
Automatically Classifying Sentences in Full-Text Biomedical Articles into 

Introduction, Methods, Results and Discussion 
Shashank Agarwal, MS,

1
 Hong Yu, PhD

1,2
 

1
Medical Informatics and 

2
Departments of Health Sciences and Computer Science,  

University of Wisconsin-Milwaukee, Wisconsin 

 

Abstract 
 

Biomedical texts can be typically represented by four 

rhetorical categories: introduction, methods, results 

and discussion (IMRAD). Classifying sentences into 

these categories can benefit many other text-mining 

tasks. Although many studies have applied 

approaches to automatically classify sentences in 

MEDLINE abstracts into the IMRAD categories, few 

have explored the classification of sentences that 

appear in full-text biomedical articles. We explored 

different approaches to automatically classify a 

sentence in a full-text biomedical article into the 

IMRAD categories. Our best system is a support 

vector machine classifier that achieved 81.30% 

accuracy, which is significantly higher than baseline 

systems.  
 

1 Introduction 
 

Previous studies have concluded that biomedical 

texts typically fall into the rhetorical categories of 

introduction, methods, results and discussion 

(IMRAD) (e.g., (1-4)). For example, the following is 

a paragraph from the results section of a full-text 

article (5) in which the sentences fall into the 

IMRAD categories (italic represents introduction, 

underscore represents methods, bold represents 

results, and italic-underscore represents discussion). 
 
“PECAM-1 plays an important role in 

endothelial cell-cell and cell-matrix 

interactions, which are essential during 

vasculogenesis and/or angiogenesis (17, 

22). Here, we examined expression
 
of 

PECAM-1 mRNA in vascular beds of various 

human tissues and
 

compared it with 

expression of PECAM-1 in human 

endothelial and
 
hematopoietic cells. A 

short exposure of the blot
 
probed with 

GAPDH is shown, because poly(A)
+
 RNA from 

the cell lines gives a strong signal 

within several
 
hours compared with the 

total RNA from human tissue. Therefore,
 

total RNA from various tissues required a 

much longer exposure
 
to reveal GAPDH 

mRNA. Human tissue and cell lines 

expressed multiple RNA bands for PECAM-1, 

which may represent alternatively spliced 

PECAM-1 isoforms, the identity of which 

required further analysis.” 

 

In this study we report our efforts on computationally 

classifying biomedical texts into the IMRAD 
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categories. Our work may benefit many other text-

mining tasks. For example, information extraction 

(e.g., extracting protein-protein interactions and 

information relating the interaction network to 

phenotype) may target evidence-rich results, and 

avoid evidence-lean introduction. Summarization 

may aggregate sentences and provide a summary for 

each rhetorical category. For example, our work 

shows that biomedical research scientists prefer to 

have the IMRAD structure for summarizing the 

content of a figure (6). Question answering may 

target on different rhetorical categories for answer 

extraction. For example, definitions may be extracted 

from introduction (7), and methods may be the choice 

for answering questions such as “how to perform a 

glucose uptake assay?”  
 

The importance for automatically classifying 

biomedical text into the rhetorical-zone categories 

has been recognized and various approaches have 

been developed to automate the task, although most 

of the efforts have been made to develop approaches 

for assigning IMRAD categories to sentences that 

appear in MEDLINE abstracts (7-8). 
 

McKnight and Srinivasan (8) reported the first 

automation. They trained supervised machine-

learning binary-classifiers on structured abstracts 

(i.e., the sentences in an abstract have been structured 

by the authors of the abstract into the IMRAD 

categories). The trained classifiers were then used to 

predict the categories of sentences in unstructured 

abstracts. The authors observed that sentences 

typically followed the IMRAD order in an abstract, 

and therefore incorporated sentence positions as 

additional features. They reported F-scores of 52–

79% for assigning each sentence to the IMRAD 

categories. Lin et al (9) further employed hidden 

Markov models, which maximized the position 

feature and improved the binary classification to F-

scores of 73–89%. No work has attempted to predict 

IMRAD categories of sentences in full-text 

biomedical articles. 
 

