

Representing Multi-Database Study Schemas for Reusability
Judith R. Logan, MD, MS

1
, Scott Britell

2
, Lois M.L. Delcambre, PhD

2
, Vandana Kapoor

1
,

J. Gabriel Buckmaster
2

1
Oregon Health & Science University, Portland, Oregon

2
Portland State University, Portland, Oregon

Abstract

The need for easy, non-technical interfaces to clinical

databases for research preceded translational

research activities but is made more important

because of them. The utility of such interfaces can be

improved by the presence of a persistent, reusable

and modifiable structure that holds the decisions

made in extraction of data from one or more

datasources for a study, including the filtering of

records, selection of the fields within those records,

renaming of fields, and classification of data. This

paper demonstrates use of the Web Ontology

Language (OWL) as a data representation of these

decisions which define a study schema.

Introduction

The need to query multiple clinical databases for

research data without intricate knowledge of either

query languages or database structure is well

recognized and is increasingly being addressed in

clinical research literature. "Translational research"

refers not only to the interaction between pre-clinical

and clinical research ("T1") but also refers to the

cycle of research results informing clinical practice

while clinical practice data informs clinical research

("T2"). In the T2 translational framework, then, the

ability to access that clinical practice data accurately

and easily is crucial, and it is in that light that the

following work is presented.

Various graphical interfaces for querying data have

been suggested and are coordinated with common

approaches for storage of data including use of a

single schema across federated databases, schema

integration of disparate databases, and transformation

with query of EAV or XML data structures. One

aspect of this query process that is seldom addressed,

however, is the representation of a study schema,

expressed either on a single database or across

multiple disparate databases, such that the study

schema is both persistent and reusable. Such a

persistent and reusable structure would allow a data

analyst to repeat studies or to modify previous studies

without recreating them, and encapsulates important

knowledge for study interpretation.

Our current work on study schema representation

builds on prior research by this team on concepts we

call GUI-As-View (GUAVA) and MultiClass1-4 as

shown in Figure 1. It is our contention that the

metadata required for accurate selection of data for a

clinical study, when that data was collected using a

forms-based user interface, is contained in the user

interface. This includes both common types of

metadata such as data type, and on-screen selection

options, but also uncommonly captured metadata

such as on-screen prompts or legends, the

relationship of one piece of data to another and one

screen to another, and whether or not the data item

was required from users. We have demonstrated the

ability to create a forms-based user interface using a

common development platform which is self-

documenting, allowing automatic creation of a query

interface containing this extensive metadata. The in-

memory structure that contains the interface

knowledge we call a G-tree. From the G-tree, a

query interface which represents the entire spectrum

of metadata for the analyst can be built automatically

and has been demonstrated with both tree structure

and forms representations of the query interface.

With such a query interface, a data analyst, who may

be a domain expert but not a database expert, may

retrieve data from clinical databases without writing

statements in a query language nor knowing the

schema of the database holding that data. The

"analyst dashboard" proposed here would not support

Data

Source Statistical

Analysis

File

Analyst dashboard
G-tree / Query

Interface

SQL

Select

records/fields

Classification

of data

Study Schema

Figure 1 Overview of study progression. The G-tree is

an in-memory representation of the user interface from

which a query interface can be automatically created and

through which the datasource can be queried. We are

concerned in this work with a persistent representation for

the study schema.

21

analysis of that data (i.e. aggregation or statistical

manipulation) which is best done with statistical

analysis tools, but rather the retrieval of datasets for

use in that analysis. Functions required for this

process include selection of records, limitation of the

data fields retrieved for each record, renaming of

fields from the stored names to analytically

meaningful names, and data classification. The

MultiClass principles that we have previously

described directly address classification of data

retrieved from multiple disparate datasources.

As an example of classification, consider a data

element "bowel prep results" as included in

gastrointestinal endoscopy procedure notes. Suppose

the study requires that "bowel prep results" be

classified as either "adequate" or "inadequate". In

one documentation system, this data might be

collected in a structured element with 4 choices,

"Excellent," "Good," "Fair," and "Poor". In another

documentation system, this data might be collected

using the Boston Bowel Preparation Scale (BBPS)

which outputs an integer from 0 to 9. Since there is

no one right way to classify this data, the analyst

might choose, for purposes of the current study, to

classify "Excellent", "Good", and "Fair" from the first

information system and 4-9 from the second

information system as "adequate" and all other

choices as "inadequate." Dynamic classification is

superior to static classification (i.e. integration) of

data like this since, for purposes of other studies,

different classifications to "adequate" and

"inadequate", or different expressive scales, might be

more appropriate.

