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Abstract

Background: The extreme genetic diversity of the human immunodeficiency virus type 1 (HIV-1) poses a daunting challenge
to the generation of an effective AIDS vaccine. In Argentina, the epidemic is characterized by the high prevalence of
infections caused by subtype B and BF variants. The aim of this study was to characterize in mice the immunogenic and
antigenic properties of the Env protein from CRF12_BF in comparison with clade B, employing prime-boost schemes with
the combination of recombinant DNA and vaccinia virus (VV) vectors.

Methodology/Principal Findings: As determined by ELISPOT from splenocytes of animals immunized with either EnvBF or
EnvB antigens, the majority of the cellular responses to Env were found to be clade-specific. A detailed peptide mapping of
the responses reveal that when there is cross-reactivity, there are no amino acid changes in the peptide sequence or were
minimal and located at the peptide ends. In those cases, analysis of T cell polifunctionality and affinity indicated no
differences with respect to the cellular responses found against the original homologous sequence. Significantly,
application of a mixed immunization combining both clades (B and BF) induced a broader cellular response, in which the
majority of the peptides targeted after the single clade vaccinations generated a positive response. In this group we could
also find significant cellular and humoral responses against the whole gp120 protein from subtype B.

Conclusions/Significance: This work has characterized for the first time the immunogenic peptides of certain EnvBF
regions, involved in T cell responses. It provides evidence that to improve immune responses to HIV there is a need to
combine Env antigens from different clades, highlighting the convenience of the inclusion of BF antigens in future vaccines
for geographic regions where these HIV variants circulate.
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Introduction

More than twenty-five years have passed since the human

immunodeficiency virus (HIV), the causative agent of acquired

immunodeficiency syndrome (AIDS), was isolated and identified.

But, although the development of antiretroviral drugs has been

very successful, an efficient vaccine is still needed to confront and

finally knock down the devastating epidemic. One of the

challenges to be addressed and ultimately overcome when

developing a vaccine is the high variability of HIV-1, implying

both intra- and inter-subtype variation. This genetic capacity

allows the virus to escape from the host immune system and also

hinders predictions for vaccine composition.

The M group of HIV-1, responsible for the pandemic, has been

differentiated in nine subtypes (A–K) and two sub-subtypes, A2 and

F2 [1,2]. Moreover, the complexity of the epidemic has been largely

elevated with the dissemination of circulating recombinant forms

(CRFs) with a defined genetic structure. Currently, up to 48 CRFs

have been described (http://www.hiv.lanl.gov/content/sequence/

HIV/CRFs), and considered responsible for 18% of the infections

[2,3]. Inter-clade differences can be up to 35% in the env region, and

although there are several studies which clearly indicate cross-clade-

reactive HIV-1-specific CD8+ T-cell responses [4,5,6,7], several

data demonstrates that highly specific T-cell receptors can be

sensitive to single amino acid (aa) changes [8,9]. In this sense, escape

from existing T-cell responses in infected individuals by single

mutations in epitopes [10,11] largely demonstrate this concept.

A major obstacle to the development of an HIV vaccine is the

lack of knowledge about the precise correlates of protection.

Nevertheless, it is accepted that balanced humoral and cellular
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immune responses are required [12]. A highly promising strategy

for the induction of strong antigen-specific responses is the

combination of different vectors (especially DNA and viral vectors)

for delivering genetic immunogens in prime/boost approaches.

In this regard, the results of the last preventive phase III Thai

trial with a combination of a poxvirus vector (canarypox) and a

recombinant protein gp120 for different clades (CRF01_AE, B),

while revealing modest efficacy represent an injection of optimism

for the vaccine development study area [13]. One of the topics of

relevance to be analyzed is the ability of heterologous prime-boost

immunization protocols to induce specific T-cell immune

responses capable of recognizing multiple HIV-1 variants.

The AIDS epidemic in South America is caused by multiple

HIV-1 subtypes including subtypes B, F, and C, in addition to BF

and BC recombinant forms. In Argentina, epidemiological studies

revealed that the early predominance of subtype B has been

diminished by the emergence of BF recombinants [14,15,16,17],

and that the BF epidemic comprises the widespread of CRF12_BF

and several unique recombinant forms (URFs) with a CRF12-

related structure [18]. Recent phylogenetic studies showed for the

first time that CRF12_BF viruses spreading in Argentina and

Uruguay constitute a single epidemic with evidences of multiple

genetic exchanges among countries [19]. Even more, although in a

minor proportion, some cases of BF recombinant viruses related to

CRF12_BF have also been reported in other countries as Bolivia

[14], Venezuela [20,21], Chile, Spain [21],[22] and Paraguay

[23]. All these epidemiological data highlight the importance of

CRF_12BF and BF variants especially in South America.

The extreme genetic diversity of the HIV-1 envelope (Env)

poses a daunting challenge for the generation of an effective HIV/

AIDS vaccine, being Env the principal target for HIV-1-specific

antibody responses, which also serves as a potent T-cell

immunogen. With regard to the epidemic in Argentina, it must

be pointed out that differences between EnvB and EnvBF (from

CRF_12BF) sequences varied from 23.7 to 26.5%.

We have recently reported the characterization of DNA and

MVA vectors that express Nef from HIV-1 CRF12_BF, describing

their capacity to induce a high immune specificity with low cross-

reactivity against Nef from subtype B [24]. In this study we have

extended that analysis expressing a synthetic form of Env

CRF_12BF from DNA and Vaccinia virus vectors as a model to

evaluate the EnvBF immunogenicity characteristics after prime-

boost immunizations.

Results

1. Construction and characterization of DNA and VV
vectors expressing EnvBF

A recent study from our research team reported the highly

immunogenic specificity induced by Nef from CRF12_BF (NefBF)

when it is delivered from DNA and MVA vectors [24]. Continuing

with this research line we have constructed DNA and VV vectors

(on a Western Reserve WR backbone) that express a syngp160

protein from CRF12_BF, to note is the fact that the genetic

composition of Env from this CRF is merely of subtype F [14]. An

evaluation of the correct expression of the EnvBF protein was

done by Western blot and confocal microscopy as part of the

characterization of the vectors constructed using different cell

lines.

