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Abstract 

The need for easy, non-technical interfaces to clinical 

databases for research preceded translational 

research activities but is made more important 

because of them.  The utility of such interfaces can be 

improved by the presence of a persistent, reusable 

and modifiable structure that holds the decisions 

made in extraction of data from one or more 

datasources for a study, including the filtering of 

records, selection of the fields within those records, 

renaming of fields, and classification of data. This 

paper demonstrates use of the Web Ontology 

Language (OWL) as a data representation of these 

decisions which define a study schema.  

Introduction 

The need to query multiple clinical databases for 

research data without intricate knowledge of either 

query languages or database structure is well 

recognized and is increasingly being addressed in 

clinical research literature. "Translational research" 

refers not only to the interaction between pre-clinical 

and clinical research ("T1") but also refers to the 

cycle of research results informing clinical practice 

while clinical practice data informs clinical research 

("T2"). In the T2 translational framework, then, the 

ability to access that clinical practice data accurately 

and easily is crucial, and it is in that light that the 

following work is presented.  

Various graphical interfaces for querying data have 

been suggested and are coordinated with common 

approaches for storage of data including use of a 

single schema across federated databases, schema 

integration of disparate databases, and transformation 

with query of EAV or XML data structures. One 

aspect of this query process that is seldom addressed, 

however, is the representation of a study schema, 

expressed either on a single database or across 

multiple disparate databases, such that the study 

schema is both persistent and reusable. Such a 

persistent and reusable structure would allow a data 

analyst to repeat studies or to modify previous studies 

without recreating them, and encapsulates important 

knowledge for study interpretation.  

Our current work on study schema representation 

builds on prior research by this team on concepts we  

 

 

 

 

 

 

 

 

 

 

 

 

 

call GUI-As-View (GUAVA) and MultiClass1-4 as 

shown in Figure 1.  It is our contention that the 

metadata required for accurate selection of data for a 

clinical study, when that data was collected using a 

forms-based user interface, is contained in the user 

interface. This includes both common types of 

metadata such as data type, and on-screen selection 

options, but also uncommonly captured metadata 

such as on-screen prompts or legends, the 

relationship of one piece of data to another and one 

screen to another, and whether or not the data item 

was required from users.  We have demonstrated the 

ability to create a forms-based user interface using a 

common development platform which is self-

documenting, allowing automatic creation of a query 

interface containing this extensive metadata. The in-

memory structure that contains the interface 

knowledge we call a G-tree.  From the G-tree, a 

query interface which represents the entire spectrum 

of metadata for the analyst can be built automatically 

and has been demonstrated with both tree structure 

and forms representations of the query interface.  

With such a query interface, a data analyst, who may 

be a domain expert but not a database expert, may 

retrieve data from clinical databases without writing 

statements in a query language nor knowing the 

schema of the database holding that data.  The 

"analyst dashboard" proposed here would not support 
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Figure 1 Overview of study progression. The G-tree is 

an in-memory representation of the user interface from 

which a query interface can be automatically created and 

through which the datasource can be queried.  We are 

concerned in this work with a persistent representation for 

the study schema.   
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analysis of that data (i.e. aggregation or statistical 

manipulation) which is best done with statistical 

analysis tools, but rather the retrieval of datasets for 

use in that analysis.  Functions required for this 

process include selection of records, limitation of the 

data fields retrieved for each record, renaming of 

fields from the stored names to analytically 

meaningful names, and data classification.  The 

MultiClass principles that we have previously 

described directly address classification of data 

retrieved from multiple disparate datasources.  

