMED-CT) [7] 
CliniClue browser [8] to map each data element to 



one or more UMLS concepts corresponding to the 
SNOMED-CT [7] and NCI Thesaurus [9] source 
vocabularies.  The mapped concepts were 
heuristically selected such that they either described 
the action resulting in the data element (e.g., 
laboratory procedure such as white blood cell count); 
and/or the specific values that could be contained 
within a particular database field (e.g., laboratory test 
results such as a value indicating an increased white 
blood cell count). 
 

 
Figure 2: Overview of study methods 
 

Step 2 - Concept Pre-processing 
The UMLS MRHIER source file enumerates all 
unique hierarchical paths (determined by the source 
vocabulary) between a given UMLS concept and the 
UMLS root concept (represented as an atomic string). 
If the source vocabulary allows for multi-hierarchies, 
a concept may have more than one path to the root. 
Using this file, the minimum distance (i.e., number of 
“steps” or atoms) to the root was calculated for each 
UMLS concept corresponding to either the 
SNOMED-CT or NCI Thesaurus source 
vocabularies. This information is used in Step 3 to 
facilitate the application of a variable search depth 
parameter (d), which is used as a surrogate indicator 
of concept granularity.  In addition, a subset of the 
UMLS MRREL source file, which contains 
information regarding all possible relationships 
between two given UMLS concepts, was created by: 
1) extracting only parent, child and semantic 
relationships between concepts corresponding to the 
SNOMED-CT or NCI Thesaurus source vocabularies 
2) determining inverse relationships within the 
previously selected subset (e.g., diagnoses is the 
inverse of diagnosed_by); 3) further refining the 
subset of selected relationships to encompass only 
those thought to be most meaningful for relating bio-
molecular and phenotypic concepts as judged by two 
SMEs. 

Step 3 - Induction of CKCs 
The relationship table generated in Step 2 was 
employed to determine any pair-wise semantic 
relationships between concepts that corresponded to 
mapped data types in the CIMS data repository (e.g., 
del(11q22q23) - may be cytogenetic abnormality of 
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disease - chronic lymphocytic leukemia refractory).  
These pair-wise relationships were then transitively 
expanded to generate CKCs that included up to three 
intermediate concepts.  Any CKC where the 
rightmost, or terminating concept corresponded to a 
CRC repository data type was recorded for later 
analysis.  With the addition of each transitively 
related concept, a validation algorithm employing an 
index of inverse relationships (as defined in Step 2) 
was used to ensure that subsequent relationships were 
not inverses of each other, and no duplicate concepts 
or cycles occurred within the resulting CKCs. To 
explore varying levels of granularity in the induced 
CKCs, all possible transitive relationships between 
concepts were iteratively calculated with d (i.e., 
minimum distance from the root as calculated in Step 
2) set at values from 1-6, where each concept in the 
CKC must have a distance from the root  ≥ d. 

Validity Evaluation 
An evaluation of the results generated in the 
preceding steps was conducted to assess the 1) 
accuracy of the concept codes manually assigned to 
the CIMS data elements, and 2) validity and 
meaningfulness (i.e., could the concepts and 
relationships be used to inform a hypothesis) of the 
induced CKCs.  For the first phase of the evaluation, 
individuals with expertise in database design and 
biomedical terminologies were asked to evaluate a 
randomly selected set of CIMS database elements 
and the ontology concepts to which they were 
mapped with respect to the accuracy of those 
mappings given the heuristics employed in Step 1.  
During the second phase of the evaluation, a d x n 
matrix evaluation was constructed, where a single 
CKC from each search depth (d) and number of 
included concepts (n) was randomly selected. CLL 
SMEs (basic science or clinical investigators) were 
asked to assess each CKC for both validity (using a 
categorical response of: Completely Valid, Partially 
Valid/Invalid, or Completely Invalid) and 
meaningfulness (using a categorical response of 
Meaningful or Not Meaningful).  