The expression of the DNA vector evaluated after 48 h by

transfection of 3T3 cells depicts by Western blot a protein with a

molecular weight of 160 KDa (Figure 1A); the intensity of the

band augmented with the quantity of protein loaded. Env

expression from the rVVenvBF was evaluated at different times

p.i in BSC40 cells. As shown in Fig. 1B, gp160 is observed as early

as 2 hrs pi, increasing with time of infection. Both the complete

160 kDa and processed 120 kDa products were observed. Similar

results were found when the same kinetics was repeated in the

murine 3T3 cell line (data not shown). After infecting HeLa cells,

intracellular localization of Env BF, as analyzed by immunoflu-

orescence with Env specific antibodies, was predominantly found

in the cytoplasm and concentrated in the Golgi apparatus as it can

be expected from a protein that is glycosylated and secreted

(Fig. 1C). In blue, the specific staining for the envelope VV 14 k

protein (A27L) is shown.

2. Immunogenicity of EnvBF vs EnvB proteins: cellular
responses induced after DNAprime/VVboost vaccine
regimes

2.1 Reactivity against subtype B peptides. After showing

correct expression of gp160 from the DNA and VV vectors

expressing EnvBF, next we evaluated their immunogenicity in a

Balb/c mouse model. For this, four mice per group were

immunized according to the protocol depicted in Figure 2 A.

Specific responses were evaluated by stimulating the splenocytes

of each group with pools of EnvB peptides representing the

constant and variable regions of gp120 and a portion of gp41 (see

detailed scheme in Fig. 2 C). Determinations were performed by

ELISPOT assay (Fig. 2Bi), or quantifying the levels of specific

IFN-c secreted in the cell cultures (Fig. 2Bii). The ELISPOT assay

of mice that received the EnvB immunization revealed that the

main cellular reactivity was directed against pool 1 (corresponding

to the C1 region) (Fig. 2C) and pool 4 (C2 region). Whereas in

those mice which received the EnvBF immunization schedule,

only reactivity against pool 1 (C1 region) was detected, indicating

cross-reactivity at this region. Magnitude of the responses against

this region (C1) did not differ significantly between both groups

(p.0.05) (Fig. 2i). By quantifying by Elisa the levels of specific

IFN-c secretion after a longer incubation period (72 hrs) of

stimulation with the same pools of peptides, we were able to detect

positive reactivity against many regions of the protein (Fig. 2Bii),

but this response was subtype specific as it was only detected after

the EnvB immunization.

2.2 Mapping the gp160B-specific response. To further

determine which peptides from pools 1 and 4 of the EnvB protein

were the targets of the response detected in Figure 2Bi, a matrix

for these two regions was designed. Figure 3A describes the matrix

for pools 1 and 4 (C1 and C2 regions of EnvB respectively) and the

number of SFC/106 cells detected in experiments in which the

same scheme depicted in Fig. 2A was applied. This figure

highlights the positive responses found in EnvB and EnvBF

groups, responses for the control group were below 30 SFC/106

for all the matrix pools. As it can be seen for the matrix of pool 1,

peptides 11 and 16 were reactive. And in the case of pool 4,

positive responses indicated that peptides 52 and 53 (consecutive

peptides, therefore representing a unique epitope) and 62 and 63

(also consecutive) were the target of the responses found in the

EnvB immunized group. Peptides identified in these matrix

arrangements were confirmed by ELISPOT assays in which the

individual peptides were employed to stimulate the cells (Fig. 3B).

In these assays two additional predefined peptides were included:

such as the CD8+ peptide p18IIIB-I10 (RGPGRAFVTI) from the

IIIB V3 loop, (immunodominant and restricted for H-2Dd

presentation), and the CD8+ peptide from VV: E3, that derives

from the viral gene E3L, (inhibitor of the antiviral state induced by

interferons) [25]. After EnvB immunization the response found

against the p18IIIB-I10 peptide (Fig. 3B ii) was subtype specific

and showed a magnitude in concordance with that previously

EnvBF vs EnvB Cell Immunity Pattern
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described for this model of immunization [26]. It must be

highlighted that in this group, the corresponding peptide of the

EnvB consensus set was not recognized.

As it can be expected from the VV E3 peptide (Fig. 3B iii) a

similar level of response was detected in the three groups,

suggesting that a comparable level of immunogenicity was

triggered in the different groups of mice.

2.3 Reactivity against subtype BF peptides. Our next aim

was to evaluate the immune response induced against peptides of

certain regions of the gp160BF protein. Different groups of

animals received the same DNA/VV immunization scheme

previously described, and after 10 days of the last immunization

we evaluated the specific cellular immune response. For this,

synthetic peptides of 15 aa with an overlap of 11 aa comprising the

C1 (pool 1), C2 (pool 4), and V3 (pool 5) regions based on the

CRF12_BF sequence (identical to that expressed from the BF

vectors) were employed (see Materials and Methods). A shown in

Fig. 4A, both EnvB and EnvBF groups recognized pool 1 BF (C1

region), and the magnitude of the responses found did not differ

significantly between both groups. This scenario is similarly to

what happened when stimulating cells with the corresponding

pool1B (Fig. 2Bi). On the other hand, significant specific cellular

responses directed to pools 4BF and 5BF (C2 and V3 regions) were

only detected after immunization with vectors expressing the

homologous antigen (gp160BF protein). The cellular immune

response against gp160BF was mapped by a matrix peptide based

analysis as described in Figure 3. Thus, after the identification of

the peptides targeted doing a matrix ELISPOT repeated in two

different experiments (data not shown), the specific responses

employing the individual peptides as the antigenic stimulus were

confirmed (Fig. 4B). Peptides 11BF and 13BF accounted for the

response detected against the C1 region. While in the C2 region

(pool 4BF) two consecutive peptides, 32 and 33, were identified by

the matrix ELISPOT, confirming the positive response against the

individual peptide 33BF. This peptide seems to be subdominant as

we could only detect a positive response (slightly above the

detection limit) in two out of four experiments (two evaluations

with matrix peptide pools and two with individual peptides).

Moreover, we obtained a response specific for 33BF peptide of a

magnitude of 90 SFC/million when animals received a boost dose

of the VVEnvBF four times higher (46107 PFU/animal), in which

case the responses evaluated against the other peptides were

saturated (non-countable) (data not shown). Finally, the matrix of

the V3 region (pool 5BF) led to the identification of the 48BF

peptide, confirming these responses with the individual peptide

(Fig. 4B).

2.4 Fine mapping of responses: analysis of the sequences

and localization of the B and BF peptides targeted. After

the identification of the peptides that were induced by Env

immunizations based on the B and BF subtypes, we proceeded to

map the immunogenic peptides targeted. Fig. 5A shows their

localization within the structural regions of the protein. Thus, in

the C1 region two zones were targeted, one from aa 41 to 55

(peptide 11B and BF) and the other from aa 61 to 75 (peptides 16B

and 13BF).