The persistent and reusable study schema format

must, then, allow for selection of records, choosing

needed fields, renaming of fields, and dynamic

classification of data obtained from multiple

datasources. We will next briefly review related

literature and then present our suggested study

schema format.

Related work

The collection and retrieval of heterogeneous data is

fundamental for both biomedical research and

clinical data analysis. Facilitating query creation and

expression becomes essential in order to get relevant

results. A foremost concern is to reduce the

complexity of the query interface such that non-

technical analysts can create simple, accurate and

relevant queries.

Query by Example (QBE)
5
 was probably the first

graphical user interface created for this purpose. In

this interface, the user specifies the conditions on

which data is to be filtered by entering representative

data in desired data fields. QBE requires the users,

however, to specify the join conditions on the

database, and therefore requires the user to have

knowledge of the data storage schema. In our analyst

dashboard, joins would not need to be specified since

the required knowledge is captured in the G-tree on

which the query interface is derived and is based on

the launch relationship of forms in the user interface.

QBE also does not offer a persistent query/study

schema storage form.

One of the older graphical interfaces, QUICK
6
 was

built as a query interface to CPL (Collection

Programming Language) – Kleisli specifically for

querying multi-database systems. An essential part of

this system for naïve users is a thesaurus which

provides a mapping between user terms and database

terms. Persistence and reusability of queries is not a

part of QUICK and the system still requires the user

to write SQL-type statements. Thesaurus-like

functionality (where fields are related to their label

or the user interface) in our system is contained in

the G-tree (one per datasource) and can be

implemented in the analyst dashboard.

XGI
7
 is an example of a graphical interface

developed to help users query XML datasources.

The XGI interface allows inexperienced researchers

to create queries expressed in XQuery. The

expressivity of XGI was tested and found to have

moderate limitations, because some required query

constructs had not been implemented. Our work in

GUAVA is similar to XGI provided the XML element

names reflect the labels from the user interface and

the additional contextual information is available by

some means. Regardless of the language used to

express queries, the system must faithfully manage

the mapping from the analyst queries to the physical

database(s), often relational, and store the queries in

an easily analyzable form. Both systems allow for

operators such as renaming, but neither allows for

more complex structures such as arithmetic

computations. It is not the intention of our work to

include such complex constructs since our goal is

retrieval of a dataset that will subsequently be

analyzed using a statistical analysis tool.

The Qure Data Management platform
8
 has several

components for supporting biomedical research

including study data collection. All data is stored in

databases with an entity-attribute-value (EAV)

schema. One component of this system is a query

engine which is designed, as is ours, to output a

dataset for analysis in special data analysis tools.

Because of the hierarchical data structure of the

underlying EAV data, joins do not need to be

specified in querying; similarly, joins are not required

22

L

in our analyst dashboard because of the hierarchical

structure inherent in forms-based interfaces captured

in the G-tree. Despite similarities, this work differs

from ours in that the physical database schema in our

work is arbitrary. GUAVA components handle the

conversion of all data and queries from a "natural"

schema which is evident from the G-tree and inferred

in the query interface, into any database schema,

therefore allowing the use of data from multiple

sources without requiring the export or reformatting

of data from those sources. The query parameters in

the Qure system can be saved, but the format in

which that knowledge is saved and the method of

reusability is not specified.

These and other published works clearly describe

common goals for querying multiple datasources and

provide examples of design and functionality in

query interfaces. What is either missing or little

emphasized in all, however, is a plan for the storage,

modification and reusability of the knowledge

embodied in a specific study schema. We have

explored the Web Ontology Language (OWL)
9

which was not developed for this purpose, but we

will demonstrate in the following section how it can

be used as a persistent and reusable representation of

study decisions.

Persistent representation of clinical study

decisions

We first use OWL to represent the studies created by

data analysts. OWL consists of a family of related

languages that can be used to represent ontologies.

