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ABSTRACT 

Metabolic network provides a unified platform to 

integrate all the biological information on genes, 

proteins, metabolites, drugs and drug targets for a 

comprehensive system level study of the relationship 

between metabolism and disease. In recent times, 

drug-target identification by in silico methods has 

emerged causing a phenomenal achievement in the 

field of drug discovery. This paper focuses on 

describing how microbial drug target identification 

can be carried out using bioinformatic tools. 

Specifically, it highlights the use of metabolic ‘choke 

point’ and ‘load point’ analyses to understand the 

local and global properties of metabolic networks in 

Pseudomonas aeruginosa and allow us to identify 

potential drug targets. We also list out top 10 choke 

point enzymes based on the load point values and the 

number of shortest paths. A non-pathogenic bacterial 

strain Pseudomonas putida KT2440 and a related 

pathogenic bacteria P.aeruginosa PA01 was selected 

for the network anlaysis. A comparative study of the 

metabolic networks of these two microbes highlights 

the analogies and differences between their 

respective pathways. System analysis of metabolic 

networks will help us in identifying new drug targets 

which in turn will generate more in-depth 

understanding of the mechanism of diseases and thus 

provide better guidance for drug discovery.   

1. INTRODUCTION 

Metabolic pathways are a central paradigm in 

biology. The metabolic network is of special interest 

among the different types of biological networks 

because it can integrate the experimental data for 

different types of molecules (transcriptomics for 

genes, proteomics for enzymes and metabolomics for 

metabolites). Moreover metabolites are more closely 

related to the phenotype of an organism and the 

health and disease states of human can be described 

more meaningfully by the metabolic state of human 

cells, tissues, organs and the organism as a whole. 

Thus network-based pathways are emerging as an 

important paradigm for analysis of biological 
 10
systems. Despite the advent of the high-throughput 

techniques sparked by the genomics revolution, 

discovery and development of new antibiotics has 

lagged in recent years due to the serious problem of 

evolution of antibiotic resistance [1]. 

Comparative genomics has provided a gradual 

increase in large-molecule targets. It has actually 

created the new problem of how to select potential 

drug targets from a larger pool [2]. Putative targets 

must be essential for the survival of the pathogen and 

enzymes that do not have human homologs may also 

be attractive drug targets [3]. Among the numerous 

criteria used in the selection of antimicrobial 

compounds, certain criteria are clearly influenced by 

the choice of target. These include breadth of 

spectrum,   selectivity of the agent for microbial 

systems and frequency of resistance. 

Anti-microbial targets can now be identified and 

evaluated by automatically comparing all relevant 

pathogen genomes and the human host genome. 

Genes that are conserved across different pathogens 

represent attractive target candidates for new broad-

spectrum antibiotics [4]. Antibiotic resistance has 

increased over the past two decades and has reduced 

the usefulness of effective antibiotics.  

Pseudomonas aeruginosa is a major life-threatening 

opportunistic pathogen that commonly infects 

immunocompromised patients. The organism is 

inherently resistant to many drug classes and is able 

to acquire resistance to all effective antimicrobial 

drugs and has the ability to adapt and thrive in many 

ecological niches, including humans [5]. Besides P. 

aeruginosa continues to be a major pathogen among 

patients with immuno-suppression, cystic fibrosis, 

malignancy, and trauma [6]. A thorough 

understanding of the metabolism of P. aeruginosa is 

thus pivotal for the design of effective intervention 

strategies. On the other hand, Pseudomonas putida 

KT2440 is a metabolically versatile and non-

pathogenic saprophytic soil bacterium that has been 

certified as a biosafety host for the cloning of foreign 

genes. Although there is a high level of genome 
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conservation (85%) with the pathogenic 

P.aeruginosa, key virulence factors including 

exotoxin A and type III secretion systems are absent 

in P.putida. The non-pathogenic nature of P. putida 

has been used potentially in agriculture, biocatalysis 

and bioremediation [7].  

Prioritizing targets will therefore be an essential 

process in industrial drug discovery. Targets have 

become plentiful, yet new antimicrobial agents have 

been slow to emerge from this effort. A prerequisite 

for mapping metabolic pathways on genomic data is 

the annotation of proteins with metabolic information. 

