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Abstract 

Many methods and tools have evolved for microarray 
analysis such as single probe evaluation, promoter 
module modeling and pathway analysis. Little is 
known, however, about optimizing this flow of 
analysis for the flexible reasoning biomedical 
researchers need for hypothesizing about disease 
mechanisms. In developing and implementing a 
workflow, we found that workflows are not complete 
or valuable unless automation is well-integrated with 
human intelligence. We present our workflow for the 
translational problem of classifying new sub-types of 
renal diseases. Using our workflow as an example, 
we explain opportunities and limitations in achieving 
this necessary integration and propose approaches to 
guide such integration for the next great frontier -
facilitating exploratory analysis of candidate genes. 

Introduction 

In the Kretzler laboratory, one main focus is to 
discover through a systems approach previously 
unknown renal sub-diseases. These discoveries can 
significantly advance clinical diagnosis, screening, 
and therapies. Our flow of research involves 
numerous analytical processes and applications and is 
conducted over many months in conjunction with 
local and remote collaborators. Because of the 
diverse data resources and tools required end-to-end 
and because of the great amount of data sharing that 
goes on, numerous errors from manual computations 
and exchanges are possible. Thus we have studied 
our research processes closely and have developed 
and implemented automated workflows for greater 
quality assurance and efficiency. 
 
Much research on scientific and systems biology 
workflows shows that creating workflow modules for 
recurring, time-consuming, formalizable tasks and 
computations is fairly straightforward technically. 
Yet many unmet challenges still exist for integrating 
these automated workflow modules with the non-
formalizable tasks of scientific discovery. These 
challenges involve human issues and imply nontrivial 
technical solutions. 
 
Our self-study offers insights into two of these unmet 
challenges.(a) Modeling and designing for the 
human-in-the-loop in formalizable modules, and (b) 
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modeling the mixed formal and nonformal aspects of 
scientists’ exploratory analysis. Both models are 
needed to assure systems that match scientists’ 
knowledge representations and interaction needs. In 
regard to these challenges, our self-study confirms a 
growing but not yet dominant school of thought, 
namely that the requirements for adaptability and 
flexibility for the first challenge differ from those of 
the second challenge. In this article, we show the 
different kinds of adaptability and propose the 
research that is still needed for accomplishing 
especially the second – integrating support for 
structured and nonstructured analytical tasks.  
 
 Related Work 

Technically, scientific workflows are “processes that 
combine data and computational processes into a 
configurable structured set of steps for automated 
solutions to a scientific problem” [13]. Developers 
typically decompose scientists’ analytical tasks into 
standardizable components, build these components 
into a set of procedures, information flows, and tools; 
and have humans or automated programs carry out 
this set of processes [2]. However, for scientific 
discovery and hypothesizing, “human and 
organizational aspects … are equally critical for 
success as technical issues” and require building 
adaptability into workflows [2]. 
 
Much of the adaptability required for discovery-
based workflows is outside the scope of our self-
study, for example provenance issues [3]. But within 
our scope are two needs. The first is to adaptively 
keep the human in-the-loop in managing information 
and sensemaking, e.g. letting users decide parameters 
and the usage of certain resources, setting boundaries 
for decisions a system can make without user 
involvement, and letting users identify and select data 
and context to carry over for collaborations [4-5]. 
Research shows that this adaptability involves 
building in awareness of domain-specific choice 
points, a non-trivial problem [6]. 
 
A second aspect of adaptability relevant to our case is 
assuring that routine processes in analysis are 
integrated with the partially or underspecified flow 
that invariably occur in explanatory analysis [6]. 
Researchers note that this adaptability for scientific 
 



discovery is only in its earliest stages, both in terms 
of user modeling and system design [7]. For the 
routine and formalizable parts of scientific discovery 
in bioinformatics, some user models have been 
developed, for example, those that capture 
bioinformatics specialists’ protocols for conceptually 
differentiating relationships when categorizing gene 
sequence data [8-9]. Non-formalizable episodes are 
harder to model. They involve the contextually-
driven dimensions of interpretations, inferences, 
analogies, validations, and opportunistic creative 
leaps. Dourish and Edwards argue that integrating 
users’ formal and nonformal dimensions of analysis 
requires “radical degrees of flexibility” [7,48]. 
Workflows have to be aware of and dynamically 
respond to changing circumstances and have to be 
able to operate over many layers of scientists’ work 
and domain knowledge.  
 