OWL-Lite, the simplest language of the family, is

sufficient for our purposes. OWL is based on a

description logic; this allows us to easily describe the

classification decisions made by the analysts as they

prepare a study using the analyst dashboard. In this

section, we describe how we represent the various

aspects of the study schema in OWL. The study

schema file is stored in OWL-XML which allows our

software to programmatically parse and recreate a

stored study. Protégé 4.0 was used for these

examples.
10

In OWL every class is a subclass of the class “Thing”

which encompasses the universe in which our

ontology (i.e., our representation of study schemas)

resides. Thus we define each study as a subclass of

the class “Thing”. Once we have defined our class we

can create data and object properties that represent

the selection, filtering and classification of records

from our datasource.

23
Figure 2. Representation of input schema using OW
The first step in defining a study schema is the

selection of the fields of interest from a given

datasource. This information is stored in the data

properties of the study ontology. Each data property

is named starting with the datasource, followed by

the path to the attribute, followed by the attribute

itself. In OWL each data property can be given a

range which represents the type of the data property

(e.g. Integer, Boolean, String). For the input data

properties the range corresponds to the data type of

the field in the source data. This information is stored

in the source Query Interface which can be retrieved

by the software without the need for the analyst to

know this information.

Figure 2 demonstrates the input fields necessary for a

sample study against an application for documenting

GI colonoscopy procedures (CORI4) built using

GUAVA components. Because we are using a query

interface based on the G-tree, the attributes from the

CORI4 application are named using the path of

forms, controls, and data controls for the attribute, as

it appears in the user interface. For example, the

CORI4.Indications.TherapeuticIntervention.Dilation

OfStricture represents the Dilation of Stricture field

on the Therapeutic Intervention form, a form that is

launched from the Indications portion of the

Colonoscopy form.

Once the input schema has been defined, the next

step is for the analyst to describe how procedures will

be selected from the datasource. We store

information about the filters analysts place on the

records retrieved from the datasource using an

anonymous superclass of our study. These filters are

value restrictions placed on data properties from the

source. Figure 3 shows a common style of filter used

to select procedures for a study where the procedures

must fall into a given date range and be of a certain

type (Colonoscopy, in this example). The “and”

syntax shown in Figure 3 results in the selection of

the intersection of all records where all three data

restrictions hold. The analyst can easily express

more complex selections, e.g., that require a

particular indication or finding or other constraint on

the input data.

The analyst must then specify and name the fields

that will appear in the output file from the study

which can then be passed to a statistical analysis

program. In addition, the analyst must describe the

details of how the values in the output file are to be

established by writing classifiers for each output

field. Figure 4 shows the fields in the output along

with the names of the classifiers that have been

defined for each field for this study. We see, for

example, that there is one classifier that describes

when the Study.BowelPrep field will be set to

adequate and another classifier that describes when

the Study.BowelPrep field will be set to notAdequate.

The analyst can define as many classifiers for a field

as the study requires; the Study.ProcDepth in Figure

4, for example, has three classifiers. The data type of

output fields can be determined by the software based

upon the classifications created by the analyst. The

analyst also has the ability to choose the name for the

output fields as he or she writes the classifiers.

OWL’s object properties are used to define

classifications on fields in the study. Figure 5 depicts

the classification for Study.BowelPrep.adequate. In

this case we map all reports with an input field from

CORI4 of “QualityOfBowelPreparation” with values

of “Excellent”, ”Good”, and “Fair” to the output field

“BowelPrep” with a value of “adequate”. Using a

similar naming scheme to the input and output data

properties we name a classification with the term

“classify” followed by the output field we are

classifying, followed by the classifier. We use data

restrictions on both the domain of the property and

the range of the object property to represent the

classifier. In the case that an analyst desires to

rename a field from the source without modifying

any of the source data, we use a simple (i.e., trivial or

identity mapping) classification that takes as its

domain all values from the source and has the target

field as its range. As an example, Figure 6 shows a

classifier that renames the source field

“PolypectomyOfKnownPolyps” to the target field of

“polypectomy” where the values are taken without

modification.

Our work demonstrates that we can successfully

describe the various decisions and specifications

involved in defining a study schema using OWL.

OWL is particularly well-suited to reason over study

schemas, once specified, to determine for example

that the records selected for one study are a subset of

or disjoint from those in another study. Similarly, an

OWL reasoner can easily compare classifiers to see

how they relate.