These metabolic pathways are functional units of 

metabolic networks and help us in understanding a 

detailed analysis of network robustness and complex 

reaction networks. The commonly known Enzyme 

Commission (EC) numbers have been given to 

characterized proteins in order to classify the 

enzymatic chemical reactions of proteins.  

Graph theory based pathway analysis will be very 

useful in analyzing metabolic networks consisting of 

reactions, metabolites and enzymes [8]. Metabolic 

networks can be represented as a metabolite graph 

consisting of nodes (metabolites) and edges 

(reactions) with large number of connecting links. 

Such representation of network allows the 

characterization of the metabolic pathways with 

respect to degree of metabolite (nodes) connectivity 

defined as possible number of reactions by a 

metabolite; and the degree of interconnectivity or 

average network diameter defined as the average 

shortest path length [9]. 

In our previous study, a differential genome analysis 

of metabolic enzymes in Pseudomonas aeruginosa 

for drug target identification was performed and 

identified potential drug targets in unique and 

common pathways [10]. In the present work, we 

extend our analysis to the identification of potential 

drug targets based on the concept of ‘load points’ and 

‘choke points’. This approach enables to understand 

the local and global properties of the metabolic 

network thereby allowing us to identify potential drug 

targets in the pathogenic bacterium. 

Using the current knowledge about proteins, an 

accurate prediction of protein druggability can 

capitalize on the huge investments already made in 

structural genomics initiatives by identifying highly 

druggable proteins and thereby leading to target 

identification and validation. While our current 

knowledge may be limited the ability to assess protein 

druggability in a fast and reliable manner is simply 

one of many tools that can help to streamline and 

enhance this process, especially when integrated with 
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other computational and experimental approaches to 

target identification and validation.  

2. METHODOLOGY 

2.1. Load Point and Choke Point analyses 

‘Load point’ of a metabolite in a metabolic network is 

defined as the ratio of number of k-shortest paths 

passing through the metabolite (enzyme) and its 

nearest neighbour links [11]. These load point values 

give a global view of the metabolic network and help 

in the anlaysis of the metabolic pathway reactions. 

Pathways that are highly connected in the metabolism 

of the cell tend to have high load values. Moreover 

the lethality of a metabolite/enzyme depends on the 

number of connections it has in the whole metabolic 

network [12]. Enzymes with large number of 

connections are found to be three times more 

essential than the proteins that interact with only a 

few other neighbors.              

On the other hand, ‘choke point’ enzymes are those 

taking part in a reaction that consumes unique 

specific metabolite (substrate) or uniquely produces 

specific metabolite (product) in the metabolic 

network [13]. These choke point enzymes are crucial 

points in the metabolic pathway and inactivation of 

these important enzymes may lead to the disruption of 

the metabolic network of the bacterium.     

2.2. Identification of Potential Drug Targets  

To identify potential drug targets, chokepoint and 

load point analyses was carried out in the metabolic 

network of P.aeruginosa PAO1. The complete 

genome sequence of P.aeruginosa PAO1 and Homo 

sapiens is available [5, 14]. Metabolic pathway 

information was obtained from Kyoto Encyclopedia 

of Genes and Genomes (KEGG) [15]. In our previous 

study [10], we listed out a total of 361 enzymes as 

potential drug targets by differential genome analysis 

between the pathogen P.aeruginosa and the host 

H.sapiens by subjecting to BLAST [16] search 

against human protein sequence database at an E-

value cutoff of 10
-2
.  Here we extend our study to 

choke point and load point analysis using the Pathway 

Hunter Tool (PHT) [17] to identify enzymes that are 

essential for the bacterial network. 

Using the above tool we calculated shortest path 

distribution, the average path length and average 

alternate paths in the P.aeruginosa metabolic 

network. The important aspects of global similarity 

and local similarity need to be considered while 

performing choke point analysis since higher the 

similarities smaller will be the network diameter and 

the average degree of nodes [17]. In this study we 
 



chose the local similarity score as 20% and the global 

similarity score as 10%. We then identified top 10 

choke point enzymes based on the number of shortest 

paths using the tool. A comparative study was 

performed between the pathogen choke point 

enzymes with the human metabolic network to 

differentiate human choke points with that of the 

bacterial choke points. Finally for the predicted list of 

choke points in the pathogen we performed a 

homology search against the human genome using 

BLAST. 