To reach these ends, technological strategies and 
techniques range from Stevens et al’s patterns for 
supporting queries to diverse sources to sophisticated 
semantic indexing and data mining by concept and 
wrappings [10-12]. The success of any of these 
solutions, however, ultimately depends on having and 
linking them to empirically sound models of 
scientists’ explorations and explanations [12] 
 
Overview of the Case Study Workflow 

To better understand and reveal current strengths and 
gaps in electronic workflows while concurrently 
gaining efficiencies and error reductions that 
workflows offer, we developed and implemented 
workflow modules (called processes here). These 
relate analyzing patient histological data and 
expression data at a systems level to gain novel 
insights about courses of different types of renal 
disease and to hypothesize about their underlying 
mechanisms.  

Five analytical processes comprise this workflow, as 
detailed below and in Figure 1. The first four lend 
themselves to automation and uses of GenePattern 
(http://www.broad.mit.edu/cancer/software/genepatte
rn/). The fifth process – explanatory analysis under 
uncertainty for hypothesizing purposes – requires 
continuous human interaction with dynamic data 
relationships with conceptual traits to find a credible 
discovery path amid biological contexts and 
constraints. For this process, we have used various 
tools to semantically mine the research literature and 
to infer biological events through analyses 
ofpathways, promoters, and protein interactions.  As 
we show, for this process, workflows that connect 
inputs and outputs from various analysis applications 
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are still a long way from productively integrating 
human complex reasoning and automation.  

 
Figure 1. Workflow diagram 

Processes 1-4: Mutually Related Automation and 
Human Intelligence  

1. Data pre-processing involves normalizing 
datasets from different arrays. First, specialists raise 
and answer several questions that cannot be 
automated, such as: 

- What is the most comprehensive set of CEL files 
that we expect to be comparable? 

- Are there quality problems with CEL file(s) that 
warrant excluding it?   

- Do we expect the analysis to go beyond the 
capabilities of our standard procedure (analysis on 
the gene level) and thus require us to change to 
methods with a higher resolution (single probe 
evaluation /transcript level, ChipInspector) 

Then files get normalized through different 
automation methods; depending on size or the need 
for high resolution. In some methods – e.g. those 
using GenePattern - normalization is transparent, thus 
facilitating the evaluation of output for accuracy and 
completeness. Methods with extensive annotation, 
such as ChipInspector, also facilitate evaluations but 
with trade-offs: As proprietary software, 
ChipInspector is neither entirely transparent nor state 
of the art in normalization. 

Finally, normalized datasets/output get validated. 
Earlier choices about normalization methods affect 
specialists’ interpretations. Specialists also must fit 
into the loop to determine how to store the data in 
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proprietary sources and manage/coordinate file 
versions for accuracy.   

2.  In validating the integrity of datasets, Principal 
Component Analysis (PCA) is run, and specialists 
again must be in the loop to critically examine the 
graphic and tabular output. They define clusters and 
sub-groupings and determine causes of problems 
such as outliers. They ask, e.g: Are the data degraded 
- is it a matter of removing specific CEL files and 
rerunning the preprocessing? Or if the data are valid, 
might some other feature of the data – such as an 
animal dataset being included when it should not be - 
explain outliers? Alternately, might a batch effect be 
the problem? If so, intensive analysis among 
collaborators ensues, often from many disciplines. 

Several iterations of pre-processing PCA  may be 
needed. For us, automating portions of this iteration 
expedited what had previously been an extremely 
lengthy process. Before we automated these 
processes, we had to use different programs with 
different data formats. Doing so introduced 
unnecessary data conversions, a process that cost 
time and increased the risk of errors.  

In validating datasets, human expertise cannot be 
automated for such nonformalizable reasoning as 
scrutinizing output and finding, diagnosing and 
resolving problems.  

3. Grouping aims to identify “gene expression 
fingerprints” associated with patients. Samples are 
grouped through automation by two different 
clustering approaches. The first includes but is not 
limited to unsupervised hierarchical clustering and 
evaluates if structures found in molecular data can be 
mapped to patient information such as histological 
data. A special point of interest is to search for 
molecule-distinct subcategories within a histological 
classification, which could indicate different courses 
of a disease or different responses to treatment.  