Mizuta et al. (10) examined full-text biomedical 

articles, explored linguistic features, and defined 

richer rhetorical zone categories that include 

problem-setting (i.e., the problem to be solved; the 

goal of the present work), insight (i.e., the author’s 



insights and findings obtained from experimental 

results), etc. Using 20 annotated full-text articles, 

supervised machine-learning classifiers (i.e., naïve 

Bayes and support vector machines) were developed 

for the automation (11). The features included 

lexical, syntactic, location, and zone sequence. Their 

best performing system, one that incorporated all the 

features, achieved an F-score of 70% for all category 

classification. 
 

Other related work includes Shatkay et al (12, 13). 

They built a multi-dimensional classifier, where each 

sentence was classified on five parameters: focus, 

certainty, evidence, polarity and direction/trend. The 

classifier was trained on 10,000 annotated sentences 

that were selected from full-text biomedical articles, 

and achieved good performances. 
 

Here, we present our work for automatically 

classifying sentences appearing in full-text 

biomedical articles into the IMRAD categories. We 

have explored rule-based and machine-learning 

approaches. 
 

2 Methods 
 

We explored rule-based and machine-learning 

approaches to automatically classify a sentence into 

the IMRAD categories. 
 

2.1 A Baseline System 
 

As a baseline, we create a simple system (Baseline) 

that assigns a sentence an IMRAD category based on 

which IMRAD section the sentence occurs in. For 

example, we assign all sentences in the Introduction 

section the category introduction. 
 

2.2 A Rule-based System 
 

Rule-based systems have shown success in the 

biomedical domain (e.g., (14, 15)). We randomly 

selected eight articles from the TREC Genomics 

Track text collection (16), which contains more than 

160,000 full-text biomedical articles. The eight 

articles contain ~30,000 words and 1,250 sentences. 

The first author of this paper (SA) read each article 

and then manually identified patterns that were 

indicative of the IMRAD categories. For example, 

one rule links a sentence to discussion if the sentence 

incorporates the words ‘our,’ ‘observations,’ and 

‘suggests’ and the sentence does not associate with a 

citation. A total of 603 rules were identified, of which 

410 were methods rules, 96 were results rules and 97 

were discussion rules. If a sentence was not identified 

by any of the methods, results or discussion rules, 

then that sentence was labeled as introduction. We 
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then implemented the rules in a rule-based classifier 

that automatically assigns sentences to the 

appropriate category. 
 

2.3 Supervised Machine-Learning Systems 

Trained on Non-Annotated Corpus 
 

Annotation has always been an expensive process. 

Therefore, we explored methods for training 

supervised machine-learning systems on non-

annotated data. Our work is inspired by the work of 

Yu and Hatzivassiloglou (17). We assume that in a 

structured IMRAD full-text article, the majority of 

sentences in each section are classified with the 

respective IMRAD category. For example, even 

though the sentences under the Introduction section 

incorporate other categories, we assume that a 

majority of the sentences are still assigned 

introduction.  
 

We developed four classifiers. The first classifier, 

Non1, was trained on structured sentences from the 

full-text article that incorporates the test sentence. 

The IMRAD category of the sentences in the full-text 

was used as the label of the sentence to build the 

classifier. Since our training data are noisy, the 

second classifier, Non2, incorporated an iterative 

classification process that attempts to remove the 

noisy data from the training set. This classifier was 

based on the work of Yu and Hatzivassilogou (17). 

Specifically, for each full-text document, we built the 

classifier C1, which was trained on the sentences 

within the four structured sections. We then applied 

the same classifier to predict the category of 

sentences in the training data and then removed those 

contradictory predictions. We assume that C1 

performs better than random and therefore has a 

better chance than random to remove noisy training 

data. We then continued the iteration Ci, i=1, 2… N, 

until the accuracy dropped or stabilized. 
 

Non3 was trained on structured MEDLINE abstracts. 

We considered an abstract to be structured if it 

contained the four IMRAD categories or their 

synonyms (for example, background was assigned as 

introduction). 8000 randomly selected sentences 

(2000 for each category) from the structured abstracts 

in MEDLINE were aggregated to train the classifier. 
 

