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Abstract 

The annotation of gene/gene products with 
information on associated diseases is useful as an aid 
to clinical diagnosis and drug discovery. Several 
supervised and unsupervised methods exist that 
automate the association of genes with diseases, but 
relatively little work has been done to map protein 
sequence data to disease terminologies. This paper 
augments an existing open-disease terminology, the 
Disease Ontology (DO), and uses it for automated 
annotation of Swissprot records. In addition to the 
inherent benefits of mapping data to a rich ontology, 
we demonstrate a gain of 36.1% in gene-disease 
associations compared to that in DO. Further, we 
measure disease similarity by exploiting the co-
occurrence of annotation among proteins and the 
hierarchical structure of DO. This makes it possible 
to find related diseases or signs, with the potential to 
find previously unknown relationships. 

INTRODUCTION 

Associating genes with diseases and finding 
commonality between seemingly dissimilar disorders 
is an active area of research as it can lead to a better 
understanding of disease and reduced time and 
expenditure in developing effective drugs and 
treatment. Several methods have been developed to 
associate genes/gene products with diseases using 
microarray data,  orthology, annotation of genes and 
protein interactions, and medical literature [1][2].  

Swissprot (SP) [3]  has 2554 proteins (March 1st,  
2009) that have been manually annotated with 
disease names. These entries are a mixture of phrases 
explicitly referring to disease names and additional 
sentences that imply associated diseases. Mapping 
this accurate information to standard terminologies or 
ontologies would aid the automation of research on 
gene-disease relationships. A recent study published 
by Mottaz et al [4] used a template-based approach to 
link SP proteins to Medical Subject Headings 
(MeSH) [5] by mining the disease information in 
protein records. OMIM data has been mapped to 
MeSH to infer similarity between genes based on 
phenotypes [6]. Metadata from tissue microarray data 
has been mapped to the National Cancer Institute 
Thesaurus (NCI-T) and the Systematized 
Nomenclature of Medicine-Clinical Terms 

(SNOMED-CT) for classification of tumor samples 
[7]. Though MeSH has broad coverage on a variety 
of subjects, it has several missing terms and lacks 
detail in the disease section. For example, 
‘Hypothalamic Neoplasms’ is not present in MeSH 
and the term Asthma has only ‘Asthma, Exercise-
Induced’ and ‘Status Asthmaticus’ as child terms. As 
a result, MeSH-based approaches may have limited 
recall and any similarity metric that exploits its 
hierarchical nature can lack specificity. While 
SNOMED-CT is rich in clinical terms, its availability 
is restricted. The International Classification for 
Diseases (ICD) classifies epidemiological diseases 
but lacks clinical details. 

It is important to have vocabulary that not only gives 
disease sub-classification, but also signs related to 
them [8]. For example, consider disease text line 5 
for protein P21333 in SP: “Defects in FLNA are the 
cause of frontometaphyseal dysplasia (FMD) 
[MIM:305620]. FMD is a congenital bone disease 
characterized by supraorbital hyperostosis, deafness 
and digital anomalies.” Although ‘frontometaphyseal 
dysplasia’ is the disease, the knowledge that the 
defects are congenital musculoskeletal anomalies, 
deafness and hyperostosis can be potentially useful in 
knowledge bases and expert systems. 

The Disease Ontology [9] developed at Northwestern 
University is part of the Open Biomedical Ontologies 
and has 12082 terms (ver3.0, August 2009) 
compared to 4323  in MeSH 2009 (Disease section). 
Most of the terms have been obtained from ICD, 
NCI, MeSH, CSP (Complications Screening 
Program) and MTH (UMLS Metathesaurus). 

Major efforts in text mining have focused on the 
recognition of genes/proteins and protein interactions 
in publications [10]; relatively few tools map free 
text to disease terminologies. NLM’s MetaMap [11] 
is a widely used tool to map free text to controlled 
vocabularies in UMLS. 