The second method is entirely data-based and seeks 
to find a classification scheme for patients only on 
their molecular data, an approach that could either 
confirm or challenge the current disease 
classification.  

In either case, human expertise is needed to 
determine the appropriate clustering method and 
parameters and to evaluate the implications of the 
methods on the results. Additionally, humans’ 
domain knowledge is needed to set the results into a 
disease context.  For these analyses downloadable 
output is crucial. The ways in which output is 
represented can bias interpretations; hence scientists 
need to validate their interpretations against more 
than one representation.  
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4. Significance testing or correlation uses 
automation to filter out potentially informative genes 
for further study. Independently of groups, we use 
correlation and ridge regression as methods to 
connect genes and clinical parameters and to 
establish marker sets that can predict course of 
disease.  

Contrarily in case of a given classification we use 
significance analysis to reveal the genes that are most 
distinct between predefined classes. This analysis 
shifts the research focus from prediction to functional 
differences.  

As specialists examine the data and find problems 
they often need to bring in other people. For example, 
if several probesets representing a gene of interest are 
discordantly regulated microbiologists are consulted 
about alternative splicing, and iterations of 
normalization with higher resolution may be run.   

Output of Process 4 is a prioritized candidate gene 
list, the initial seed for interactively mapping genes 
and gene products onto contexts that may explain 
biological events and courses of disease types. 

Process 5: What Human Intelligence Corresponds 
to Automated Output?   

The fifth process involves analyzing candidate genes 
within dynamic relationships and contexts to 
interpret, infer, and validate causal associations 
and hypotheses about mechanisms of sub-type 
diseases. As biology works in networks and modules, 
individual genes carry only limited information. This 
process thus relies on several tools to relate findings 
from prior steps and to situate analysis in biologically 
meaningful contexts.   

Protein interaction applications such as MiMI 
(mimi.ncibi.org) can reveal and highlight literature 
about multidimensional relationships of interest 
based on correlated attributes. Other tools offer 
statistical assurances and localization. 

Pathway analysis tools as Ingenuity 
(www.ingenuity.com) map genes to already 
established modules referred to as canonical 
pathways or use current knowledge from literature 
and experiments to find functional relations between 
them. While this provides a very broad context for 
the relations of the input genes, we typically lack 
crucial detailed information as intergenic relations in 
the specific tissue and the role of individual 
transcripts. Additionally, the use of current 
knowledge with its unequal distribution can bias the 
results, a problem that holds true for literature mining 
as for experiment databases.    
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Alternately, networks can be generated initially from 
literature analysis (Genomatix BiblioSphere, 
http://www.genomatix.de/) for subsequent promoter 
analysis (Genomatix’s FrameWorker). Initial results 
are reduced and confirmed by close investigation of 
the DNA based on the spacing and order of structural 
elements. The output, promoter modules, can be 
mapped to the promoters of all genes and thus extend 
our functional knowledge. But a break in scale 
similarly occurs. Network generation and analysis are 
performed on a gene level; promoter modules are 
defined on a transcript level. This causes problems in 
both directions: The network on gene level can be too 
coarse to maintain enough information for the 
extraction of a meaningful promoter module. The 
information gained in transcript level cannot be 
mapped back to the network. This analysis requires 
support for users’ interpretations and inferences 
across scales on many dimensions, not just one level.  

Human expertise and human rigor in prior processes 
are crucial for gene selection when, as with 
FrameWorker, input cannot exceed 10-20 genes due 
to computational limitations. Such restrictions mean 
that a flawless data exchange from prior data 
generation and interpretation must transpire. It is 
mandatory to find the optimal data representation, to 
limit interpretation to the data content, and to validate 
results.  

Summary / Discussion of Integrated Processes 

Our workflow case reveals that most of the steps 
from Processes 1-4 can be integrated into the 
GenePattern framework for transparency, flexibility 
and reproducibility. GenePattern provides apt 
standardization. The consistent file formats in 
GenePattern reduce data transformations to a 
minimum, eliminate error sources and the possible 
omission of data integrity checks greatly improves 
analysis speed from several days to hours, not 
counting the decision making. Its modular structure 
offers  flexibility for coupling workflows with 
collaborative interpretations by experts across sub-
specialties. Filling in a gap in the current research 
literature, our case study gives concrete form to 
questions and choice points at which human 
intelligence and collaboration must enter the picture.   

