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Abstract 
The conduct of large-scale translational studies 
presents significant challenges related to the storage, 
management and analysis of integrative data sets.  
Ideally, the application of methodologies such as 
conceptual knowledge discovery in databases 
(CKDD) provides a means for moving beyond 
intuitive hypothesis discovery and testing in such 
data sets, and towards the high-throughput 
generation and evaluation of knowledge-anchored 
relationships between complex bio-molecular and 
phenotypic variables.  However, the induction of such 
high-throughput hypotheses is non-trivial, and 
requires correspondingly high-throughput validation 
methodologies. In this manuscript, we describe an 
evaluation of the efficacy of a natural language 
processing-based approach to validating such 
hypotheses.  As part of this evaluation, we will 
examine a phenomenon that we have labeled as 
“Conceptual Dissonance” in which conceptual 
knowledge derived from two or more sources of 
comparable scope and granularity cannot be readily 
integrated or compared using conventional methods 
and automated tools. 
Introduction 
A defining characteristic of the conduct of 
translational studies is the collection, integration, 
storage and analysis of large-scale data sets 
consisting of both phenotypic and bio-molecular 
variables.  Such integrative data sets are used to 
enable analyses that target the identification and 
quantification of significant relationships between 
such variables, which can be used to inform the 
diagnosis, staging and planning of treatment for 
pathophysiologic states1-4 .  However, the current state 
of knowledge and practice pertaining to the 
investigation of such bio-marker-to-phenotype 
relationships commonly relies on either the naïve 
discovery of potential linkages between variables 
using statistical or data mining techniques5, and/or the 
testing of intuitively derived hypotheses1.  At the 
same time, significant volumes of knowledge exist in 
the form of conceptual knowledge collections such as 
ontologies and published literature extracts that could 
be extremely useful in informing or generating such 
hypotheses2,3,6. Approaches such as Conceptual 
Knowledge Discovery in Databases (CKDD) have 
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been proposed in prior reports as a means of 
leveraging such conceptual knowledge collections in 
order to generate high-throughput hypotheses relative 
to specific, integrative data sets6.  However, as we 
have previously reported2,3, the use of such 
techniques, while extremely promising, still presents 
a number of challenges, including the ability to 
employ sufficiently scalable validation methods.  In 
this report, we describe an evaluation of the efficacy 
of employing a natural language processing (NLP) 
approach to extract conceptual knowledge from 
published biomedical literature abstracts in order to 
validate and augment hypotheses concerning bio-
marker-to-phenotype relationships derived from 
common ontologies, such as SNOMED-CT7 and the 
NCI Thesaurus8.  This evaluation was conducted in 
the specific experimental context of the Chronic 
Lymphocytic Leukemia Research Consortium 
(cll.ucsd.edu), which is funded by the National 
Cancer Institute (NCI). As part of our evaluation, we 
will examine a phenomenon that we have labeled as 
“Conceptual Dissonance” in which conceptual 
knowledge derived from two or more sources of 
comparable scope, and granularity cannot be readily 
integrated or compared using conventional methods 
and automated tools. 
Background 
Based upon the objective described in the preceding 
introduction, the following section will briefly review 
contributing work related to the experimental 
methodology and context of our study. 
Conceptual Knowledge Engineering 
Knowledge engineering (KE) is a process by which 
knowledge is collected, represented and subsequently 
used by computational agents to replicate expert 
human performance in an application domain9.  It 
incorporates four major steps: 1) knowledge 
acquisition, 2) computational representation of that 
knowledge, 3) implementation or refinement of the 
knowledge-based agent, and 4) verification and 
validation of the output of the knowledge-based 
agent9.  Conceptual knowledge, one of three primary 
types of knowledge that can be targeted by KE, can 
be defined as a combination of atomic units of 
information and the meaningful relationships among 
those units9. The knowledge sources used during the 
knowledge acquisition stage of the KE process can 



