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Abstract 
 
Guided by curated associations between genes, 
treatments (i.e., drugs), and diseases in 
pharmGKB, we constructed n-way Bayesian 
networks based on conditional probability tables 
(cpt’s) extracted from co-occurrence statistics 
over the entire Pubmed corpus, producing a 
broad-coverage analysis of the relationships 
between these biological entities. The networks 
suggest hypotheses regarding drug mechanisms, 
treatment biomarkers, and/or potential markers 
of genetic disease. The cpt’s enable Trio, an 
inferential database, to query indirect (inferred) 
relationships via an SQL-like query language. 
 
Goal 
 
The goal of clinical research can be thought of as 
seeking the conditional probability (cp) of a cure 
given particular treatments and diseases; in terms 
of conditional probabilities: statistically 
quantified and directed relationships of the form 
p(cure|treatment,disease) [hereafter: p(c|t,d)]. 
Meta-analysis over clinical trials can obtain an 
improved value by combining evidence 
statistically across trials. Such meta-analyses 
extract a p(c|t,d) that is statistically tacit in the 
literature. In the present work we explore other 
potentially useful statistically tacit results 
available in the medical literature. Specifically, 
we compute conditional probabilities between 
treatments (usually drugs), diseases, and genes: 
p(t|d,g), by analyzing their co-occurrence in 
Pubmed (www.ncbi.nlm.nih.gov/pubmed). 
Although not as directly useful as p(c|t,d), these 
cp’s and their algebraic co-forms may be 
interpreted in a number of useful ways, for 
example as personalized (e.g., genetically 
guided) treatment hypotheses [p(t|g,d)], as drug 
mechanism hypotheses [p(g|t)], as treatment-
response predictive biomarkers [p(g|t,d)], or as 
potential markers of genetic diseases [p(g|d)]. 
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Suppose, for example, a patient is given a 
particular diagnosis, and a genomic-analysis 
reveals a mutation in a gene for which a targeted 
treatment has been explored in the scientific 
literature, but for which there is no approved 
specific treatment. P(t|g,d) gives one a sense of 
which treatments have been explored the most in 
this circumstance. Once a treatment is chosen, 
one wants to know which gene expression 
responses to watch in this patient (often not be 
the same as the mutated gene). Here p(g|t,d) may 
offer a sense of what the literature suggests as 
likely treatment-response biomarkers. 
 
Thus the conditional probabilities among these 
entities across the scientific literature may lead to 
practical new hypotheses, and support inference 
to p(c|t,d), or eventually even to the holy grail of 
personalized genetic medicine: p(c|t,d,g). 
 
Background 
 
Many researchers have extracted association-
based knowledge from the medical literature. 
Zhu, et al. [1] computed co-occurrence of 
compounds and genes, and Jenssen et al. [2] 
computed a gene-to-gene co-citation network. 
These are relatively simple computations. 
Extracting conditional multivariate statistics is 
much more difficult because it requires 
computing all combinations of associations, plus 
background counts for normalization, and the 
potential vocabulary is very large. Wren [3] 
extracted a network of associations among genes, 
diseases, phenotypes, drugs, etc. using the 
mutual information of shared associations from 
Pubmed abstracts over a set of 10,000 common 
words. In order to control the computational 
complexity and avoid saturation (which is likely 
with common words), Wren restricted his 
calculations to only 100,000 abstracts. Similarly, 
Narayanasamy, et al. [4] mined co-occurrence in 
Pubmed to build an association graph and ranked 
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associations co-occurring with both the objects 
(equivalent to mutual information). Although 
most of these projects uncovered various 
suggestive associations, they have either used a 
small corpus, focused on only one kind of entity 
(e.g. gene-gene), focused only on co-occurrence 
(which is symmetric as opposed to conditional 
probability), or recognized concepts from only 
one (or few) ontologies. In the present work we 
mine quantified, directed (i.e., asymmetric) 
association statistics for all-way 
drug/gene/disease relationships over the entirety 
of more than 19 million Pubmed abstracts and 
using all UMLS ontologies. 
 