We also carried out a comparative study of metabolic 

pathways based on shortest path analysis between the 

pathogenic bacterium P.aeruginosa and non-

pathogenic P.putida to highlight the analogies and 

differences between their respective pathways. We 

calculated the shortest path distribution, the average 

path length and average alternate paths.  

3. RESULTS AND DISCUSSION 

Network models are crucial for shaping our 

understanding of complex networks and help to 

explain the origin of observed network 

characteristics. Based on the network characteristics, 

metabolite information can be used to calculate the k-

shortest paths between metabolites (substrate and 

product). Distance in metabolic networks can be 

measured in terms of path length, which represents 

the number of links passing between two nodes. As 

there are many alternative paths between two nodes, 

the shortest path with the smallest number of links 

between the selected nodes has a special property. 

The average path length represents the mean over the 

shortest paths between all pairs of nodes in the entire 

network of the bacterium [9]. 

3.1. Metabolic Network Topology of P.aeruginosa 

and P.putida 

A comparative study of metabolic pathways based on 

shortest path analysis was carried out between 

P.aeruginosa and P.putida. Analysis of the metabolic 

network is based on shortest path length since large 

numbers of biochemical reactions follow shortest path 

rather than longer paths. The metabolic network for 

P.aeruginosa used in this study included 996 

reactions and 1063 metabolites with network 

diameter of 33 and the average degree distribution 

(Connectivity) of 3.09 whereas metabolic network of 

P.putida includes 992 reactions and 1087 metbolites 

with network diameter of 31 and the average degree 

distribution of 3.0  

P.aeruginosa and P.Putida have more or less the 

same network diameter and the same average degree 

distribuiton of ~3.0 (average connectivity) and 
 1
approximately the same number of reactions. The 

average path lengths (shortest path/k-shortest path) 

for the P.aeruginosa and P.Putida are 8.69/9.06 and 

8.43/8.79 respectively.The shortest path distribution 

for P.aeruginosa and P.Putida is shown below in 

Figure 1. 
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Figure 1. Graph showing the shortest path 

distribution in P.aeruginosa PA01 and P.Putida 

KT2440. 

Few nodes with a very large number of connectivity 

links are termed as hubs as they hold many nodes 

together. However, even the complete removal of 

nodes that act as hubs that are highly linked in the 

network can be adjusted through redundancy or 

alternate pathways that maintain the usual flow of 

metabolites in the cell. Within a model of a highly 

interconnected network: if one part of a web is 

perturbed, other compensatory changes in flow are 

likely to occur as well, analogous to a ripple effect 

spreading through the network.  

Alternate pathway lengths can thus be used to 

characterize the large-scale properties of metabolic 

networks. A contrast in the topological behaviour 

between the selected model organisms is seen where a 

shift in the average alternate path in both the 

organism is observed. P.aeruginosa has a greater 

number of alternate paths between path lengths 19 

and 28 whereas P.Putida has more alternate paths at 

path lengths between 12 and 18 (Figure 2). This 

difference in the average alternate path between the 

two microbes may imply biological significance 

which can be explored through the network analysis.  
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Figure 2. Average alternate path distribution in 

P.aeruginosa and P.Putida. 

It is important to keep track of alternate paths in the 

metabolic network which is an indicator of the ability 

of the pathogen to survive under extreme conditions. 
 02



Most of the enzymes can be replaced by alternative 

reactions that utilize the same substrate or produce 

the specific product, thereby allowing a given 

pathway to operate [18].  Hence blocking a path may 

not be vital as pathogens can make use of an alternate 

path performing similar functions. We further carried 

out ‘load point’ analysis for the two microbes and 

identified top 10 metabolite load points in them. The 

loads on the metabolites differ between the two 

bacterial networks (Table 1 and Table 2).  