In the C2 region the two immunogenic regions identified span

from aa 205 to 223 (peptides recognized: 52B, 53B) and from aa

245 to 263 (peptides recognized: 62B, 63B, 32BF and 33BF). As

expected, a unique region was identified inside the V3loop,

covering aa 308 to 321 (peptides recognized: IIIB and 48BF).

Figure 1. Characterization of the DNA and VVEnvBF vectors generated. A) The expression of Env was visualized by Western Blot in cell
extracts obtained 48 hrs post-transfection of 293-T cells with penvBF or pempty plasmids. Lanes i to iii were loaded with 5, 10 and 20 mg of total
protein. Mock transfected cells (M) and cell extracts infected with the VVEnvB virus (C+) were employed as negative and positive controls. B) i- Time-
course expression of EnvBF after infection of BSC-40 cells. At the indicated hours post-infection Env was detected by WB in pellet samples of infected
cells at 5 PFU/cell. C) Immunofluorescence analysis of EnvBF expression after VVEnvBF infection (0.1 PFU/cell) of HeLa cells. After 18 hrs p.i., cells
were fixed, permeabilized, and incubated with polyclonal anti-Env antibody to show Env (green), with C3 monoclonal antibody against 14 Kda VV
protein (blue) or with antibody against the wheat germ antigen, to show Golgi (red). To the right is the colour merging.
doi:10.1371/journal.pone.0017185.g001

EnvBF vs EnvB Cell Immunity Pattern
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Figure 2. Immunogenicity of EnvBF vs EnvB proteins: cellular responses induced after DNAprime/VVboost vaccine regimes. A)
Description of the immunization scheme applied in groups of four Balb/c mice. B) Ten days after the last immunization dose, cellular immune
responses against EnvB were evaluated by ELISPOT (i) or ELISA (ii). To this, splenocytes from mice of the different groups were restimulated with the
Env Con B peptide pools of indicated, during 24 hrs (i) or 72 hrs (ii). Bars represent the average net number of spots +/2 SD for triplicate wells of
pooled splenocytes (i), or IFN-c specific levels found in supernatants after substracting 26value found in control unstimulated cultures (ii). C) Scheme
indicating the gp160 region included in the different peptide pools used, which were numbered from 1 to 12. Numbers upper the bars: 1/3 indicated
that in one out of three experiments a positive value was obtained. Data are representative of three independent experiments.
doi:10.1371/journal.pone.0017185.g002

EnvBF vs EnvB Cell Immunity Pattern
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Fig. 5B describes the sequence analysis of the peptides targeted,

highlighting the aa changes that permit cross-reactivity (i), that

confer subtype specificity (ii) and those that ablate or diminish

immunogenicity (iii). For the first instance (i), it can be seen that in

the case of peptide 11 no aa changes occurred between both

sequences (envB and envBF), or as it occurred for peptide 13BF

Figure 3. Mapping the gp160B specific response. A) Matrix-peptide based analysis for poo1 and pool 4 corresponding to the constant C1 and
C2 regions of gp160 EnvB protein. Number of SFU/106 cells found in EnvBF and EnvB immunized mice are indicated in black and white boxes
respectively, and results found in reactive pools are shown. B) Reactive peptides identified in A were evaluated in experiments in which single
individual EnvB peptides were employed in the ELISPOT assays. Figure shows magnitude of the responses detected against consensus B identified
peptides (i), the IIIB CD8+ V3 loop peptide (ii), and the VV CD8+ E3 peptide (iii). Results are representative of three independent experiments.
doi:10.1371/journal.pone.0017185.g003

Figure 4. Reactivity against subtype BF peptides. A) Cellular immune responses against the EnvBF regions indicated (pools 1, 4 and 5). B) After
performing a matrix-peptide based analysis as it is depicted in Fig. 3A, the identified BF peptides were evaluated individually. Data are representative
of two independent experiments. Symbol: # denotes that the response shown was obtained in 50% of the experiments.
doi:10.1371/journal.pone.0017185.g004

EnvBF vs EnvB Cell Immunity Pattern
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and 16B, aa changes were placed at the left end of the peptides.

On the contrary, when we analyzed the cases for which we found

subtype specificity (Fig. 5B ii), the aa changes were located on the

centre of the peptide (peptides 52B, 62B and 33BF on C2),

affecting the recognition site by the TCR. The analysis of the aa

changes that occurred on the V3 region (Fig. 5Bii, lower panel)

indicated that a great number of changes were observed in this

region (in agreement to be a highly variable region) explaining the

high subtype specificity observed (we could only detect the specific

responses with the clade-matched peptide, (i.e.: IIIB with IIIB, but

not with the consensus B peptide). The analysis of aa changes that

ablate or diminish immunogenicity (Fig. 5B iii), revealed that within

the C2 region the substitution of Phe- Glu (FE) in the B sequence for

Trp-Asp in the BF (sequence of 52B with respect to its counterpart

in BF), ablated the immunogenicity. In the case of the region where

peptides 62B and 33BF are located, the change of Lys (K) in the

Figure 5. Analysis of the sequences and localization of the B and BF peptides targeted. A) Scheme showing the different Env regions and
localization of the B and BF peptides targeted after the EnvB and EnvBF immunizations B) Description of the aa sequence of the peptides recognized
and of the sequence expressed from the vectors Description of the aa changes that permits cross-recognition i), that confer suptype specificity ii) and
of the changes that ablates or depress immunogenicity iii) An x indicates that for that position a different aa is encoded from the DNAenvB plasmid.
doi:10.1371/journal.pone.0017185.g005

EnvBF vs EnvB Cell Immunity Pattern
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EnvB sequence by Arginine (R) in the EnvBF sequence notably

reduced its immunogenicity (see description of Fig. 4B).

3. Functional avidity of T-cell responses showing cross-
clade recognition

Results of the experiments described above lead us to the

conclusion that after the immunizations based on vectors

expressing Env from subtypes B or BF, the majority of the

peptides recognized were suptype-specific, except for the two

peptides targeted corresponding to the C1 region, for which we

found cross-recognition. As observed in the previous section, one

of them (peptide 11) has the same sequence for both B and BF env

sequences. But unlike the other peptides (16B or 13BF), sequences

were not identical since they differ in two aa located at the left end.