take many forms, including standard terminologies, 
ontologies, narrative text, databases and domain 
experts.  The work described in this manuscript 
utilizes a conceptual knowledge acquisition approach 
known as conceptual knowledge discovery in 
databases (CKDD)10.  At a high level CKDD is 
concerned with the utilization of automated or semi-
automated computational methods to derive 
knowledge from the contents of databases. The use of 
domain-specific knowledge collections, such as 
ontologies, is necessary to inform this knowledge 
induction process since commonly used database 
modeling approaches do not always incorporate 
semantic knowledge corresponding to the database 
contents10. This overall approach is the basis for a 
specific CKDD methodology known as constructive 
induction6.  In constructive induction, data elements 
defined by a database schema are mapped to concepts 
defined by one or more ontologies.  Subsequently, 
the relationships included in the mapped ontologies 
are used to induce semantically meaningful 
relationships between the mapped data elements.  
The induction process generates “conceptual 
knowledge constructs (CKCs)” concerning the 
contents of the database, which are defined in terms 
of data elements and semantic relationships that link 
those elements together in a meaningful manner2.   
Experimental Context 
The specific experimental context for the work 
presented in this report stems from a collaboration 
with the Chronic Lymphocytic Leukemia Research 
Consortium (CLL-RC), an NCI-funded translational 
research program consisting of eight sites.  The CLL-
RC coordinates and facilitates basic and clinical 
research on the genetic, biochemical and 
immunologic bases of Chronic Lymphocytic 
Leukemia (CLL), which is the most common adult 
leukemia in the United States11. The incidence rate of 
the disease appears to be on the rise, and 
environmental and genetic factors have been shown 
to contribute to its development11.  The clinical course 
and phenotypic presentation of CLL is highly 
heterogeneous, and as such, there are no known 
curative strategies12. The research portfolio of the 
CLL-RC focuses primarily on the discovery and 
evaluation of novel biologic and pharmacologic 
treatments for CLL, with particular emphasis on the 
identification of phenotypic ↔ bio-molecular 
relationships that may improve clinical staging and/or 
assist in evaluating patient responses to novel 
therapies.  A critical facility supporting the ability of 
the CLL-RC to engage in such research is the use of a 
central data repository, associated data collection 
instruments, and data mining and analysis tools, 
which are known collectively as the CLL-RC 
Integrated Information Management System 
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(CIMS)13,14. CIMS facilitates the collection and 
storage of numerous high-throughput, multi-
dimensional data sources generated by 
instrumentation and methodological approaches 
including quantitative and qualitative 
immunophenotyping, multiple modalities of gene 
expression analysis, and Fluorescent In Situ 
Hybridization (FISH) analyses of cytogenetic 
abnormalities.   
Contributing Prior Work 
In prior reports, we have demonstrated the efficacy of 
applying constructive induction using a novel 
platform known as TOKEn (Translational Ontology-
anchored Knowledge-discovery Engine) in order to: 
1) discover potential hypotheses linking bio-
molecular and phenotypic variables within the CIMS 
data repository2; and 2) validate and prioritize such 
hypotheses based upon the results of human-
mediated meta-analysis of published literature 
abstracts3.  However, a limitation in our earlier 
reports has been the scalability of available validation 
and prioritization techniques, given their reliance on 
human intervention.  This limitation is the primary 
motivation for the work reported here. 

 
Figure 1: Overview of study phases. 

Methods 
Given the preceding motivation, this three-phase 
study focuses upon evaluating the efficacy of 
employing natural language processing (NLP) 
techniques in order to extract conceptual knowledge 
from published literature abstracts, and compare that 
knowledge to the previously generated conceptual 
knowledge constructs (CKCs). This work focuses on 
two primary research questions: 
1) Is the conceptual knowledge that can be 

extracted from published biomedical literature 
using the SemRep NLP platform syntactically 
and semantically comparable to that extracted 
from common ontologies using TOKEn; and 
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2) Is the conceptual knowledge encoded from the 
published biomedical literature significantly 
different from that found in ontological 
knowledge sources. 