Given the study schema in OWL, we ran a simple

experiment where the CORI4 source data was also

represented in OWL and we used the Protégé tool to

select, project, and classify the data. The experiment

Figure 5. Classification of bowel preparation using OWL

Figure 4. Output schema and classifications Figure 6. Identity classification to perform rename

operation

Figure 3. Filtering retrieved data

24

worked correctly but was unable to scale to a

reasonably-sized input file. This is not surprising,

given that the Protégé tool was not designed to be a

large-scale data processing engine. We envision a

system where the OWL specifications are

automatically translated into appropriate queries to

extract source data and to transform data as needed

into the output file. Thus the OWL specification will

drive the automatic processing but will not be used

directly to do the data processing.

The study representation also allows for the addition

of multiple heterogeneous data sources. We can add

data sources by defining new data properties for

those sources and then adding restrictions on those

new data properties in the classification object

properties of the existing study ontology.

Further Work

We also investigated using the Mapping

Specification Language (MSL),
11

 a language

designed to perform schema mapping on XML

databases, as a storage format for our study decision.

We found MSL able to express the same information

as the OWL representation but MSL required some

additional overhead, for example input and output

schemas, and the study decisions required three

separate files for storage. We have favored the use of

OWL for the persistent storage and reuse of study

decisions to avoid this overhead as well as take

advantage of the fact that OWL is based on a

description logic which will allow us to perform extra

computation over our studies.

From these structures, we plan to build a suite of

tools that use an OWL representation of a study to

create queries against datasources and then convert

the resulting dataset into a form acceptable by

standard statistical packages. While developed as a

component of a GUAVA-enabled user and query

interface, the principles presented here could be used

equally well for any number of non-GUAVA data

sources. In our GUAVA example we pull the input

schema from the G-tree of the application. In the

case of an SQL or XML database we can use DDL

statements or an XML Schema to import the source

schema into our application. Once the source schema

has been imported there is no difference in the

creation of filters or classifiers. However, once non-

GUAVA sources are included the domain analyst

must be aware of the underlying physical schema and

associated business logic of each source in order to

create filters and classifiers.

Acknowledgements

This work was supported in part by grant

1R21LM009550 from the NIH/National Library of

Medicine, Judith R. Logan, PI and NSF Grant

053462, Lois Delcambre, PI. The authors also wish

to thank James F. Terwilliger, PhD, whose

dissertation provided the foundation for this ongoing

work.

References

1. Terwilliger JF, LML Delcambre, JR Logan.

Context-Sensitive Clinical Data Integration. In Proc

EDBT 2006 Workshop on Information Integration in

Healthcare Applications (IIHA), Munich, Germany.

Editors: T. Grust et.al., March 26, 2006, 20-31.

2. Terwilliger, JF, LML Delcambre, J Logan. The

User Interface is the Conceptual Model. In Proc 25
th

Intl. Conference on Conceptual Modeling (ER2006),

Tucson, AZ. November 6-9, 2006, 424–436.

3. Logan JR, JF Terwilliger, LML Delcambre.

Exploiting the User Interface for Tomorrow's Clinical

Data Analysis. Journal on Information Technology in

Healthcare, April 2008, 6(2):138–149. Reprinted

from Today’s Information for Tomorrow’s

Improvements 2007, (ITCH 2007).

4. Terwilliger, JF, LML Delcambre, JR Logan.

Querying Through a User Interface. Data and

Knowledge Engineering, 2007; 63: 748-768.

5. Zloof MM. QBE/QBE: A language for office

and business automation.IEEE, 1981 May ;14(5): 13-

22.

6. Tan WC, Wang K, WongL. Quick: Graphical

User Interface to Multiple databases. DEXA

Proceedings 1996 Sep 9/10; 404-409

7. Li X, Gennari JH, Brinkley JF. XGI: A

Graphical Interface for XQuery Creation. AMIA

Annual Symp Proc 2007: 453-457

8. Jager M, Kamm L, Krushevskaja D, et al.

Flexible Database Platform for Biomedical Research

with Multiple User Interfaces and a Universal Query

Engine. International Baltic Conference, 2008.

9. W3C. OWL Web Ontology Language Current

Status. http://www.w3.org/standards/techs/owl

accessed 11/5/2009.

10. Protégé. http://protege.stanford.edu/ accessed

11/5/2009.

11. Roth M, Hernandez MA, Coulthard P, et al. XML

mapping technology: Making connections in an

XML-centric world. IBM Systems Journal 45.2

(2006): 389-409.

25

http://www.w3.org/standards/techs/owl
http://protege.stanford.edu/