It is useful to discern similarity between diseases as 
this can lead to a better understanding of underlying 
common pathophysiology. This can impact 
diagnosis, prognosis and treatment in the clinic as 
drugs/procedures used to treat a particular disease 
may be effective for similar diseases. A few methods 
have been developed to compute disease similarity; 
one uses phenotypes to find disease relationships 
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[12] while the other finds consistently co-occurring 
diseases in Medicare patient data [13].  

In this paper, we use MetaMap to map the disease 
annotation of Swissprot protein entries to DO terms. 
We then estimate the similarity between diseases 
using co-annotation and the DO semantic hierarchy. 

METHODS 

Disease Terms. Based on the semantic types defined 
in UMLS, a term was designated as Disease-Related 
if it was any of the following 7 semantic types: 
‘Disease or Syndrome,’ ‘Neoplastic Process,’ 
‘Mental or Behavioral Dysfunction,’ ‘Acquired 
Abnormality,’ ‘Pathologic Function,’ ‘Anatomical 
Abnormality’ and ‘Congenital Abnormality.’ ‘Sign 
or Symptom’ though sometimes synonymous with 
disease names was not considered as it includes 
several non-specific terms like pain and fever which 
can confound mapping. 

Augmenting DO vocabulary. DO consists of 12082 
terms corresponding to 14,392 Concept User 
Identifiers (CUIs). Although DO has a large 
vocabulary, several terms lack synonyms and some  
are rather abstract (e.g., Reproduction Disease). In 
order to augment DO, we exploited the semantics of 
the internal hierarchy of multiple source vocabularies 
in UMLS - ICD10, SNOMed-CT, MeSH, MTH and 
NCI-T. For a given DO term, its CUI was used to 
extract all Atom Unique Identifiers (AUIs). These 
were designated as Preferred Terms. The AUIs 
obtained were recursively used as query terms to find 
additional AUIs having an IS-A relationship with the 
query terms.  The AUIs thus extracted were labeled 

as Secondary terms of the DO term used to initiate 
the query. To avoid redundancy, the iteration was 
terminated whenever the extracted Secondary term 
matched the Primary term of an existing DOID. For 
example, A3124434, A2891225 and A3413463 (Fig. 
1) are AUIs of DOID:10081 (Syphilitic encephalitis) 
extracted from MRCONSO. Using these terms, 
Secondary Terms are iteratively extracted from 
MRHIER, except for ‘A2982782’ which is a 
Preferred Term of another DO Identifier, ‘Syphilitic 
Parkinsonism.’ Thus, several Secondary terms were 
subsumptively mapped to each Primary DO identifier 
to create an augmented version of DO. To strike a 
balance between a rich mapping to DO and excessive 
abstraction, the iteration for each Preferred DO 
identifier was limited to a pragmatic maximum of 4 
levels (based on a sample of mappings). 

Mapping disease lines to DO. The SP database 
disease-annotated subset consists of 2554 proteins 
with 3936 disease descriptor lines. The OMIM titles 
and alternative titles were appended to the disease 
line wherever an OMIM ID was mentioned. 
MetaMap 2009AA was used to map the SP text 
entries to DO. The SP text was used to search the 
entire UMLS and wherever the CUI was represented 
in augmented DO, the corresponding DO identifier 
was used to annotate the SP disease line.   

Entrez Gene identifiers corresponding to SP 
identifiers were used to add disease information 
based on DO-GeneRIF mappings. Thus, the final 
annotation was based on the cumulative annotation 
from SP, OMIM and GeneRIF. 

Metric to compute disease similarity. Given a disease 
term, the subset of genes annotated with it was 
extracted and the associated DO terms were used to 
find similar diseases. This was done by finding over-
represented extracted DO terms using the 
hypergeometric distribution and the Benjamini-
Hochberg correction for multiple tests. The 
hypergeometric distribution tends to give less 
importance to abstract upper level terms and is based 
on an assumption of independence. The results can 
therefore be skewed for terms along the hierarchy 
and for rare terms which yield spuriously high scores. 
To account for random or rare occurrences, a 
similarity metric called BV [14] that is based on both 
co-annotation and hierarchy (Equations 1 and 2) was 
used. A p-value was calculated for similarity scores 
using 100,000 randomly generated pairs of diseases.  