Functionality of T-cell responses in terms of quality or capacity

to secrete multiple cytokines has been shown critical in relation to

the protection capacity of the T-cell response [27]. Therefore, we

considered of interest to compare the cytokine pattern of the T-cell

responses subtype-specific versus cross-clade reactive. For this,

splenocytes from mice obtained ten days after the booster with

EnvB or EnvBF vectors as depicted in Fig. 2, were assayed by ICS

following a 72 hrs of stimulation with the pools 1 and 4 (C1 and

C2) of the EnvB sequence. Thus, for the EnvBF immunized group,

responses against C1 implied cross-recognition. First of all, the ICS

analysis permits us to determine whether the response was

mediated by CD4+ or CD8+ T cells, finding that for both pools

CD4+T cells were mediating the specific response found. In the

case of the pool 1, we confirmed the CD4 phenotype after the

stimulation with the individual peptides.

In Fig. 6A it can be seen that the quality of the CD4+ T cell

response against the peptides of pool 1 were similar for both groups.

Moreover, in EnvBF immunized mice in which cross-reactivity is

displayed, we could find at least a minimal proportion of cells (2,8%)

producing the three cytokines simultaneously. Thus, the proportion

of mono and bi-functional cells detected in B and BF groups

accounted for 62,5 and 48,6% (one cytokine) and 37,5% and 48,7%

(two cytokines) of the responses respectively. Responses against

peptides of pool 4 could be only evaluated in the B group, where a

similar pattern to that detected against pool 1 was found. When the

quality of the specific CD4+ T cell responses against VV antigens

was analyzed, a similar pattern was found for both groups except

that IL-2+ responses were only detected for the BF group.

T cell functional avidity defined as the capacity of the specific

cells to recognize its specific antigen at lower concentrations is a

reflection of the efficiency of the effector cells. During HIV

infection, functional avidity of both CD8+ and CD4+ T cells were

found to be incremented in HIV controller subjects [28,29,30]. To

investigate if the cross-clade recognition due to the aa changes

found in 16B/13BF may affect the avidity pattern of the responses,

we analyzed functional avidity against these peptides (differing in

two aa at the left ends). ELISPOT assays at different peptide

concentrations were performed, with the aim to define if the

recognition pattern differs between homologous or heterologous

responses. In Fig. 6B it can be seen that the curves obtained for

both peptides were similar, showing no differences between the

functional activities. Thus, values for 50% of the maximal T-cell

responses (EC50) did not differ significantly between homologous

vs heterologous responses (16B vs 13BF), independently of the

immunized group, thus EC50 values calculated with a sigmoid

dose-response curve (GraphPad, software) were of 0,014 (13BF)

and 0,01 uM (16B) for both immunized mice groups (EnvBF or

EnvB).

Figure 6. Functional and avidity characteristics of T-cell responses with cross-clade recognition. A) Quality characterization of T cell
responses against Pool 1 and Pool 4 consensus EnvB peptides and against VV antigens, in EnvB and EnvBF immunized mice. Ten days post boost
immunization splenocytes were harvested and the percentage of antigen specific CD3+ CD4+ T cells producing IFN-c, TNF-a, or IL-2 was quantified
by flow cytometry. i) Data shows the percentage of CD3+ CD4+ T cells secreting one, two or the three cytokines ii) Distribution of the cytokine
response comprising the different cell populations producing IFN-c, TNF-a, and IL-2 individually or in combination within CD3+ CD4+ T cells. B) T cell
functional avidity is defined as the concentration required to achieve half-maximal recognition of the wild-type peptide (EC50). Ten days after the
boost immunization splenocytes from immunized mice were assayed by Elispot against serial dilutions of 13BF and 16B peptides. Data represents the
percentage of the maximal response (net number of SFU/million of cells stimulated with a peptide concentration of 5 mM). Results shown are
representative of two independent experiments.
doi:10.1371/journal.pone.0017185.g006
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4. A mixed immunization regime combining both clades
(B and BF) induced a broad T- cell response, covering the
main peptides targeted after the single clade
immunizations

The results described in the previous sections clearly demon-

strated that the immunization schemes applied based on EnvBF or

EnvB immunogens induced highly clade-specific responses.

Therefore, our next aim was to evaluate if it is possible to induce

a broad response after the application of a mixed immunization

schedule implying a multi-clade formulation combining the

vectors that express the B or BF antigen. To this, two groups of

4 mice were immunized as it is depicted in Fig. 7A, where it can be

seen that in the dual immunized group the doses of DNA and VV

vectors of each clade were equivalent to those administered in the

single-clade schemes (view Fig. 1). After ten days, we evaluated the

cellular immune responses against the individual B and BF

peptides previously identified to be targeted after the immuniza-

tions based on the single clades. We found that the mixed

immunization regime induced a broad response covering the

majority of the peptides targeted after the single-clade schemes. In

Fig. 7B it is shown the cellular response detected against the B and

BF peptides located in the specified regions of the protein. With

respect to the C1 region, all the peptides previously identified were

targeted, peptide 11 (present in B and BF), and both 16B and

13BF were recognized as it occurs after the single clade

immunizations. On the other hand in the C2 region where clade

specific responses were previously detected, here after the dual

immunization, the sequences corresponding to 52/53B and 62/

63B peptides were targeted, and with respect to the 32/33BF

peptides the response found also show a subdominant pattern (low

magnitude and positive responses in 50% of the experiments) as it

occurs after the single BF immunization.

After the BF regime we have detected a strong response against

the V3 loop BF peptide (48BF) comparable to that generated

against peptide 11 (see Fig. 4B). But after the application of the

mixed immunization in which it is also present the IIIB V3 region,

immunodominant for the H2Dd haplotipe, the response against

the 48BF peptide was significantly diminished, being slightly above

the cut-off limits established (67,5615 SFC/mill). Therefore,

when we compared the response detected against 48BF in both

types of experiments (BF single-clade vs, dual immunization) in

relation to that obtained against the 11 peptide (48BF specific

SFU/11 specific SFU) we found that this value was of 1 and 0.2

after the BF and dual immunization schemes, respectively.

5. Cellular and humoral immune responses against
recombinant gp120 protein of subtype B

We further explored the capacity of the cellular immune

responses induced after the three schemes applied (single versus

mixed immunizations), evaluating levels of IFN-c secreted in the

presence of rgp120 BAL (subtype B) after the stimulation of the

cells during three days in culture (Th cell activation principally). As

it can be expected following the EnvB immunization, a strong

response against a homologous gp120 protein was detected,

whereas after the BF immunization a minor response was found

(Fig. 7C). The level of the cross-reactivity detected after this

immunization scheme varied from 3% to 54% of the maximal

response, depending on the experiment, found after the homol-

ogous immunization. On the other hand, after the mixed

vaccination the strong response against gp120 subtype B was

maintained (Fig. 7C right panel).