Non4 was trained on structured full-text sentences 

instead of abstract sentences. 8000 sentences (2000 

from each category) from the IMRAD categories 

were randomly collected from full-text articles in the 

BioMed Central corpus (available at 

http://www.pubmedcentral.nih.gov/) and used to train the 

classifier. Unlike Non1, Non4 was trained on 

sentences from randomly selected articles, whereas 



Non1 was trained on sentences from the same article 

as the test sentences. 
 

2.4 Supervised Machine-Learning System Trained 

on Manually Annotated Full-Text Sentences 
 

Finally, we manually annotated a set of sentences that 

appear in full-text biomedical articles and then 

trained a supervised machine-learning system on the 

annotated data. We call this classifier Man. Feature 

selection and machine-learning systems are described 

in the following section. The annotated data will be 

described in Section 3.2. 
 

2.5 Machine-Learning Systems and Features 
 

For all supervised classifications, we used the support 

vector machines provided by the open-source Java™-

based machine-learning library Weka 3 

(http://www.cs.waikato.ac.nz/ml/weka/). The features we 

explored include words and n-grams. We found that a 

combination of individual words, bigrams and 

trigrams led to the best performance. We observed 

that citations can be an important feature. For 

example, citations are more frequently introduced in 

introduction than in results. We therefore created a 

new feature to indicate the presence of a citation. All 

numbers were replaced by a unique symbol. 
 

Biomedical texts frequently report existing 

knowledge in the present tense and the experimental 

results in the past tense. We therefore added the 

presence of these two verb tenses as additional 

features. We used the Stanford parser 

(http://nlp.stanford.edu/software/lex-parser.shtml) for 

identifying the presence of the verb tenses. A final 

feature we explored is the IMRAD categories 

inherited in a structured full-text article. This feature 

was only added in the machine-learning classifier 

Man that was trained on the annotated sentences. 
 

We applied mutual information (18) for feature 

selection. We experimented with a number of 

features and found that the top-1000 tended to give a 

better performance. 
 

3 Evaluation 
 

For each classifier, we report the accuracy (i.e., 

number of correctly predicted sentences divided by 

total number of sentences), and F measure, which is 

the harmonic mean of precision and recall. Here 

recall is the number of correctly predicted sentences 

divided by the total number of sentences in the same 

category, and precision is the number of correctly 

predicted sentences divided by the total number of 

predicted sentences in the same category. 
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3.1 Data 
 

The publicly available BioMed Central full-text 

corpus was used for this study. We randomly selected 

148 articles that incorporate the IMRAD sections in 

the full-text body and then randomly selected five 

sentences from each category of these articles. This 

resulted in a total of 2,960 sentences (148×5×4), from 

which we further annotated a gold standard set. 
 

3.2 Annotation, Agreement, and Gold Standard 
 

The first author of this paper (Annotator1) developed 

an annotation guideline and, using the guideline, 

manually annotated 911 sentences randomly selected 

from the 2,960 collected sentences into one of the 

four IMRAD categories. In cases of sentences 

containing two or more categories, precedence was 

given to discussion over all other categories, to 

results over methods and introduction, and to 

methods over introduction. A confidence value was 

also assigned to each annotation: ‘High’ if the 

annotator was clear that the sentence belonged to a 

particular category, ‘Medium’ if the annotator was 

unsure between two categories, and ‘Low’ if the 

annotator was unsure between three or more 

categories. Of these 911 sentences, 749 sentences 

were annotated with ‘High’ confidence. These 749 

sentences were used to train the classifier. Of the 749 

sentences, 287 were labeled introduction, 192 were 

labeled methods, 180 were labeled results and 90 

were labeled discussion.  
 

To evaluate the quality of the annotation, we 

randomly selected 391 sentences from the 911 

sentences. Two biologists (Annotator2 and 

Annotator3), who are not the authors of this paper, 

were provided the annotation guideline and 

independently assigned the IMRAD categories to 

each of the 391 sentences. Annotator2 annotated 196 

sentences, while Annotator3 annotated 195 sentences. 

Agreement over these 391 sentences was 64.71%. 