Given DO terms A & B, n(A) = number of genes 
annotated with A, n(A∩B) = number of genes 
annotated with both A and B, and N = total genes, 
similarity is given by 

Figure 1. Adding Terms to DO using UMLS

DO-OBO 
Doid:10081 (Syphilitic Encephalitis) 
CUI:C0153168  

MRCONSO (MeSH,SNOMed,MTH,NCI) 
1. A3124434 | Encephalitis due to syphilis unspecified 
2. A2891225 | Syphilitic Encephalitis 
3. A3413463 | Encephalitis due to syphilis unspecified  
    Disorder 
4. A3744939 | Syphilitic Encephalitis (disorder) 

      MRHIER     
A289118            A3124434     Synonym of  DOID:13547

(Syphilitic parkinsonism)

STOP traversal along this path

A289122  
A298278  

A1                      A2        A3           A4          

Primary Terms (Synonyms from MRCONSO) 

Secondary terms (Recursive Child terms from 
MRHIER for each Primary term, e.g., A2891225) 
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The value obtained is normalized by the average of 
the maximum scores for A and B, and multiplied by 
the average suprisal of the terms as follows. 
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Max_sim(A,i) is the maximum similarity score for 
DO terms A and ‘i.’ Sup(A) is the surprisal of A. 

RESULTS 

Comparison between DO and MeSH. The MeSH 
‘Disease’ section contains 4323 terms related to 
various UMLS semantic types of which 3944 are 
‘disease related’ (see above). These correspond to 
6954 Concept User Identifiers (CUIs). In 
comparison, DO consists of 12082 terms. Further, the 
augmentation of DO using UMLS resulted in 
increasing the coverage to 33,085 CUIs, an increase 
of 2.5 fold. There were only 615 MeSH terms which 
did not have a corresponding CUI in the augmented 
DO; 84.4% MeSH disease-related terms were 
represented in DO. 

To evaluate the efficiency of mapping, the Mottaz 
benchmark set of 200 records was used. These 
records were originally randomly chosen and 
manually annotated by experts using MeSH. A 
record consists of Protein ID, Line Number and 
Disease Text. The same records were parsed by 
MetaMap and annotated with MeSH terms. Recall 
and precision were calculated on a per record basis. 
If any term mapped by MetaMap matched the curated 
terms, then the record was scored as a match. It was 
noticed that some terms from the disease text were 

missed by experts. To prevent underestimation of 
precision, the mapped terms were manually checked 
by DD, the 2nd author of the paper. 

The template-based extraction method in Mottaz et al 
required only 1 term to be extracted per record and 
had a precision of 86% and recall of 64% resulting in 
an F-score of 0.73. MetaMap (SP-MeSH mapping) 
performs better by achieving an average cardinality 
of  
3.05 per correctly called record with a better recall 
and overall performance (Maximum Recall=89%; 
Precision=72%; F-score=0.81). Mappings of the 200 
records to DO achieved an average cardinality of 
3.06 with better F-scores (Maximum Recall=90%; 
Precision=76%; F-score=0.83) compared to SP-
MeSH mappings (Fig 2). 

A cutoff score of 700 was used for automated 
annotation of all SP entries having disease lines as it 
had the highest F-score of 0.827. Out of a total of 
2554 proteins annotated with disease text, MetaMap 
was able to assign annotation to 2303 (90.4%). 

The relative contributions of GeneRIF, OMIM and 
Swissprot annotation to disease–gene association 
were assessed. The existing GeneRIF annotation in 
DO (4376 genes annotated with 2638 DO terms) 
corresponds to 20183 gene-disease associations. SP 
records alone, devoid of any OMIM references, 
yielded 1191 gene-disease associations between 485 
genes and 325 diseases. SP records that included 
information derived from OMIM contributed to the 
annotation of 923 Entrez genes with 564 DO terms 
(an additional 7293 gene-disease associations) (Fig. 
3). Thus, the use of information embedded in SP 
records resulted in an increase of 36.1% over pre-
existing annotation derived from GeneRIF and a 
22.5% increase in DO terms used for annotation. 
Exploiting both SwissProt and GeneRIF annotation 
resulted in associating 3202 diseases with 5290 
Entrez genes.   