Methods 
 
We seek to extract all-way co-occurrence-based 
Bayesian networks among treatments (primarily 
drugs for this study), diseases, and genes. These 
can be estimated from subsets of conditional and 
non-conditional probabilities which are in turn 
derived from raw co-occurrence counts of 
drug/disease/gene entities in domain-specific 
corpora such as Pubmed. For non-conditional 
statistics, such a co-occurrence probability would 
simply be the number of documents (or 
abstracts) that mention these items together, 
divided by the total number of documents 
contained in the corpus. The desired conditional 
probabilities are: p(drug|gene), p(drug|disease), 
p(drug|gene,disease), etc. One can easily see how 
to compute such conditional probabilities over an 
appropriately annotated Pubmed database, 
simply by counting the single and combinational 
co-occurrences of all of these entities, and 
performing the obvious calculation, i.e., p(drug 
A|gene B, disease C) = (# distinct abstracts 
containing A and B and C)/(# distinct abstracts 
containing B and C). Notice that more general 
relationships are conceivable, i.e., considering 
many-to-many relationships between drugs, 
diseases, and genes. In the present experiment 
we limit our Bayesian network to a maximum of 
six conditional variables and a single target 
variable, thus extracting up to 26 conditional 
probabilities per net. This keeps the 
combinatorial complexity, and hence the number 
of co-occurrence queries issued against our 
underlying Pubmed corpus, reasonable. 
 
The problem with this approach is that an 
enormous number of combinations must be 
computed. If there are, say, 20,000 genes, a 
thousand drugs or investigational drugs, and a 
thousand diseases, 222,000 combinations would 
 12
have to be calculated. In order to make headway 
in this endeavor, we need guidance on which 
combinations to explore. One source of guidance 
could be a user query about the relationships 
between particular treatments, diseases, and 
genes. It seems unlikely, however, that a user 
would come up with likely combinations a priori. 
 
We found the desired guidance in the 
pharmGKB database (www.pharmgkb.org), 
which explicitly (although non-statistically) 
relates drugs, genes, and diseases (and other 
entities). PharmGKB offers relationships 
between drugs, diseases, and genes, based on 
specific papers and different types of evidence 
ranging from “clinical outcome” to simply 
“discussed”. (We dropped any marked “not 
related”.) Note that, although we use these 
relations in pharmGKB to guide our analysis, we 
do not prioritize the specific papers used in 
pharmGKB, but use the entire Pubmed database 
for our statistics. Thus no quantitative bias is 
introduced by the papers curated into pharmGKB. 
 
Guided by the relations in pharmGKB 1 , we 
combined information from a tagged Pubmed 
corpus created by processing all Medline 
abstracts2  using the Mgrep tool (University of 
Michigan). Mgrep uses all of the alternative 
strings for UMLS concepts3 and identifies their 
occurrence in the abstract using a radix tree 
based method that allows for very fast 
processing without sacrificing precision [5].  In 
our experience, this method has an average 
precision of about 85% for diseases [6]. (We 
have not evaluated precision for other entities.)  
 
The tagged corpus used in the present 
experiment contains ~19 million articles and 
~200 concepts assigned to each article resulting 
in ~3 billion unique Pubmed ID-to-UMLS 
Concept Unique Identifier (CUI) assignments. 
We combined these data with the highly reliable 
gene2pubmed database (ftp.ncbi.nih.gov/ 
gene/DATA). Using only the relationships 
marked as “related” or “positively related”, we 
extracted 1,730 disease/drug/gene relationships 
with up to 6 conditional variables, and extracted 
their respective conditional probability tables 
using co-occurrence statistics over the ~3 billion 
distinct Pubmed ID/CUI pairs, resulting in 

                                                 
1  Late 2007 snapshot of the pharmGKB database. 
2 Medline version from August 2007 
3 UMLS 2007 AB and AA 
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19,092 conditional probabilities (again, compare 
with ~222,000 for the full-joint distribution). 
Although this is clearly still an offline process, 
requiring several days, once extracted, these 
tables serve as input for our Bayesian nets and 
allow for an efficient execution of arbitrary 
inferential queries; any conditional probability of 
variables/entities expressed in a pharmGKB 
relationship can be directly computed from these. 
 