Serum humoral immune responses induced after 10 days of the

different immunization schemes applied (Fig. 1A and Fig. 7A)

were analyzed by ELISA, evaluating Ab response against gp120

from subtype B (gp120 BAL and gp120 IIIB), as no recombinant

gp120 from BF is available. In Fig. S1 it can be seen that mice

from the EnvB group showed high levels of IgGs that recognized

both types of gp120 from subtype B, whereas the EnvBF

immunization generated higher levels of IgGs showing cross-

reactivity against gp120 BAL with respect to those exhibited

against gp120IIIB. Following the dual immunization, Ab levels

against BAL protein were higher than those against IIIB, following

a pattern similar to that found after the EnvBF immunization

scheme.

6. Recognition of EnvBF and EnvB during natural HIV-1
infection

To have an approximation of what could be the scenario of the

reactivity of the cellular immune response against Env during the

natural HIV infection, we analyzed the Env-specific response in a

subgroup of HIV-infected persons from a cohort of individuals

enrolled during seroconversion to HIV and under longitudinal

follow-up. The great advantages of an immune response analysis

during this time of the infection compared to the chronic phase, is

that a lesser grade of virus variation might have occurred. Also, the

host immune system is best preserved with lower levels of immune

activation and T-cell exhaustion. The main characteristics of the

HIV infected PBMCs donors used in the Elispot assay are

described in Fig. S2A. We performed the assay employing the

peptide pools corresponding to the constant and variable Env B

and BF regions that were target of the response after mice

immunization (C1 and C2 and V3). As expected, the most

recognized peptide pools were those of the constant regions

(positive responses against V3B and V3BF were only found in two

individuals with lower magnitudes). Out of sixteen samples

analyzed, six exhibited a positive response against Env. For these

cases, when the total response was evaluated (as the sum of the

partial responses against each of the env regions) a cellular

response with marked subtype specificity was found, as four out of

six were clearly subtype specific with respect to the infecting virus

(patients 391, 834, 126 and 732). And in cases with comparable

levels of cross-reactivity between B and BF peptide pools (patients

690 and 183), a higher significant response was found towards the

homologous subtype (patient 690). These results suggest that

during the primary HIV infection, there is a tendency to recognize

Env peptides homologous to the subtype of the infecting virus, in

agreement with the results described above after mice immuniza-

tion.

Discussion

The hypervariability of HIV generating a high rate of antigenic

heterogeneity among the different virus variants circulating

throughout the world poses a critical obstacle to vaccine

development. Several strategies are currently being explored to

circumvent this challenge, one of them is to design vaccine

strategies based on multivalent formulations including antigens of

the main subtypes circulating in a certain region.

Molecular epidemiological studies showed that, with the

exception of Sub-Saharan Africa, where almost all subtypes,

CRFs and URFs have been detected, there is a specific geographic

distribution pattern of HIV-1 subtypes [31,32]. The HIV epidemic

in Argentina is primarily dominated by infections caused by B and

BF recombinant variants related to the CRF12_BF.

In previous studies from our laboratory we characterized the

immunogenicity of Nef from CRF12_BF and BF variants,

evaluating the characteristics of the cellular immune response in
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Figure 7. A mixed immunization regime combining both clades (B and BF) induced a broad immune response. A) Immunization
scheme describing viral and DNA doses applied. B) Ten days after the boost immunization, T cell response induced after the mixed immunization was
analyzed against the different B and BF peptides targeted after the single-clade immunizations. Peptides were grouped according to its localization
within each protein region; #: indicates that positive responses were found in one of two experiments. C) Ten days after the boost, splenocytes from
mice immunized as its is depicted in A or in Figure 2A were stimulated with gp120 Bal (1 mg/ml) during 72 hrs and afterwards IFN-c levels in the
supernatant were quantified.
doi:10.1371/journal.pone.0017185.g007
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primary HIV infected persons [33], and in a murine model

expressing the protein from DNA and MVA vectors [24]. In the

latter study we found high subtype specificity, generating low levels

of cross reactivity after an expanded immunization schedule. Now

we have analyzed in a mouse model the immune characteristics

with epitope mapping of EnvBF in comparison with EnvB, by

expressing the Env protein from DNA and VV vectors. Mapping

of the peptides targeted after a DNA/VV protocol, showed that

after EnvB immunization a total of 5 peptides (overlapping

peptides were not considered) were recognized, of which two were

located inside the C1 region (aa41 to 56 and aa61 to 75), other two

in the C2 region (aa205 to 223 and aa245 to 259) and the fifth one

corresponded to the previously characterized CD8 V3 loop

epitope (aa311 to 320). On the other hand, after the EnvBF

immunization schedule performing the characterization of the

gp160 regions that resulted immunogenic following the B

schedule, we found that four BF peptides were targeted.

We identified the two peptides confined in the C1 region as

CD4+, in agreement with previous reports of CD4 epitopes for this

gp160 region in murine models (http://www.hiv.lanl.gov/content/

immunology/maps/helper/gp160.html). The first targeted peptide

of the C2 region (52B and 53B peptides) match previously reported

CD4+ T-cell epitopes in different mouse models. However, the next

C2 targeted domain aa242 to 263 (including the peptides 62/63B

and 32/33BF) corresponds to a region for which at the present only

human CD4+ or CD8+ T-cell epitopes have been reported (http://

www.hiv.lanl.gov/content/immunology/maps).

The analysis of epitope prediction based on the probability of

binding to the H-2d MHC, indicated good scores for both Class II

and Class I alleles for the C2 region spanning from aa242 to 263.

The higher score was obtained for the H-2Ad allele and the 62B

peptide ( = 22). Interestingly, the aa changes that occurred in the

corresponding BF peptide (32BF) generated a negative score

association for this allele whereas the probability of association for

H-2Ed allele was 16. Moreover, for Class I alleles the score values

were also minor for the 32BF sequence in relation to 62B. These

predictive values coincide with our experimental data, since

responses found against the 32/33BF peptides were of minor

magnitude, detecting a positive response in only 50% of the

experiments (section 2.3 of Results).