Table I lists pairs of diseases which do not occur in 
the same hierarchy as the query disease. The p-value 
based on the hypergeometric distribution (corrected 
for multiple testing (BH)) was essentially zero for the 
associations shown. ‘Sbv’ is the p-value based on BV 
scores that range from 0 to 8.6 with a mean of 0.1 
and standard deviation of 0.5. 

Figure 2. Evaluation of automated annotation 
of 200 records with MeSH and DO terms 7293 1992 18191

GeneRIFSP_OMIM

Figure 3. Disease-Gene associations 
from SP-OMIM and GeneRIF 
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Table I. Diseases showing an association with a 
query disease in protein annotation space 

Query 
Disease  

Associated Diseases Sbv 

Diabetes Mellitus  0.03 
Obesity  0.03 

Hypertension 
(260 genes) 
DOID:10763 Heart Diseases 0.03 

Hyperlipidemia 0.03 
Diabetes Mellitus 0.03 

Coronary heart disease 
(144 genes) 
DOID:3393 Obesity 0.03 

Diabetes Mellitus  0.03 
Lipid Disorder  0.03 

Obesity 
(151 genes) 
DOID:9970 Polycystic Ovary Syndrome 0.05 

Autoimmune Disease 0.02 
Obesity 0.05 

Diabetes Mellitus 
(407 genes) 
DOID:9351  Myocardial Ischemia 0.03 

Vision Disorders 0.03 Hearing problem 
(189 genes) 
DOID:12226  

Cranial nerve diseases 0.02 

Influenza 0.02 
Lung Diseases, Interstitial 0.01 

Pneumonia (81 genes) 
DOID:552 

Pulmonary Fibrosis 0.01 
Skin Diseases, Eczematous 0.01 
Skin Diseases, Genetic 0.01 
Asthma 0.02 

Dermatitis 
(151 genes) 
DOID:2723 

Parasitic Disorders 0.05 
Retroviridae Infections 0.02 Multiple Sclerosis 

(96 genes) 
DOID:2377 

Gastrointestinal Infection 0.02 

 

DISCUSSION 

Automating the annotation of genes with 
standardized disease information. Controlled 
terminologies have been a prominent part of medical 
informatics for several decades. It is only recently 
that interest has grown in linking clinical data to 
biological functions of genes based on ontologies.  
Significant gains in understanding gene-disease 
relationships can be made by the knowledge 
integration facilitated by linking multiple ontologies 
[15]. A bottleneck that currently exists is the fact that 
the majority of useful annotation is in the form of 
free-text. The first part of the paper represents an 
effort to automate the conversion of free-text disease-
specific information in SP to terms based on the 
Disease Ontology by using MetaMap together with 
upper ontological mappings in UMLS. While the 
level of accuracy falls short of manual annotation, it 
is important to note that this is a fully automated 
approach. It resulted in an increase of 36.1% in gene-
disease annotation compared to that maintained by 
the DO community. Some roles of genes might be 
missed by an expert during the creation of a reference 
standard with controlled vocabulary terms, thus 
introducing false negatives. In turn, when this is used 
as the basis for evaluation of an automated method, it 
can lead to a spuriously lower precision if some of 
the missing terms are picked up. To avoid 

underestimation of precision, the automated 
annotations based on MeSH and DO were manually 
checked by DD in addition to comparison with the 
existing annotations. 