 

  Metabolites Rank Rank  Load  Load Links Links k-shortest pathk-shortest path  

in pae in ppu (in) pae (in) ppu (in) pae (in) ppu (in) pae (in) ppu

4-Fumarylacetoacetate 1 1 2.4963 2.59503 1 1 11822 11593

4-Maleylacetoacetate 2 2 2.4591 2.55418 1 1 11390 11129

Homogentisate 3 3 2.4422 2.53082 1 1 11200 10872

GTP 4 5 2.3215 2.17462 1 1 9926 7614

D-Ribulose 5-phosphate 5 8 2.2981 2.01551 2 3 19393 19482

3-Phospho-D-glyceroyl phosphate 6 6 2.2072 2.16432 2 2 17709 15072

O-Phospho-L-serine 7 7 2.1005 2.03306 1 1 7958 6609

2-Phospho-D-glycerate 8 9 1.9808 1.98454 2 2 14121 12592

Dephospho-CoA 9 4 1.9044 2.21238 2 2 13082 15814

CTP 10 15 1.8358 1.74179 2 2 12215 9878

D-Xylulose 5-phosphate 14 10 1.7219 1.94826 4 3 21800 18215  

Table 1. Top 10 Metabolite load points based on 

incoming load value in P.aeruginosa (pae) and P. 

putida (ppu).  

 

 Metabolite Rank Rank  Load  Load Links Links k-shortest path k-shortest path 

in pae in ppu  (out) pae (out) ppu  (out) pae(out) ppu  (out) pae (out) ppu

4-Maleylacetoacetate 1 1 2.49628 2.59503 1 1 11822 11593

3-Phospho-D-glyceroyl phosphate 2 2 2.22454 2.1889 2 2 18018 15447

gamma-L-Glutamyl-L-cysteine 3 8 2.20843 1.93855 1 1 8865 6013

2-Phospho-D-glycerate 4 4 2.0159 2.01989 2 2 14625 13045

UDP 5 9 1.94658 1.93033 4 4 27291 23855

D-Ribulose 5-phosphate 6 3 1.90186 2.02557 3 3 19573 19679

4-Fumarylacetoacetate 7 7 1.83902 1.94113 2 2 12254 12057

UDP-N-acetylmuramoyl-L-alanyl-D-gamma-

glutamyl-meso-2,6-diaminopimelate

Homogentisate 9 10 1.78676 1.87938 2 2 11630 11335

3-Phospho-D-glycerate 10 14 1.75145 1.76915 4 4 22453 20304

D-Xylulose 5-phosphate 11 6 1.73365 1.9646 4 3 22057 18515

1 1 6108 62518 5 1.83592 1.97737

 

Table 2. Top 10 Metabolite load points based on 

outgoing load value in P.aeruginosa (pae) and P. 

putida (ppu). 

Although the degree of metabolites and its load in 

both the organisms are more or less similar but they 

differ based on the load points. From the above point 

of view ‘load points’ provide a more global measure 

of metabolic activity than the local connectivity 

analysis. The difference in the load values between 

the above two organisms suggest the need for 

deciphering the metabolic network topology in a 

more significant manner.      

3.2. Top 10 choke point enzymes in Pseudomonas 

aeruginosa  

Choke point analysis was carried out for the whole 

metabolic network using the Pathway Hunter Tool. 

We had reported a total of 361 enzymes in both 
 10
unique and common pathways of P.aeruginosa as 

potential drug targets [10]. Here we compared these 

361 enzymes (50 enzymes in unique pathways and 

311 enzymes in shared pathways) to that of the choke 

point enzymes obtained in the above metabolic 

network tool analysis. This approach resulted in 227 

targets matching with the previously reported 361 

targets of which 25 targets belong to the unique 

pathways of the pathogen. The remaining 202 targets 

matched with that of the enzymes in the shared 

pathways between the pathogen and human. A total of 

63% of proposed drug targets are choke point 

reactions in the P.aeruginosa genome. We identified 

top 10 choke point enzymes in P.aeruginosa using 

the pathway hunter tool. These enzymes were ranked 

based on the number of shortest paths (Table 3). 