Results 
Step 1 - Concept Selection and Mapping 
A corpus of 107 data elements was extracted from the 
CIMS data repository schema, of which 68 (63.5%) 
and 39 (36.4%) corresponded to phenotypic and bio-
molecular parameters, respectively.  These data 
elements mapped to a total of 882 UMLS concepts 
(537 unique), of which 455 (51.6%) corresponded to 
the initial phenotypic parameters and 427 (48.4%) 
corresponded to the initial bio-molecular data 
elements.  Examples of the phenotypic concepts 
selected during this process included white blood cell 
count and disease-specific performance status, while 



examples of the bio-molecular concepts included 
leukemic cell CD5 frequency and chromosome 11 
abnormality. 

Step 2 - Concept Preprocessing 
The average distances from the root for the 
previously selected concepts corresponding to 
phenotypic and bio-molecular parameters were found 
to be 5.5 [range: 3-10] and 5.5 [range: 2-10], 
respectively.  Using the methods described earlier, a 
total of 196 unique UMLS semantic relationships 
(e.g., ‘may be cytogenetic abnormality of disease’, 
‘disease may have abnormal cell’, ‘has definitional 
manifestation’, ‘disease has finding’) were selected 
for subsequent use.  

Step 3 - Induction of CKCs 
During this final step, CKCs with 2 ≤ n ≤ 5, where n 
is the number of concepts contained within a CKC, 
linking the bio-molecular and phenotypic concepts 
selected in Step 1, were induced iteratively at 
increasing values of d, as summarized in Table 1. 

Table 1: Summary of number of CKCs stratified by 
search depth (d) and the number of concepts (n). 

Number of Concepts in CKCs Ontology 
Search 
Depth 2 3 4 5 Total 

1 5 896 844 139,024 140,769 
2 5 676 822 136,456 137,959 
3 5 676 822 136,456 137,959 
4 5 676 804 133,816 135,601 
5 5 145 351 8,656 9,157 
6 0 3 57 3,063 3,063 

 

A complete set of the selected concepts, their 
distance from the ontology root, and semantic 
relationships for all search depths is available at 
http://bmi.osu.edu/~payne/crcokd.html. 
 

Validity Evaluation 
Five SMEs evaluated the validity of the mappings 
between data types and ontology concepts.  The 
evaluation sets were non-overlapping (i.e., a total of 
250 unique mappings were evaluated).  The SMEs 
completely agreed with 173 (69.2%), partially 
agreed/disagreed with 40 (16%) and completely 
disagreed with 6 (2.4%) of these concept mappings.  
The SMEs felt that they did not have the domain 
expertise or enough information to assess a total of 
31 (12.4%) of the selected concept mappings. 

Five SMEs evaluated the validity and meaningfulness 
of the induced CKCs.  Each SME was given a total of 
23 CKCs to evaluate, due to the fact that there were 
no pair-wise relationships generated at d = 6.  A total 
of 49 (43%) of the 115 selected CKCs were 
designated as non-evaluable by the SMEs due to the 
fact that they did not have sufficient domain expertise 
to adequately assess a given association, particularly 
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with respect to the intermediate concepts.  Of the 
remaining 66 CKCs, the SMEs concluded that 16 
(24.2%), 43 (65.2%) and 7 (10.6%) were completely 
valid, partially valid/invalid and completely invalid, 
respectively.  A qualitative review of the SME’s 
comments indicates that in most cases where a CKC 
was designated partially valid/invalid, the experts felt 
that potentially informative intermediate concepts 
had been omitted from the construct.  Finally, 10 of 
the completely valid CKCs were assessed for 
meaningfulness (one SME omitted this section of the 
survey), and of these, 9 (90%) were deemed to be 
meaningful (Table 2).  The average distance from the 
ontology root for concepts included in such CKCs 
was found to be 7 (SD=1). 

Table 2: Examples of valid/ meaningful CKCs 
Relationship 

Pattern Induced Relationship 

Chromosomal 
Abnormality 
→ Diagnosis 

del(17p13) – [may be cytogenetic abnormality 
of disease] - Chronic lymphocytic leukaemia 
refractory 

Chromosomal 
Abnormality 
→ Clinical 
Laboratory 

Value/Finding 

t(6;9)(p23;q34) - [may be cytogenetic 
abnormality of disease] - Acute 
Myelomonocytic Leukemia without 
Abnormal Eosinophils - [disease may have 
finding] - White blood cell count increased 

Discussion 
We have described the application of a type of 
conceptual knowledge engineering technique known 
as constructive induction in order to generate 
conceptual knowledge constructs (CKCs) comprised 
of phenotypic and bio-molecular concepts that 
correspond to the contents of the CIMS data 
repository.  The objective of this induction process is 
to support higher-order reasoning about the contents 
of the CIMS repository, with the specific goal of 
discovering potentially informative biomarker-to-
phenotype relationships.  Our results lead to several 
findings, specifically:  
• Constructive induction is computationally tractable 

for generating biomarker-to-phenotype CKCs 
derived from ontology-anchored concepts that 
correspond to source data elements in the CIMS 
repository and semantic inter-relationships. 