MeSH is deficient in detailed nomenclature of 
diseases. For example, consider the text entry 
“Defects in TGM1 are a cause of non-bullous 
congenital ichthyosiform erythroderma. Clinical 
features are milder than in lamellar ichthyoses. 
Patients suffer from palmoplantar keratoderma, often 
with painful fissures, digital contractures, and loss of 
pulp volume.” The closest MeSH term is ‘lamellar 
ichthyoses.’ In contrast, DO includes both 
‘palmoplantar keratoderma’ and ‘lamellar 
ichthyoses.’ Although DO is particularly rich in 
highly specific terms, it is a work in progress as i) 
synonyms are minimal, ii) there are several obsolete 
terms and iii) there are a large number of terms in a 
‘temp holding’ category. There is no placeholder for 
general terms like ‘Ataxia’ or ‘Short Stature;’ only 
specific versions like ‘Cerebellar Ataxia’ and 
‘Pituitary Dwarfism’ exist. This limits the use of DO 
in both molecular or clinical record annotation when 
an association is detected but an exact cause is yet to 
be ascertained. 

While MetaMap is an effective tool to map text onto 
biomedical vocabularies, polysemy, anomalous 
lexical variations, negations and sub-partitioning of 
disease term phrases resulted in false positives. For 
example, text ‘Deficiency’ was mapped to 
Malnutrition, ‘Exhibit’ to Exhibitionism, and 
‘Pyruvate Dehydrogenase Complex Deficiency 
Disease’ to Malnutrition and Protein Deficiency.  
Although MetaMap 2009AA addresses negation, we 
found that it fails in some cases, especially when the 
negation occurs in the latter half of a phrase. A DO 
thesaurus was constructed using Datafile Builder tool 
of MMTx and SP text mapped to it. Although this 
achieved slightly better recall than MetaMap, its 
precision was lower (data not shown). These 
limitations can be potentially overcome by 
incorporating advanced text mining techniques [10].  

Assessing disease similarity in protein space. Table I 
shows a representative sample of the gene annotation 
based inter-disease associations that are statistically 
significant. Trivial associations like rheumatism and 
soft tissue diseases that occur in the same hierarchy 
are not reported. Nor are obvious matches for 
synonyms and variants shown here. Table I shows 
several well known associations between diseases. 
For example, Obesity, Diabetes Mellitus, 
Hypertension and Heart Disease are known to be 
linked, which is borne out by the self-consistent 
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nature of the first few rows in the table. Interestingly, 
the association shown for multiple sclerosis resonates 
with theories on viral infections (not just Epstein-
Barr) triggering the auto-immune response. Common 
KEGG pathways based on gene-enrichment analysis 
are cytokine-cytokine receptor interaction, T cell 
receptor signaling pathway, Toll-like receptor 
signaling pathway and cell adhesion molecules 
(CAMs). While most of these associations are 
common knowledge, these are based on complete 
automation and based on the accurate extraction of 
standard vocabulary from free-text. Though only a 
relatively small fraction of genes is currently 
annotated with disease-specific information, 
subsequent growth is likely to lead to the 
identification of new associations.  

Many metrics take the information content in the 
nearest common ancestor to estimate similarity 
between terms; this approach can underestimate the 
similarity between related yet distant terms if the 
hierarchy is flawed. This is a problem in DO, which 
has close to 3654 terms under ‘temp holding.’ It is 
therefore important to use co-annotation relative 
frequency along with ontological hierarchy for a 
more accurate estimate of similarity. 

An important area to consider is the overlap between 
the concepts of disease, signs, phenotype and perhaps 
even symptoms. At times a single sign or symptom is 
considered pathognomic and hence synonymous with 
a specific disease, while at the other extreme there 
are syndromes with a complex and variable 
presentation. It behooves the knowledge 
representation community to extend annotation to not 
just the name of a disease but to a more detailed 
description. This will allow make maximum use of 
the collective knowledge in  both clinic and lab. 

CONCLUSION 

We have demonstrated an automated approach to 
map high quality annotation to the Disease Ontology 
and report an increase of 36.1% in gene-disease 
relationships. Interesting relationships between 
diseases can be found with better accuracy with 
metrics that exploit ontology as well as co-
annotation. For seemingly dissimilar diseases found 
to be similar, it would be interesting to see if 
similarity exists in gene functionality, eventually 
resulting in knowledge that impacts diagnosis, 
prognosis and treatment.  
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