Our study also helps to specify four traits that 
scientists’ analysis processes should have if they are 
to be decomposed and automated. They should: (a) 
involve computations that machines can do fast and 
reliably; (b) have no need  for intervening human 
intelligence or choice during computations; (c) 
generate output that does not raise threats of bias 
during interpretation, either because automated 
methods are assumed statistically to be unbiased (e.g. 
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Principal Component Analysis) or because different 
automated methods are built in and provide diverse 
enough perspectives on the data to gain a complete 
and credible picture; and (d) involve a set of well-
defined questions that specialists commonly and 
reliably apply to computations.  

However, we found that even processes or modules 
lend themselves to automation require mechanisms 
for adaptively including human expertise. For the 
first four processes in our workflow, for example, a 
rigorous quality check after each step enables domain 
specialists to minimize errors. It allows researchers to 
get familiar with the attributes of the specific dataset, 
to optimize its treatment, and to ask the appropriate 
questions.  

One reason why built-in adaptability for Processes 1-
4 is necessary is that trade-offs associated to a set of 
automated methods are often revealed only several 
steps afterwards. For example, while normalization 
on gene level is sufficient for most purposes, it can 
lead to a situation in which several probesets 
representing one gene show discordant 
correlation/regulation. Normalization on transcript or 
even exon level can help to address these issues by 
increasing the resolution but it lowers coverage and 
confidence since the transcripts/exons are represented 
by fewer probes. As a result, combined automation 
and human intelligence for these analyses can be a 
highly iterative process, with efficiencies elucidating 
facets of the dataset more quickly, thus giving 
scientists more time for creative exploration.  

 The fifth process - interpreting, inferring and 
validating candidate genes – is in many ways a 
different story. In this process, biomedical 
researchers strive to uncover explanatory associations 
within and across levels of biological systems, and 
dynamic causal events in these systems are complex, 
often uncharted and ambiguous. It is uncertain which 
components can be separated from human 
exploratory analysis or what output reduces threats of 
bias.   For example, topological statistics can be run 
on protein-protein interaction networks (e.g. cluster 
densities, recurrent motifs) but biomedical 
researchers are hesitant to go further without 
knowing (a) whether the configurations are by chance 
alone and (b) what these statistics imply in regard to 
biological meaning. These are open questions. We do 
not know yet what workflows must offer in order to 
assure specialists that they have the optimal 
representations, workspaces and analytical 
interactions for negotiating inputs, outputs, and 
biases effectively. For this fifth process, how to 
exploit automation and integrate it with human 
reasoning is a nontrivial challenge. 
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Conclusion 

Connecting standard processes to local pipelines and 
collaborative interpretations by domain experts has 
helped us achieve efficiency, quality, credibility, and 
discovery. Based on the human and automated 
processes vital to the workflow described here, 
several insights have emerged from this project about 
requirements for adaptability for effectively keeping 
the human-in-the-loop . They include 
 
• Any data produced by workflow processes must 

be downloadable for the team to analyze further 
• Any workflow tool must support on-demand 

analysis by researchers across sub-specialties. 
• On-demand analysis and resolutions depend on 

the level at which a problem is found.  
• Integration requires open channels of 

communication, actual/virtual social proximity 
and regular exchanges among molecular 
biologists, bioinformaticians, biostatisticians, 
biomedical researchers, clinical researchers, PIs, 
database experts, and tool experts 
 

Pipelines have significantly reduced the pure data 
processing and implemented techniques to help the 
researcher find the appropriate question but Process 5 
reveals the next great frontier for workflow modeling 
and design with appropriate adaptability. While an 
application may provide a basic context through 
pathways and promoter modules, existing tools often 
fail to shape out the structure inherent in the specific 
dataset clearly enough to be used as base for 
hypothesis generation. 
 
Our study shows that better models of scientists’ 
actual complex analysis processes are needed and 
that better data mining of concepts and relationships . 
Also our study suggests that choices of grain size for 
naming processes go hand-in-hand with designs for 
coordinating and integrating modules and that the 
disparate outputs and inputs relevant to complex 
tasks must be specified in ways that assure analytical 
coherence. 
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