Phase One:  In the first phase of our study, a Pubmed 
query was run in order to retrieve all literature 
published within the past three years (as of August 
2008) that had either been indexed using the MeSH 
category of “Leukemia, Lymphocytic, Chronic, B-
Cell” and/or contained lexical variants of the term 
“Chronic Lymphocytic Leukemia” in their title or 
abstract.  The UMLS Knowledge Source Server 
(umlsks.nlm.nih.gov) was utilized to identify lexical 
variants by determining all of the Metathesaurus 
concepts with a common Lexical Unique Identifier 
corresponding to Chronic Lymphocytic Leukemia. 
These retrieved references were exported using the 
Medline text output format. This output file was 
processed in order to remove all references that did 
not include a textual abstract, and sub-select the 
PubMed ID (PMID), Title (TI) and Abstract (AB) for 
each entry.  The resulting text was then submitted for 
parsing using the publicly available SemRep NLP 
platform maintained by the National Library of 
Medicine11,12. SemRep was invoked both with and 
without the SemGen option, which is used to enable 
the parsing of genomic concepts.  The output 
generated by SemRep from these literature abstracts 
was post-processed in order to sub-select only unique 
CKC triplets consisting of CUI-relationship-CUI 
patterns. 
Phase Two: Using a Perl script, CKC triplets that 
began and terminated with concepts that were 
manually mapped by subject matter experts (SMEs) 
to variables in the CIMS repository (during the 
course of the previously introduced contributing 
study2,3) were compared with those generated by 
SemRep in Phase One, in order to identify any direct 
matches between the two sets of CKCs.  The original 
CIMS-derived CKCs utilize UMLS Metathesaurus 
relationship types extracted from the MRREL raw 
text file using a graph theoretic algorithm 
implemented as a Perl script2, and the SemRep CKCs 
utilize UMLS Semantic Network relationship types 
assigned automatically by the SemRep service. Due 
to these differing relationship types, additional 
processing was necessary to normalize the two data 
sets by classifying the CIMS-derived CKC 
component CUIs according to their semantic type(s), 
and determining any corresponding Semantic 
Network relationships between them. 
Phase Three: In this final phase, the SemRep 
generated CKCs were iteratively expanded by using a 
Perl script to traverse the UMLS MRREL file and 
select descendant concepts relative to the initial CKC 
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concepts, thus generating new, more granular CKCs.  
This analysis was done to evaluate the effects of such 
expansion on the degree of overlap between the 
SemRep derived CKCs and the prior TOKEn 
generated CKCs at increasing levels of granularity.  
Results 
In the following section, we will summarize the 
results associated with each of the preceding study 
phases: 
Phase One: The previously described literature 
search strategy yielded a total of 1945 abstracts that 
included full text abstracts.  These abstracts yielded a 
total of 6599 unique triplets using both SemRep and 
the previously described post-processing approach.  
Examples of these triplets are included in Table 1. 
Table 1: Examples of literature-derived CKCs. 

Initial Concept Relationship Terminal 
Concept 

Chromosomes, 
Human, Pair 8 

LOCATION_OF IGH@ gene 
cluster 

IGH@ gene 
cluster 

ASSOCIATED_WITH Disease 
Progression 

Phase Two:  There were 5800 CKCs, comprised of 
two to five concepts, generated by the TOKEn 
algorithm in our prior study.  These CKCs were 
broken down into 1626 distinct transitive triplets that 
were subsequently classified using the UMLS 
Semantic Network as described in our methods.  The 
corresponding Semantic Network relationships were 
assigned to these initial triplets, resulting in an 
expanded set of 10759 triplets (i.e., each initial triplet 
could be expanded to include one or more semantic 
relationships). When comparing these triplets to those 
resulting from SemRep, there were no exact matches. 
Table 2: Example of a TOKEn-based triplet. 

TOKEn CKC Transitive Triplets 
Gain of Chromosome 6 - 
[may be cytogenetic 
abnormality of disease] - 
stage I childhood liver 
cancer 

Gain of Chromosome 6 - [may 
be cytogenetic abnormality of 
disease] - stage I childhood 
liver cancer - [disease may 
have finding] - Alanine 
aminotransferase increased 

stage I childhood liver 
cancer - [disease may have 
finding] - Alanine 
aminotransferase increased 

Phase Three:  In order to better understand why no 
exact matches between the TOKEn and SemRep 
generated CKCs occurred in Phase Two, a heuristic 
evaluation of the CKCs was performed by two SMEs 
who had participated in our prior studies.  At a high 
level, the factors assessed by the SMEs included: 1) 
the existence of common semantic meaning between 
initial or terminal concepts in the two sets of CKCs; 
2) the comparative granularity of the initial or 
terminal concepts in the two sets of CKCs; and 3) the 
presence or absence of overlap between positive 
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control CKCs in the two sets (e.g., CKC’s identified 
by the SMEs as being both valid and pertaining to 
well established basic science or clinical domain 
knowledge).   This evaluation led to the preliminary 
conclusion that the concepts included in the SemRep 
generated CKCs were more general (i.e., less 
granular) than those included in the TOKEn 
generated CKCs. This phenomenon was further 
illustrated by a quantitative analysis of the incidence 
of concepts included on both types of CKCs at 
increasing depths from the UMLS root (a surrogate 
measure for concept granularity that has been used in 
our prior evaluations of constructive induction2,3), as 
illustrated in Figure 2. 