Analysis of the peptide sequences where we detected cross-

reactivity demonstrated that the aa sequence in gp160 of B or BF

was identical (peptide 11) or aa changes were present at the end of

the peptide (16B/13BF). On the contrary, in the situations for

which a subtype specific cellular response was observed, we could

verify that one aa change was enough to prevent the recognition of

the peptide if it is located in a central position (peptides 62B/

33BF). These results are in concordance with the properties of the

TCR recognition of the peptide-MHC antigen complex. More-

over, the findings described in a recent report in which the analysis

of HIV-specific CD8+ T cell responses against variant epitopes

was performed [34], coincides with our results, as it was found that

a single substitution in the presented epitope decreased the chance

of a CTL response by 40%, and that substitutions at central

positions in the peptide were particularly likely to result in

abrogation of recognition. Other interesting points to highlight

from this part of our analysis were the aa substitutions on the

EnvBF sequence which, at least for the H-2d haplotype, have

abrogated immunogenicity (Phe- Glu (FE) in envB (peptides 52B/

53B) by Trp-Asp (WD) in the BF sequence); and in the case of the

region in which peptides 62B and 33BF are located, the change of

Arginine (R) in the EnvB sequence by Lys (K) in the EnvBF

sequence notably reduced its immunogenicity. The consequences

that minimal aa changes on the target peptide could have on the

final T cell recognition were recently analyzed by Theodossis

et.al., [35], which demonstrated that interactions between

individual peptide positions impose a fine control on the

conformation of pMHC-I epitopes, and that perturbation of such

constraints by aa changes can lead to a previously unappreciated

mechanism of viral escape.

T cell responses are regulated by different variables as available

costimulation and duration of antigenic stimulation, and a clue

factor is the affinity/avidity of the T cell receptor for the MHC/

peptide complex. To this respect, altered peptide ligands (APL)

(with substitutions in its peptide sequence) are usually recognized

with a reduced affinity/avidity by the T cell receptor. In fact, it

was demonstrated in a lymphocytic choriomeningitis virus

(LCMV) model that cross-reactivity between APL was limited

and more importantly even strongly cross-reactive cytotoxic T

lymphocytes were only able to mediate moderate anti-viral

protection [36]. In our study, when we analyzed whether the T

cell cross-recognition has an impact on the affinity of the T cell

response, we found that for the peptides analyzed (13BF and 16B)

similar patterns of affinity curves were found. It must be noted that

in our case, the aa substitution in the APL (the heterologous

peptide) was located on the extreme of the peptide differing from

the conclusion depicted for the LCMV peptide in which the

substitution was on a more central position of the epitope (fourth

position of a 9-mer peptide).

Quality of T-cell responses in terms of their capacity to secrete

multiple cytokines is considered to have a critical role in anti-viral

immunity [27]. Hence, we have evaluated if the pattern of

cytokines secreted under condition of cross-recognition differs

from that detected after stimulation with homologous antigen. For

this, pool 1 of B peptides was employed to restimulate the

splenocytes, analyzing homologous and heterologous responses in

groups of animals immunized with the EnvB or EnvBF scheme

respectively. No differences in the pattern of cytokines secreted

between B or BF immunized animals were found. These results,

along with the affinity analysis, suggest that T cell responses

showing cross-recognition towards an APL containing two aa

substitutions on the left extreme of the peptide do not alter

appreciably these T cell properties.

When we evaluated if the combination of both single Env

vaccine clades in a dual immunization scheme could induce a

broad response, we found that the mixed immunization induced,

in general, a wide response, covering the majority of the epitopes

targeted after the individual immunizations. In other studies,

where combined single-clade vaccines were applied in the Balb/c

model, the authors showed that immunogenicity was limited due

to multiple forms of in vivo immune interference [37]. In our case,

we found that after the dual immunization, the response against

the BF peptide located on the V3 loop was notably diminished

(nearly above the limit of detection) (Fig. 7A), contrasting with the

magnitude of responses detected after the single BF immunization

(Fig. 4B). On the contrary, the strength of the response against the

IIIB peptide (p18IIIB-I10) was maintained, as the number of

SFC/106 cells found in the dual group was similar to that found

after the single clade B immunization (Fig. 3Bii vs Fig. 7b). This

result suggested that in the presence of the two V3 peptide variants

a T cell antagonistic effect was observed for the isolate IIIB over

the BF variant. Similar antagonistic effects were previously

reported for clade A antigen variants of Pol and Gag over the

clade B antigens, also demonstrated in a Balb/c model [37]. In

that study the combination the single-clade vaccines into multi-

clade formulations resulted in multiple forms of in vivo immune

interference. On the contrary, in this study with the exception of

the V3 peptide, all the other peptides were targeted. Differences in
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the immunization schedules and combination of vectors applied

may account for the discrepancies between both works, indeed

other studies demonstrated that epitope immunodominance

hierarchies observed upon DNA-DNA immunizations can be

modified after heterologous prime-boost regimens [38]. Different

studies have reported that the strategy of anatomic separation to

inoculate different immunogens, can be a useful protocol to induce

responses to both antigens even if one of them is immunodominant

[37,38]. Although not proven in this study, these types of protocols

may be a way to circumvent the immunodominance observed for

the IIIB epitope allowing the induction of a higher response

against the 48BF peptide.

To extend the evaluation of the immune response induced, we

also characterized cellular immune responses against the whole

gp120 BAL protein (subtype B), finding certain level of cellular

cross-reactivity after the BF immunization scheme. Interestingly,

after the dual immunization scheme, we observed high levels of

IFN-c after stimulation of cells with gp120 BAL. On the other

hand, when the antibody response (specific binding IgGs in serum)

was analyzed, we found that after the BF immunization lower

levels of Abs were detected against gp120 from subtype B (IIIB and

BAL), compared to those in sera from mice immunized with the

homologous B subtype.

The results described in this study characterized the immuno-

genicity of EnvBF in the Balb/c model, although cross-reactivity of

murine T cells does not directly translate to humans, the

underlying principles of the molecular interactions involved in

triggering T cell responses are the same in both species. In fact, the

Elispot assay performed with PBMCs from HIV+ persons during

the primary infection stage, suggested a tendency to the

recognition of Env peptides homologous to the subtype of the

infecting virus.

In summary, this is the first report in which the characteriza-

tion of the immunogenic and antigenic properties of Env protein

from CRF12_BF in comparison with clade B is performed. In

general, the majority of the cellular responses were found to be

clade-specific. Interestingly, the application of a mixed immuni-

zation combining both clades (B and BF) induced a broad cellular

response, in which the majority of the peptides targeted after the

single clade vaccinations generated a positive response. In this

group we also found significant cellular and humoral responses

against the whole gp120 protein from clade B. These findings are

in concordance with the theories that point toward using antigen

cocktails in order to elicit increased breadth and depth of antigen-

specific cellular immune responses, improving the immunologic

coverage of global virus diversity. The results of this work, in

conjunction with our previous published studies, suggested the

convenience of the inclusion of antigens from BF variants in

future vaccines for geographic regions with high prevalence of

them.