Results and Extensions 
 
The result of our method is a miniature Bayesian 
network for each of the pharmGKB relationships. 
For example: p(antidepressants | affective 
disorders, GNB3) = 0.33 (abbreviated: p(an|af,g) 
= 0.33. (Values are rounded to 2 decimal places, 
and names are shortened to unambiguous 
abbreviations.) That is, out of all the documents 
that mention “affective disorder” and gene 
“GNB3”, about one third also mention anti-
depressants. The subordinate relationships in this 
set include: p(~an|af,g) =.67, p(an|~af,g) = 0.04, 
p(~an|~af,g) = 0.96, p(an|af,~g) = 0.11, 
p(~an|af,~g) = 0.89, p(an|~af, ~g) = 0.0, and 
p(~an|~af,~g) = 1.0.  (Note that complementary 
conditional probabilities add to 1.0) Many of 
these subordinate relationships may, of course, 
be irrelevant. Another example: 
p(azidothymidine | HIV, ABCC4) = 0.6. That is, 
in 60% of the papers where HIV and ABCC4 are 
mentioned, azidothymidine is also mentioned.  
 
Note that the order of the contexts (following the 
vertical bar in the c.p.) is not relevant, but the 
targeted posterior (right side of the vertical bar) 
is relevant, and that the relationships are not 
symmetric across the conditional (vertical bar). 
Contrast, for example: p(mercaptopurine | 
azathioprine, thioguanine, TPMT) = 0.84, 
p(thioguanine | azathioprine, mercaptopurine, 
TPMT) = 0.73, and p(azathioprine | 
mercaptopurine, thioguanine, TPMT)  = 0.89. 
And the subordinate relationships: p(azathioprine 
| thioguanine, TPMT) = 0.86, p(thioguanine | 
azathioprine, TPMT) = 0.44. The most clinically 
important results are, of course, the conditional 
probabilities of different treatments (drugs), for 
the same disease&gene combination. For 
example: p(salmeterol | Asthma, ADRB2) = 0.07 
and p(salbutamol | Asthma, ADRB2) = 0.16. 
 
Aside from direct relationships, one may want to 
assess indirect (i.e., inferred) relationships based 
on the very same precomputed nets. There are, of 
course, many more of these than the already 
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burgeoning set of direct relationships. By 
directly extracting the conditional probabilities 
as input into a Bayesian net, our method allows 
for a more compact representation of the desired 
dependencies than it would be possible via 
capturing the full joint-distribution of all 
variables involved in such a relationship. Any 
conditional probability of variables involved in 
the net can be efficiently derived via Bayesian 
inference. For example, marginalized conditional 
probabilities of the form p(disease|gene) can be 
directly calculated from a conditional probability 
table initially extracted for p(drug|gene,disease) 
without going back to the source to extract more 
co-occurrence statistics. In this special setting, 
the obtained net always has a tree structure, 
permitting linear-time inference queries. This 
approach can be extended to extract arbitrary 
concepts beyond just drug/disease/gene 
relationships, by sampling co-occurrence 
statistics from pubmed for arbitrary text tokens. 
 
Implementation 
 
The present work is implemented as an extension 
of the Trio system [7], a database system for the 
integrated management of data, uncertainty and 
lineage. Trio uses an extended relational schema 
to capture data uncertainty (in the form of 
alternative attribute values and confidences 
associated with each of these attribute 
alternatives), as well as data lineage (i.e., 
pointers to internal or external sources of the 
data). For the specific inference setting explored 
here, it turns out that the notion of lineage can 
nicely be generalized to capturing arbitrary 
relationships between entities (or records in a 
database), thus providing pointers to other 
entities (again other records), which allows for a 
convenient way of encoding Bayesian nets 
directly on top of this extended relational setting. 
For the new inference component, each 
present/absent combination of variables in a 
pharmGKB relationship is encoded as a different 
alternative of such an “uncertain” record, along 
with a confidence value, which allows us to 
capture arbitrary, discrete probability 
distributions (including cpt’s) for each record in 
the Trio schema.  
 