As an example of classification, consider a data 

element "bowel prep results" as included in 

gastrointestinal endoscopy procedure notes.  Suppose 

the study requires that "bowel prep results" be 

classified as either "adequate" or "inadequate".  In 

one documentation system, this data might be 

collected in a structured element with 4 choices, 

"Excellent," "Good," "Fair," and "Poor".  In another 

documentation system, this data might be collected 

using the Boston Bowel Preparation Scale (BBPS) 

which outputs an integer from 0 to 9. Since there is 

no one right way to classify this data, the analyst 

might choose, for purposes of the current study, to 

classify "Excellent", "Good", and "Fair" from the first 

information system and 4-9 from the second 

information system as "adequate" and all other 

choices as "inadequate."  Dynamic classification is 

superior to static classification (i.e. integration) of 

data like this since, for purposes of other studies, 

different classifications to "adequate" and 

"inadequate", or different expressive scales, might be 

more appropriate.  

The persistent and reusable study schema format 

must, then, allow for selection of records, choosing 

needed fields, renaming of fields, and dynamic 

classification of data obtained from multiple 

datasources. We will next briefly review related 

literature and then present our suggested study 

schema format.  

Related work 

The collection and retrieval of heterogeneous data is 

fundamental for both biomedical research and 

clinical data analysis. Facilitating query creation and 

expression becomes essential in order to get relevant 

results. A foremost concern is to reduce the 

complexity of the query interface such that non-

technical analysts can create simple, accurate and 

relevant queries.  

Query by Example (QBE)
5
 was probably the first 

graphical user interface created for this purpose.  In 

this interface, the user specifies the conditions on 

which data is to be filtered by entering representative 

data in desired data fields. QBE requires the users, 

however, to specify the join conditions on the 

database, and therefore requires the user to have 

knowledge of the data storage schema. In our analyst 

dashboard, joins would not need to be specified since 

the required knowledge is captured in the G-tree on 

which the query interface is derived and is based on 

the launch relationship of forms in the user interface. 

QBE also does not offer a persistent query/study 

schema storage form. 

One of the older graphical interfaces, QUICK
6
 was 

built as a query interface to CPL (Collection 

Programming Language) – Kleisli specifically for 

querying multi-database systems. An essential part of 

this system for naïve users is a thesaurus which 

provides a mapping between user terms and database 

terms.  Persistence and reusability of queries is not a 

part of QUICK and the system still requires the user 

to write SQL-type statements.  Thesaurus-like 

functionality (where fields are related to their label 

or the user interface) in our system is contained in 

the G-tree (one per datasource) and can be 

implemented in the analyst dashboard. 

XGI
7
 is an example of a graphical interface 

developed to help users query XML datasources.  

The XGI interface allows inexperienced researchers 

to create queries expressed in XQuery.  The 

expressivity of XGI was tested and found to have 

moderate limitations, because some required query 

constructs had not been implemented.  Our work in 

GUAVA is similar to XGI provided the XML element 

names reflect the labels from the user interface and 

the additional contextual information is available by 

some means. Regardless of the language used to 

express queries, the system must faithfully manage 

the mapping from the analyst queries to the physical 

database(s), often relational, and store the queries in 

an easily analyzable form.  Both systems allow for 

operators such as renaming, but neither allows for 

more complex structures such as arithmetic 

computations.  It is not the intention of our work to 

include such complex constructs since our goal is 

retrieval of a dataset that will subsequently be 

analyzed using a statistical analysis tool.   

The Qure Data Management platform
8
 has several 

components for supporting biomedical research 

including study data collection.  All data is stored in 

databases with an entity-attribute-value (EAV) 

schema.  One component of this system is a query 

engine which is designed, as is ours, to output a 

dataset for analysis in special data analysis tools.  

Because of the hierarchical data structure of the 

underlying EAV data, joins do not need to be 

specified in querying; similarly, joins are not required 
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in our analyst dashboard because of the hierarchical 

structure inherent in forms-based interfaces captured 

in the G-tree.  Despite similarities, this work differs 

from ours in that the physical database schema in our 

work is arbitrary.  GUAVA components handle the 

conversion of all data and queries from a "natural" 

schema which is evident from the G-tree and inferred 

in the query interface, into any database schema, 

therefore allowing the use of data from multiple 

sources without requiring the export or reformatting 

of data from those sources. The query parameters in 

the Qure system can be saved, but the format in 

which that knowledge is saved and the method of 

reusability is not specified.   