 
Figure 2: Incidence of concepts included in TOKEn 
and SemRep generated CKCs at increasing 
granularity levels (e.g., depths from UMLS root). 
Building upon these findings, the 6599 unique triplets 
that were derived from the SemRep output during 
Phase One were iteratively expanded to include 
descendants up to 10 steps away from the initial 
concept, resulting in over 22 million unique triplets. 
When comparing these triplets to those resulting from 
TOKEn, there were still no exact matches.  As a 
result, we examined the intersection of unique CUIs 
comprising the TOKEn and SemRep triplets, 
ignoring the linking semantic relationships and any 
descendants.  The TOKEn and SemRep triplets were 
comprised of 47 and 2513 unique CUIs, respectively.  
Of these, only one CUI corresponding to “Chronic 
Lymphocytic Leukemia Refractory” was in both data 
sets.  18/121 (14.9%) and 27/6136 (0.44%) of the 
unique concept-concept pairs extracted from the 
TOKEn and SemRep triplets, respectively, contained 
this concept.  Further review of these results by our 
SMEs yielded a number of qualitative findings, 
which will be further described in the Discussion 
section, and that were explanatory as to potential 
reasons for this continued lack of intersection 
between the two sets of CKCs. 
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Discussion 
Is the conceptual knowledge that can be extracted 
from the published biomedical literature using 
SemRep syntactically and semantically comparable 
to that extracted from common ontologies using 
TOKEn? 
While it was possible to compare the CKCs extracted 
from the published literature using SemRep to those 
previously generated using TOKEn, the difference in 
relationship types and the need to map between them 
from Semantic Network relationship types to those 
found in the NCI Thesaurus and SNOMED-CT made 
the process significantly resource-intensive. 
Furthermore, we heuristically observed that the use 
of Semantic Network relationship types in the CKCs 
generated using SemRep limits the expressiveness of 
the linkages between included concepts in 
comparison to those relationship types available in 
other knowledge sources, such as those used by 
TOKEn. 
Is the conceptual knowledge encoded from the 
published biomedical literature significantly different 
from that found in ontological knowledge sources? 
Our findings would initially appear to indicate that 
the CKCs generated using SemRep were significantly 
different than those generated using TOKEn.  
However, heuristic analyses of the CKCs that 
intersected between the two sets based upon the 
occurrence of a single common initial or terminal 
concept led us to conclude that a number of factors 
contributed to the lack of shared knowledge 
constructs, namely:  
1) Mapping granularity mismatch: The granularity 
of mappings between “raw” concepts and ontology-
anchored concepts differed greatly between the 
UMLS Knowledge Source Server (UMLSKS) as 
used by TOKEn and SemRep, with the UMLSKS 
employing much more granular or specific 
mappings.  For example, the average distance to the 
root for CUIs in the TOKEn and SemRep CKCs was 
5.2 and 3.8, respectively. 
2) Processing scope mismatch: The scope of 
mappings and/or knowledge anchored reasoning 
varied between TOKEn and SemRep, with the 
TOKEn approach being holistic across all database 
schema-defined concepts, and the SemRep approach 
being limited to lexically distinct phrases.  For 
example, though the chromosomal abnormality 
del(17p13) is mentioned in the same abstract as 
refractory CLL, concepts that are transitively related 
in the TOKEn data set, they are never in the same 
sentence and thus not related by SemRep. 
3) Semantic context mismatch: The assignment of 
semantic relationships by the two approaches was 
materially different, which led to limited 



comparability across the two sets of CKCs.  That is, 
SemRep seems to use a rule-based assignment of 
Semantic Network relationships based on the syntax 
and semantics of the extracted concepts, while the 
TOKEn post-processing used an algorithmic 
approach that classified concepts related via 
Metathesaurus relationships and assigned the 
Semantic Network relationships post-hoc. 

We believe that collectively, the three preceding 
mismatch types, and their quantitative and qualitative 
manifestations illustrate a scenario that we have 
labeled as Conceptual Dissonance. In this 
phenomenon, CKCs derived from two or more 
conceptual knowledge sources of qualitatively 
comparable scope, granularity and semantics, using 
commonly available tools, cannot be readily 
integrated or compared using automated methods.  In 
response to this challenge, we believe that the 
development of automated methods for the detection 
and normalization of Conceptual Dissonance are 
necessary.  One potential approach to addressing this 
challenge is the use of graph-theoretic methods for 
semantic normalization, leveraging the isomorphic 
nature of sub-sets of semantically similar knowledge 
in the graph-like representations of large-scale 
ontologies or terminologies.  Such an approach has 
been validated in prior studies concerning semantic 
search across disparate knowledge sources15, and we 
intend to apply it to the problem space described in 
this report as part of our future work. 
Conclusion 
The ultimate goal of the work described in this 
manuscript is to further refine a novel approach to 
employing conceptual knowledge sources in the 
support of translational hypothesis discovery and 
testing.  Though we initially intended to demonstrate 
the ability to improve the scalability and 
reproducibility of such techniques, our findings have 
instead led to the identification of a phenomenon of 
interest that we have labeled as Conceptual 
Dissonance. This presents a unique challenge to the 
practical application of conceptual knowledge 
engineering approaches in support of translational 
research, and warrants further exploration. 
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