• The semi-automated mapping of data elements to 
ontology concepts was generally accurate, with 
SMEs at least partially agreeing with such 
associations 85.2% of the time.  However, there is 
clear room for improvement in this step of the 
methodology. 

• In 89.4% of evaluable instances, the induced CKCs 
were at least partially valid, with 24.2% of the 
CKCs being designated completely valid.  A 
qualitative review of the SME’s comments 
indicates that those CKCs designated as partially 
valid contained valid concepts and relationships, 
but were not considered complete (e.g., they lacked 



important intermediate concepts or relationships 
per the experts’ judgment).  Such an outcome 
would appear to point to potential shortcomings of 
the source ontologies.  Despite this possible 
limitation, when CKCs were found to be 
completely valid, they were usually meaningful 
(90% of the time), indicating that they could be 
useful in informing hypotheses concerning 
translational biomarker-to-phenotype relationships.  
Of interest, the concepts that comprised CKCs 
designated as completely valid and meaningful 
were found to have a depth from the ontology root 
equal to or greater than the depths of the initial and 
terminating concepts used to induce those 
constructs. This suggests a possible 
correspondence between search depth constraints 
and meaningfulness that could be used to identify 
those CKCs more likely to aid in the discovery of 
informative biomarker-to-phenotype relationships. 

There are several limitations to the work reported in 
this manuscript, including the: 1) use of a semi-
automated and difficult to scale human-mediated 
process for mapping database elements to ontology 
concepts; 2) use of a surrogate indicator of concept 
granularity within source terminologies derived from 
distance-to-root metrics; 3) use of relatively simple 
graph-theoretic reasoning techniques to induce 
CKCs, and 4) limits on our evaluation study imposed 
by the domain expertise of the recruited SMEs.  In 
order to address the first of these potential 
limitations, we are assessing techniques for 
automating the database element-ontology mapping 
process using tools such as MetaMap 
(mmtx.nlm.nih.gov) and programmatic interfaces to 
the UMLSKS Server. Similarly, to address the 
second and third of the preceding limitations, we are 
actively evaluating W3C Semantic Web [10] 
initiative-derived platforms, including: 1) OWL-
based ontology representations; and 2) the Jena 
semantic web framework, in order to apply advanced 
ontology reasoners to our CLL-specific data set.  
Unfortunately, due to a paucity of ontologies 
represented using OWL, which also exhibit sufficient 
content coverage of the data types used in this study, 
additional work will be required to transform non-
OWL compliant ontologies into compatible formats 
in order to support such an approach. 

Conclusion 
The preceding results serve to demonstrate that 
conceptual knowledge engineering techniques, and in 
particular constructive induction, can reasonably be 
applied to the contents of an operational translational 
research data repository.  This approach can support 
higher-order reasoning about relationships between 
data elements in such a repository, based upon 
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knowledge encoded in commonly available 
biomedical ontologies.  The results of our validity 
evaluation indicate that in those cases where the 
content coverage of the selected source ontologies is 
sufficient, thus allowing for the induction of valid 
and complete CKCs, such constructs can be 
informative to the discovery of biomarker-to-
phenotype relationships.  However, our results also 
indicate that there is significant room for 
improvement in the described methodology in order 
to: 1) increase the scalability of the initial database 
element to ontology concept mapping process; and 2) 
identify and censor potentially less-useful CKCs.  
Given our findings, we believe that the use of 
constructive induction to discover potentially 
informative biomarker-to-phenotype relationships 
that correspond to the contents of operational data 
repositories holds great promise.  However, it is also 
clear that additional work is required to refine and 
optimize such approaches. 
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