246 sentences were assigned high confidence by 

Annotator1 and Annotator2+3 (Table 1). Annotators 

agreed on 194 (78.86%) of these 246 sentences. 

Table 2 shows the results of kappa values and overall 

agreements of the 246 sentences that the annotators 

assigned high confidence and all 391 sentences 

regardless of confidence assigned by the annotators. 

The average kappa value and overall agreement
1
 

respectively were 0.71 and 89.5% when annotators 

assigned high confidence and 0.539 and 82.5% when 

confidence was ignored. 

                                                 
1
 the kappa values and the overall agreements using the calculator 

at http://www.dmi.columbia.edu/homepages/chuangj/kappa/calculator.htm 

http://nlp.stanford.edu/software/lex-parser.shtml


The 749 sentences that were annotated with ‘high’ 

confidence were used as a gold standard for 

evaluating different systems described in Section 2. 

For supervised machine-learning system trained on 

manually annotated full-text sentences, we performed 

10-fold cross validation, in which 749 sentences were 

randomly divided into 10 folds, 9 folds (674-5 

sentences) were then used for training. The trained 

classifier was then tested on the holdout 74-5 

sentences. All other systems were evaluated ten times 

using the same set of the holdout sentences as the 

gold standard. We report the average recall, 

precision, and f-score with standard deviation. 
 

4 Results 
 

We report the results of rule-based and machine-

learning classifications. Table 3 shows the 

performance of the classifiers. Table 3 also shows the 

results of adding two additional feature categories, 

tense of the verbs and original category of the 

sentence, to Man, as described in the methods.  
 

Our mutual information score showed that the top-10 

features were “were,” “citation,” “NumberNumber” 

(denotes any numeric value), “is,” “our,” “that,” 

“was,” “has,” “been” and “be.” 
 

Table 1: Confidence value assigned by the annotators 

to the set of 391 sentences 
  Annotator2 + Annotator3  

  High Medium Low Total 

High 246 72 5 323 

Medium 38 18 8 64 

Annotator1 
(SA) 

Low 4 0 0 4 

 Total 288 90 13 391 

 

Table 2: Annotator1 vs. Annotator2+3’s agreement 

on annotating sentences into the IMRAD categories.  
High Confidence Sentences All Sentences  

Kappa OA(%) Kappa OA(%) 

Introduction 0.688 88.2 0.514 80.1 

Methods 0.862 94.3 0.704 89.0 

Results 0.756 90.7 0.58 85.2 

Discussion 0.532 84.6 0.358 75.7 

OA: Overall Agreement 
 

5 Discussion 
 

Table 2 shows the kappa and the overall agreement 

by IMRAD category for sentences annotated with 

high confidence. The unweighted kappa score 

average was 0.71, which indicates good agreement 

between the annotators (19). The lowest and highest 

agreements were seen in Discussion and Methods, 

respectively, with kappa values of 0.532 and 0.862, 

respectively. The results indicate the challenge for a 

consistent sentence annotation in the Discussion 

category. Consistent with the confidence of 
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annotation, our results show a decreased agreement 

when the confidence is not “High.” When confidence 

was ignored, average kappa score was 0.539, which 

is still in the range of an acceptable agreement (19). 
 

Our results show that the baseline classifier achieved 

a competitive performance of 69.29% accuracy, 

which suggests that much of the sentences in full-text 

articles are indeed structured. It is not surprising that 

the supervised machine-learning system that is 

trained on the uncategorized sentences (Non1) 

achieved a similar performance (69.03%). We found 

an enhanced performance, although only slightly, in 

the iterative classifiers (Non2) that attempt to remove 

noisy data. The results show that the classifier indeed 

performed better than randomly, and was able to 

remove noise cases from the training data. On the 

other hand, multiple-classifiers may remove only 

those “easy” cases. Furthermore, because the 

classifiers remove sentences from the training data, 

the sentence removal led to decreases in training size, 

which may lead to a performance decrease in 

machine-learning classification. Results of iterative 

machine-learning classifications support our previous 

work in opinion/fact classification (17). 
 