 Enzyme 
Id 

Enzyme Name 

 

Gene Ids 

 

Load 

value 
(in)  

Load 

value 
(out)  

k-Shortest 

paths 
(in)  

k-Shortest 

paths 
(out)  

Human 

choke 
point  

Top BLAST 

hit (identity) 
(%)  

2.4.2.7* Adenine phosphoribosyl transferase PA1543 1.11 1.89 74459 74459 No No Homologue 

2.4.2.8 

 

Hypoxanthine phosphoribosyl 

transferase 

PA4645 

 

0.85 

 

1.52 

 

60639 

 

60639 

 

Yes 26% 

2.7.4.6 
 

Nucleoside-diphosphate kinase  PA3807 
 

1.47 
 

1.17 
 

55297 
 

55297 
 

Yes 48% 

2.7.4.14 Cytidylate kinase PA3163 

 

1.37 

 

1.59 

 

50169 

 

50169 

 

No No Homologue 

6.2.1.1* Acetate-CoA ligase PA0887 
PA1997 
PA2555 

PA4733 

-0.03 -0.16 48355 48355 No No Homologue 

2.6.1.1 Aspartate transaminase PA2828 
PA3798 

PA4722 
PA4976 

0.54 0.34 40463 40463 Yes 33% 

2.2.1.1 Transketolase PA0548 1.36 1.46 40019 40019 Yes 26% 

4.2.1.11 Phosphopyruvate hydratase PA3635 2.28 2.07 38260 38260 Yes 54% 

3.6.1.7* Acylphosphatase PA0954 4.07 1.87 28547 28547 No No Homologue 

6.3.5.4* Asparagine synthase 
(glutamine-hydrolysing) 

PA0051 
PA2084 

PA3459 

0.03 -0.05 25142 25142 No No Homologue 

  

Table 3. Top 10 Choke point enzymes in P. 

aeruginosa ranked by number of shortest paths.   

* Choke point enzymes reported as potential drug 

targets in the common pathways shared between 

the pathogen and human. 

Our approach identified top 10 choke point enzymes 

of which 4 of them were already reported as potential 

drug targets in our previous work. An additional 

criterion for being a chokepoint enzyme is that it must 

not have isozymes which would make it more likely 

to be a potential drug target. Comparing the choke 

point enzymes with the human genome sequence will 

help in differentiating pathogen choke points and the 

human choke point enzymes. 

The top 10 choke point enzymes were BLASTp 

searched against human protein sequence database at 

an E-value cutoff of 10
-2
. Five out of ten enzymes 

were identified as choke points only in pathogen and 

not in human. The enzymes adenine phosphoribosyl 

transferase (EC 2.4.2.7), cytidylate kinase (EC 

2.7.4.14), acetate-coA ligase (EC 6.2.1.1), 

Acylphosphatase (EC 3.6.1.7) and asparagine 

synthase (EC 6.3.5.4) do not share any significant 

homology with the human genome (Table 3).  

Therefore targeting these enzymes might cause the 
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lethality of the pathogen. Adenine   

phosphoribosyltransferases catalyze the Mg2
+
 

dependent reaction that transforms a purine base into 

its corresponding nucleotide and they are present in a 

wide variety of organisms. They play major roles in 

purine salvage among most living organisms.  Most 

of them rely on multiple purine salvage pathways to 

replenish their purine nucleotides. A simultaneous 

inhibition of all the major purine salvage enzymes 

will be necessary for depleting purine nucleotides 

from these pathogenic organisms.  

ATP or GTP formation by substrate level 

phosphorylation of ADP or GDP at the expense of the 

free energy of the thioester bond of acyl-CoA is a 

well known and much studied biochemical process. 

Enzymes (acetate-coA ligase) catalyzing this process 

play central roles in energy metabolism. Potential 

drug targets should adversely affect the pathogen but 

not the host human and therefore if the drug target has 

a homologous enzyme in human it should not be 

essential. 

4. CONCLUSION 

It must be noted that chokepoints may not be essential 

if they create unique intermediates to an essential 

product and exhibit alternate pathway reactions. 

Alternatively, a model might overestimate the number 

of redundant reactions or pathways; this can be due to 

errors in annotation and unaccounted regulation. 

Equally true, each component of the reaction network 

may be present in the target organism but not 

expressed under the conditions to be examined. The 

above discussed computational approaches herein 

yield a larger pool of candidates which are not biased, 

thereby providing a wider range of new potential drug 

targets. 
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