These and other published works clearly describe 

common goals for querying multiple datasources and 

provide examples of design and functionality in 

query interfaces. What is either missing or little 

emphasized in all, however, is a plan for the storage, 

modification and reusability of the knowledge 

embodied in a specific study schema.  We have 

explored the Web Ontology Language (OWL)
9
  

which was not developed for this purpose, but we 

will demonstrate in the following section how it can 

be used as a persistent and reusable representation of 

study decisions.  

Persistent representation of clinical study 

decisions 

We first use OWL to represent the studies created by 

data analysts. OWL consists of a family of related 

languages that can be used to represent ontologies.  

OWL-Lite, the simplest language of the family, is 

sufficient for our purposes. OWL is based on a 

description logic; this allows us to easily describe the 

classification decisions made by the analysts as they 

prepare a study using the analyst dashboard. In this 

section, we describe how we represent the various 

aspects of the study schema in OWL.  The study 

schema file is stored in OWL-XML which allows our 

software to programmatically parse and recreate a 

stored study. Protégé 4.0 was used for these 

examples.
10

 

In OWL every class is a subclass of the class “Thing” 

which encompasses the universe in which our 

ontology (i.e., our representation of study schemas) 

resides. Thus we define each study as a subclass of 

the class “Thing”. Once we have defined our class we 

can create data and object properties that represent 

the selection, filtering and classification of records 

from our datasource.  
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Figure 2. Representation of input schema using OW
The first step in defining a study schema is the 

selection of the fields of interest from a given 

datasource. This information is stored in the data 

properties of the study ontology. Each data property 

is named starting with the datasource, followed by 

the path to the attribute, followed by the attribute 

itself. In OWL each data property can be given a 

range which represents the type of the data property 

(e.g. Integer, Boolean, String). For the input data 

properties the range corresponds to the data type of 

the field in the source data. This information is stored 

in the source Query Interface which can be retrieved 

by the software without the need for the analyst to 

know this information.   

Figure 2 demonstrates the input fields necessary for a 

sample study against an application for documenting 

GI colonoscopy procedures (CORI4) built using 

GUAVA components. Because we are using a query 

interface based on the G-tree, the attributes from the 

CORI4 application are named using the path of 

forms, controls, and data controls for the attribute, as 

it appears in the user interface.  For example, the 

CORI4.Indications.TherapeuticIntervention.Dilation

OfStricture represents the Dilation of Stricture field 

on the Therapeutic Intervention form, a form that is 

launched from the Indications portion of the 

Colonoscopy form. 

Once the input schema has been defined, the next 

step is for the analyst to describe how procedures will 

be selected from the datasource. We store 

information about the filters analysts place on the 

records retrieved from the datasource using an 

anonymous superclass of our study. These filters are 

value restrictions placed on data properties from the 

source. Figure 3 shows a common style of filter used 

to select procedures for a study where the procedures 

must fall into a given date range and be of a certain 

type (Colonoscopy, in this example). The “and” 

syntax shown in Figure 3 results in the selection of 

 



 

 

 

 

 

 

 

 

the intersection of all records where all three data 

restrictions hold.  The analyst can easily express 

more complex selections, e.g., that require a 

particular indication or finding or other constraint on 

the input data.   

The analyst must then specify and name the fields 

that will appear in the output file from the study 

which can then be passed to a statistical analysis 

program. In addition, the analyst must describe the 

details of how the values in the output file are to be 

established by writing classifiers for each output 

field.  Figure 4 shows the fields in the output along 

with the names of the classifiers that have been 

defined for each field for this study.  We see, for 

example, that there is one classifier that describes 

when the Study.BowelPrep field will be set to 

adequate and another classifier that describes when 

the Study.BowelPrep field will be set to notAdequate. 