Materials and Methods

1. Cell lines
Stable cell lines employed in the study were: BSC-40 (epithelial

cell-line derived from African green monkey kidney cells. ATCC

Cat No CRL-2761); 3T3 (Balb/c embryo adherent fibroblast cells,

ATCC Cat No CCL-163); HeLa (human epithelial cervix

adenocarcinoma cells, ATCC Cat No CCL-2) and 293-T

(epithelial cell line derived from human kidney cells, ATCC Cat

No CRL-1573). Cells were maintained at 37uC in a 5% CO2

atmosphere in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) (DMEM 10%

FBS).

2. Generation of DNA and VV transfer vectors harbouring
the envBF coding sequence

The env gene sequence from the HIV-1 circulating recombi-

nant form, CRF12_BF (GenBank accession number: AF385936),

was used to synthesize an env gene with optimized codon usage

(GENEART GmbH, Regensburg, Germany). The envBF gene

was subcloned into the VV transfer plasmid pJR101. Briefly, both

the env-containing vector and pJR101 were digested with BamHI

and NotI restriction enzymes. Then, ligation of the pJR101

backbone and the insert envBF was performed by using the T4

ligase (Invitrogen). In the resulting plasmid (pJR101-envBF), the

expression of envBF is regulated by the VV synthetic early/late

promoter (e/l) [39], being all the inserted sequences flanked by

the VV hemagglutinin (HA) gene. The envBF insert was also

subcloned into the pTARGET commercial vector (Promega) by

using the same strategy in order to generate the DNA envBF

expression vector. Both pJR101envBF and DNAenvBF plasmids

were screened for the insert and sequenced to ensure that the BF

recombinant env sequence and restriction sites were intact.

Sequencing was performed on an automatic sequencer (Applied

Biosystems DNA sequencer 3100) by using the Big Dye

Terminator sequencing kit (Amersham, Sweden). Nucleotide

sequences were analyzed and adjusted using Sequencher 4.0.5

software (Gene Codes Co, USA).

3. Other DNA vectors
DNA plasmid carrying the gp120 modified for optimized codon

usage (syngp120 mn V3 LAI) cloned in PCR3 (DNAenvB) as

previously described [40] was a generous gift of Jürgen Hass

(Munich, Germany). DNA control plasmid (DNAc) consisted of

the empty pTarget plasmid. Plasmids were purified with Endo free

Maxi-Prep purification kits (EndoFree Plasmid Maxi Kit, QIAgen)

using pyrogen-free material and eluted in pyrogen-free TE buffer

in 200 ml/column and then diluted for injection in sterile PBS.

4. Viruses
VV recombinants used in this study were derived from the WR

strain. The VVEnvB expressing the entire env gene of HIV-1 strain

IIIB has been previously described and employed in several studies

[41,42]. Generation of VV recombinants was performed by

infection-transfection methods previously described [43] in BSC-

40 cells, using the pJRenvBF VV transfer plasmid to generate the

VVEnvBF virus or the pJR empty plasmid to obtain the VVHA-

control virus (VVc). For both recombinant viruses, clone purity,

confirmed by PCR, was acquired after 8 passages. Amplified viral

stocks were grown in BSC-40 cells and purified through 45%

sucrose cushion as indicated elsewhere [44] and titration was

performed in BSC-40 cells staining with crystal violet.

4.1 PCR characterization of the recombinant VVenvBF

virus. Viral DNA was extracted using QIAamp DNA Mini

Kit (QIAgen) from BSC-40 infected cells at a high MOI. Two

types of PCR were used to verify the absence of the wtVV

genome: ‘‘differential PCR’’ previously described [24], and the

presence of the complete recombinant cassette: ‘‘integrity

PCR’’. In the last one integrity of the recombinant inserted

gene was evidenced by the amplification of a 3 kpb,

corresponding to the complete expression cassette, using two

primers that target the promoter pE/L and the right extreme of

the HA gene, primer pE/L: 59 GGGTGGGTTTGGAATTA 39

and primer HA2: 59GATCCGCATCATCGGTGG 39.

Sequence of the synenvBF was corroborated by nucleotide

sequencing of the DNA extracted from the 3 kpb band product

obtained after the ‘‘integrity PCR’’.
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5. Western blot
Cell pellets were lysed in cold lysis buffer plus protease inhibitors

Halt Protease Inhibitor Cocktail kit (PIERCE), and total protein

quantities in cell lysates were determined by the Micro BCA

Protein Assay Kit (PIERCE). Specified quantities of total protein

from cell lysates were separated after sodium dodecyl sulfate-

polyacrylamide gel electrophoresis on 10% gels, transferred to

nitrocellulose membranes (Amersham), and reacted with primary

rabbit anti-gp120 polyclonal, and afterwards reacted with the

appropriate peroxidase-conjugated secondary antibodies. Protein

expression was detected using ECL Western blotting reagents

(Amersham).

6. Immunofluorescence
HeLa cells cultured on coverslips were infected with VVEnvBF

or VVC at 0.1 PFU/cell. After 18 h post-infection (p.i.) cells were

washed with PBS, fixed with 4% paraformaldehyde, and

permeabilized by treatment with 0.1% Triton X-100 in PBS

(room temperature, 10 min). After the PBS wash, coverslips were

blocked with a PBS solution containing 20% bovine serum

albumin. Then, cells were incubated (1 h, at 37uC) with rabbit

anti-gp120 polyclonal antibody and with mouse C3 monoclonal

antibody against 14 Kda VV protein, generated in the laboratory

of Dr Esteban as previously described [45]. Coverslips were

washed extensively with PBS and incubated (1 h at 37uC) with

secondary anti-rabbit immunoglobulin conjugated with Alexa-488

and with secondary anti-mouse immunoglobulin conjugated with

Alexa-647 (Invitrogen). Antibody against the wheat germ antigen,

a specific marker for Golgi structures, was included in this

incubation step. After several washes with PBS, coverslips were

mounted on microscope slides with Mowiol (Calbiochem). Images

were obtained with a Bio-Rad Radiance 2100 confocal laser

microscope.

7. Immunization protocols, sample collection and
processing

Specific pathogen-free female (SPF) BALB/c mice (H-2d) six to

eight weeks old were purchased from the Laboratories of the

School of Veterinary Sciences, University of La Plata, Buenos

Aires, and then housed in our animal facilities. All experiments

were carried out in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. The protocol was approved by the

Committee of Care and Use of laboratory animals from the School

of Medicine , University of Buenos Aires (Permit Number: 508/

2009). Immunizations with viral vectors were given intraperitone-

ally (i.p.) in 200 ml of PBS, whereas DNA doses were applied in

100 ml of sterile PBS by intramuscular (i.m.) route. Doses and

periods of time used in the different immunization schemes are

depicted in Figures 1 and 7.