The rule-based classifier (Rule-based) was expected 

to perform with high precision; however, this was not 

the case. The precision for methods, results and 

discussion rules was between 52% and 68%. This 

could indicate the rules were not exclusive, and 

hence, as shown in our results, corpus based 

approaches present better options. 
 

Although machine-learning classifiers trained on the 

structured abstracts (Non3) are widely considered as 

one of the best systems, our results show that these 

systems performed the worst (58.88%), a 10.4% 

decrease over the baseline system that considers a 

sentence based on which IMRAD section the 

sentence occurs in. The poor performance may be 

caused by the fact that sentences in full-text articles 

may be composed differently from sentences in 

abstracts. Our results strongly demonstrated that a 

full-text–specific classifier is needed. 
 

Our results show that the classifier trained on the 

annotated sentences from randomly selected full-text 

articles (Non4) performed with 60.08% accuracy, 

which is much lower than a similar classifier Non4 

which was trained on sentences in the same article. 

The results show that the classifier performed better 

when trained on sentences in the same article than 

those across. This local effectiveness needs to be 

further investigated. Cohesion and semantics may 

play a role for IMRAD categorization. 
 



Table 3: Performance (%) with standard-deviation across the 10-folds of all classifiers.  
Man  Base-line Rule 

based 
Non1 Non2 Non3 Non4 

Words Words + 
tense 

Words + 
IMRAD 

Words+Ten
se+IMRAD 

A 69.29±3.54 55.40±8.80 69.03±3.86 69.43±3.41 58.88±5.95 60.08 ±4.36 75.83±5.08 76.10±4.48 81.04±4.82 81.30±4.67 

I 69.9±5.76 63.4±10.8 69.7±5.77 69.7±5.77 61.4±9.65 66.6±4.04 80.6±6.31  82.2±6.69 83.5±4.99  84.3±5.13 

M 81.2±6.73  59.7±11.3 80.8±5.72 81.4±5.49  70.8±6.21 66.2±7.45 76.3±7.02  76.2±7.79 83.9±8.96 84.1±8.12 

R  72.2±7.26 32.0±8.43 71.3±8.46  71.9±8.02  54.5±11.8 54.5±12.4 69.7±8.78  68.3±7.63 77.6±10.2 77.2±11.2 

D 46.3±12.3 37.5±18.2 46.6±13.3  46.7±13.2 39.4±13.7 42.6±12.9 59.7±21.8   59.4±20.0 58.4±24.9 61.5±14.8 

WA 70.5 51.8  70.2 70.5 59.5 60.7  74.4   74.6  79.2  79.8  
A: Accuracy, I: Introduction f-score, M: Methods f-score, R: Results f-score, D: Discussion f-score, WA: Weighted average of f-score. 
 

The top features identified by mutual information 

showed the importance of citation markers, numbers 

and stop words. Accordingly, our results show that 

the word tense feature improved +0.27% (from 

75.83% to 76.10%). Because of the strong 

performance of the baseline system, it is not 

surprising to see an improvement in performance 

(+5.21%) when the inherited IMRAD categories were 

added as the learning feature. We found that the best 

performance was to integrate both features. This 

resulted in an accuracy of 81.30%, which is 12% 

higher than the baseline system and 22.4% higher 

than the machine-learning system trained on 

structured abstracts. 
 

Even though the annotated data are small—we had a 

total of 749 annotated sentences that were used for 

IMRAD categorization—we achieved a competitive 

performance system that is likely applicable to text-

mining applications. We speculate that the systems 

can be further enhanced when more data are 

annotated and used for supervised machine learning. 
 

6 Conclusion 
 

In this study, we have explored several systems for 

automatically classifying a sentence that appears in a 

full-text article into the corresponding IMRAD 

category. An important finding in our work is that the 

IMRAD classifier that was trained on sentences in 

abstract does not perform well on sentences that 

appear in full-text. The best-performing system was a 

support vector machine classifier that was trained on 

manually annotated sentences that appear in full-text. 

The system achieved an accuracy of 81.30%, a 

performance that is 22.42% higher than the machine-

learning system trained on sentences in abstract. 
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