The analyst can define as many classifiers for a field 

as the study requires; the Study.ProcDepth in Figure 

4, for example, has three classifiers. The data type of 

output fields can be determined by the software based 

upon the classifications created by the analyst.  The 

analyst also has the ability to choose the name for the 

output fields as he or she writes the classifiers. 

OWL’s object properties are used to define 

classifications on fields in the study. Figure 5 depicts 

the classification for Study.BowelPrep.adequate. In 

this case we map all reports with an input field from 

CORI4 of “QualityOfBowelPreparation” with values 

of “Excellent”, ”Good”, and “Fair” to the output field 

“BowelPrep” with a value of “adequate”. Using a 

similar naming scheme to the input and output data 

properties we name a classification with the term 

“classify” followed by the output field we are 

classifying, followed by the classifier. We use data 

restrictions on both the domain of the property and 

the range of the object property to represent the 

classifier. In the case that an analyst desires to 

rename a field from the source without modifying 

any of the source data, we use a simple (i.e., trivial or 

identity mapping) classification that takes as its 

domain all values from the source and has the target 

field as its range. As an example, Figure 6 shows a 

classifier that renames the source field 

“PolypectomyOfKnownPolyps” to the target field of 

“polypectomy” where the values are taken without 

modification.  

Our work demonstrates that we can successfully 

describe the various decisions and specifications 

involved in defining a study schema using OWL.  

OWL is particularly well-suited to reason over study 

schemas, once specified, to determine for example 

that the records selected for one study are a subset of 

or disjoint from those in another study.  Similarly, an 

OWL reasoner can easily compare classifiers to see 

how they relate.   

Given the study schema in OWL, we ran a simple 

experiment where the CORI4 source data was also 

represented in OWL and we used the Protégé tool to 

select, project, and classify the data.  The experiment  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Classification of bowel preparation using OWL 

Figure 4. Output schema and classifications Figure 6. Identity classification to perform rename 

operation 

Figure 3. Filtering retrieved data 
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worked correctly but was unable to scale to a 

reasonably-sized input file.  This is not surprising, 

given that the Protégé tool was not designed to be a 

large-scale data processing engine.  We envision a 

system where the OWL specifications are 

automatically translated into appropriate queries to 

extract source data and to transform data as needed 

into the output file.  Thus the OWL specification will 

drive the automatic processing but will not be used 

directly to do the data processing.  

The study representation also allows for the addition 

of multiple heterogeneous data sources. We can add 

data sources by defining new data properties for 

those sources and then adding restrictions on those 

new data properties in the classification object 

properties of the existing study ontology. 

Further Work 

We also investigated using the Mapping 

Specification Language (MSL),
11

 a language 

designed to perform schema mapping on XML 

databases, as a storage format for our study decision. 

We found MSL able to express the same information 

as the OWL representation but MSL required some 

additional overhead, for example input and output 

schemas, and the study decisions required three 

separate files for storage.  We have favored the use of 

OWL for the persistent storage and reuse of study 

decisions to avoid this overhead as well as take 

advantage of the fact that OWL is based on a 

description logic which will allow us to perform extra 

computation over our studies. 

 

From these structures, we plan to build a suite of 

tools that use an OWL representation of a study to 

create queries against datasources and then convert 

the resulting dataset into a form acceptable by 

standard statistical packages. While developed as a 

component of a GUAVA-enabled user and query 

interface, the principles presented here could be used 

equally well for any number of non-GUAVA data 

sources. In our GUAVA example we pull the input 

schema from the G-tree of the application.  In the 

case of an SQL or XML database we can use DDL 

statements or an XML Schema to import the source 

schema into our application. Once the source schema 

has been imported there is no difference in the 

creation of filters or classifiers. However, once non-

GUAVA sources are included the domain analyst 

must be aware of the underlying physical schema and 

associated business logic of each source in order to 

create filters and classifiers.  
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