Moreover, this affords a simple, declarative way 
of issuing true inference queries on top of the 
precomputed conditional and non-conditional 
probabilities. For example, the query: 
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SELECT mercaptopurine | 
azathioprine , thioguanine 
FROM DRUGS; 

  
would simply select the conditional probabilities 
p(mercaptopurine|azathioprine,thioguanine) from 
the precomputed cpt’s for DRUGS. Conversely 
(still based on the same input table DRUGS 
capturing the cpt’s for the initial target variable 
mercapturine, but also pointers to the non-
conditional priors of azathioprine and 
thioguanine), we can, for example, initiate an on-
the-fly inference query asking for 
p(azathioprine|mercaptopurine), thus swapping 
the direction of the conditional probability and  
marginalizing the distribution (i.e., eliminating 
the conditional variable thioguanine) in a single, 
SQL-like query: 
 

SELECT azathioprine | 
mercaptopurine FROM DRUGS 
COMPUTE INFERENCE; 

 
The result of this inferential query is a new cpt 
for p(azathioprine|mercaptopurine) that had not 
been precomputed, and whose computation is 
triggered by the “COMPUTE INFERENCE” 
clause using the inferencing extension in Trio. 
Issuing such an inference query is much faster 
over these simple (in our case tree-like) Bayesian 
nets than going back to the entire Pubmed 
database and mining for the respective co-
occurrence statistics at query processing time. 
Issuing an inference query in Trio over the 
precomputed cpt’s takes less than a second, 
whereas extracting the raw co-occurrence 
statistics from the entire set of Pubmed abstracts 
for a single pharmGKB relation with up to 6 
variables may take several minutes in our current, 
rather limited, computing environment. 
 
Limitations and Directions 
 
The probabilities that we derive reflect only co-
occurrence in the literature, and not, for example, 
recommendations, so one must be cautious in 
interpreting these results. What, then, are they 
telling us, and is what they are telling us useful? 
Because the literature is historical, these results 
are not telling us what to try, but what has been 
tried, or, possibly, what has been suggested (if 
not actually tried). Under this analysis one might 
regard a high conditional probability as a sort of 
ranking of hypotheses regarding potential 
treatments given the context of disease&gene 
combinations, and, symmetrically: hypotheses 
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about the potential biomarkers (genes) given the 
context of a disease&treatment combination.   
 
Interpretation aside, many aspects of this present 
analysis need improvement before this method 
can be applied. First, as with most statistical 
methods applied to natural language, we have 
ignored the specific relationships between the 
entities, both in pharmGKB and in Pubmed, and 
especially the possibility of negatively expressed 
relationships. Of course, we already know, from 
pharmGKB, that there is some positive 
correlation, because we filter out those that are 
marked as “not related” in that database. 
Moreover, given that our statistics  include a 
huge number of papers, it is unlikely that a large 
fraction of them are telling us that "drug X does 
NOT have any effect on disease Y" (etc.), 
especially as the scientific literature does not 
often report negative results. Second, the 
particular tagger that we used does a poor job of 
dealing with gene synonyms. Synonym 
resolution is dependent on the UMLS CUIs. We 
use all synonymous strings for a CUI while 
doing the tagging, and the output only contains 
the CUI. This is not a particularly good solution 
to this complex issue. 
 
We recognize that our use of Mgrep, as well as 
our use of co-occurrence as a substitute for 
actual relationships may introduce significant 
inaccuracies. In a project in progress we are 
generating parse trees of each sentence in the 
abstract and then only using the noun phrases for 
recognizing mentions of diseases and drugs. This 
should significantly increase accuracy.  
 
More critically, because this method is focused 
by pharmGKB, we cannot discover direct 
relations that might be important, but which are 
not mentioned in pharmGKB. One way to 
resolve this might be to build the method into a 
search engine and use the combinations that are 
explicitly searched for as guidance (instead of 
using pharmGKB); indeed, this is explicitly 
enabled by the Trio infrastructure, and given the 
precalculated Pubmed/CUI database, seeking any 
given relationship set takes only a few minutes 
over the entire set of annotated Pubmed abstracts. 
There could be other sources of such guidance as 
well. For example, one could use the literature 
itself: co-mentions in specific abstracts, either all 
of them (only a few million computations vs. 
222,000), or perhaps a reduced hash that selects all 
unique co-mentions (certainly less than the 
whole literature).  



 

 
Regardless, of these proposed extensions to the 
method that we have demonstrated, and 
approaches to its limitations, exhaustive 
evaluation is clearly needed to justify its utility. 
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