8. Peptides
Overlapping synthetic peptides of the EnvB consensus protein

were obtained from the NIH AIDS Research and Reference

Reagent Program (catalog No 9480). Lyophilized peptides were

dissolved in dimethyl sulfoxide (DMSO) and stored at 220uC.

Overlapping EnvBF synthetic peptides (15-mers, overlapping by

11 aa) were designed based on the sequence of the Env protein

from CRF12_BF reference strain ARMA159; the same sequence

employed for the construction of the DNA and VV vectors, and

custom ordered from JPT Peptide Technologies (Germany).

Previously characterized CD8+ T cell peptides: p18IIIB-I10

(RGPGRAFVTI) [46], and the VGPSNSPTF peptide for the

E3L VV protein [25] were also employed. Pools of peptides

covering the different constant (C) and variant (V) regions of the

Env protein were formed by 7 up to 28 peptides per pool

depending on the region. The epitope mapping of gp160 was

carried out using the peptide-matrix based design previously

described [47], in which each single peptide was present in two

peptide pools. Matrix peptide pools were formed by 5 or 6

peptides at a concentration of 2 mg/ml each. Single peptides from

the reactive pools were subsequently corroborated after ELISPOT

assays performed with the single individual peptides at 2 mg/ml.

9. Murine IFN-c ELISPOT assays
ELISPOT assays were performed using freshly isolated spleno-

cytes as previously described [24]. Briefly, 26105 to 106 cells in

RPMI medium plus 10% fetal bovine serum (RPMIc) were plated in

triplicate on nitrocellulose 96-well plates (MultiScreen HA plates;

Millipore Corporation, Bedford) previously coated with anti-mouse

IFN-c Ab (BDTM ELISPOT Mouse IFN-c ELISPOT Pair).

Stimulus consisted of peptide pools or individual peptides. Negative

controls were incubated with RPMIC plus 0.04% or 0.08% of

DMSO, and cells treaated with ConA (1 mg/ml) were included as

positive control. The threshold values to consider a positive response

by ELISPOT was that the number of specific spots/well had to be at

least 26 times the average values found in negative control wells of

each group, and that after subtraction of background values,

responses had to be higher than 50 SFC/million splenocytes.

Functional avidity referred to as the activation threshold in

response to defined concentrations of exogenous peptide was

performed following the protocols previously described [28].

Briefly, limiting peptide dilutions (from 5 to 0,0005 mM) were

performed and then the peptide concentration required to induce

a half-maximum IFN-c production (number of spots) in ex vivo

assays was determined.

10. Intracellular cytokine staining (ICS) of splenocytes
Splenocytes were pooled within each group, and 56106 cells were

stimulated with the specified peptide pool (each peptide at a final

concentration of 5 mg/ml), whole VV u.v. inactivated (at

2.56107 pfu/ml) or medium alone during 3 days. After this, cells

were washed twice and the number of viable cells was calculated by

trypan blue exclusion. Then, cells were dispensed in 96-well U-

bottom plates (26106cells/well) with the same stimulus and the

costimulatory antibody (anti-CD28 (1 ng/ml); BD Biosciences).

Negative and positive controls consisted of cells stimulated with

RPMIc, or PMA ionomycin (10 ng/ml phorbol myristate acetate

[PMA] plus 250 ng/ml ionomycin [Sigma-Aldrich]) resepctively.

After 1 h incubation at 37uC, brefeldin A (10 mg/ml) (Golgiplug,

BD Biosicenes) was added and incubation was prolonged for 5 h

more. Afterwards, cells were washed and stained with surface

antibodies (CD3-APC, CD4-PerCP, and CD8-PerCP; BD Biosci-

ences) for 30 min at 4uC, and then permeabilized and fixed using

the Cytofix/Cytoperm kit (BDBiosciences). Living cells were

identified after staining with Live/Dead APC-Cy7 (Invitrogen).

After the permeabilization/fixation step, cells were stained using

anti-tumor necrosis factor alpha (TNF-a) antibody labeled with PE-

Cy7 (TNF-a PE-Cy7), anti-IFN-c labeled with phycoerythrin (IFN-

c–PE) and anti-IL-2 labeled with FitC (IL-2-FitC) for 20 min at 4uC
in obscurity, after two washes cells were stored at 4uC until being

acquired in a BD FACSCanto flow cytometer. Data acquisition and

analysis were done with the BD FACSDiva software. Instrument

settings and fluorescence compensation were performed on each

testing day using unstained and single-stained samples. Stimulated

cells stained for surface molecules and isotype controls correspond-

ing to intracellular markers, were included in each experiment.
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11. T cell-specific cytokine production
Splenocytes were suspended in RPMIc and cultured in triplicate

(106 cells/well) into 96-well microtiter flat-bottom plates and

stimulated with the indicated pool of peptides at a final concentration

of 2 mg/ml each, or HIV-1BaL gp120 (NIH AIDS Research and

Reference Reagent Program Cat No. 4961) at 1 mg/ml. Positive

controls were cells stimulated with ConA (1 mg/ml), and stimulation

with medium alone or with the appropriate % of DMSO were the

negative controls. After 72 h incubation at 37uC in 5% CO2, culture

supernatants were harvested at 280uC and analyzed by ELISA for

IFN-c (BD PharMingen) following the manufacturers’ instructions.

The threshold values to consider a positive response was that

cytokine-quantities had to be at least 26 times the average values

found in control negative wells of each group.

12. Human PBMC samples
Peripheral blood mononuclear cells (PBMC) were isolated from

whole blood of sixteen patients with primary HIV infection (time

estimated from seroconversion: less than one year) and three

healthy donors by Ficoll-Hypaque density gradient centrifugation

(Amersham, Sweden). For viral subtyping viral RNA was extracted

from plasma and used as a template to amplify the HIV-1 pol gene

by RT-nested-PCR with posterior analysis of the amplicon

nucleotide sequences [17]. Previous reports demonstrated a strong

positive correlation between the viral subtype for the pol and env

genes [48,49]. The studies involving human samples were

approved by the local Ethics Committee of the School of

Medicine, University of Buenos Aires, and all subjects provided

a written informed consent as blood sample donors.

13. Human IFN-c ELISPOT assay
IFN-c secreting cells were detected using enzyme-linked

immunospot (ELISPOT) assays conducted as previously described

(Turk et al., 2008, Rodrı́guez, et al, 2009). After the final step of

the assay, plates were scanned on an ImmunoSpot reader (Cellular

Technology Ltd.). Specific spots were counted using the Immuno-

Spot software. Results were expressed as spot-forming cells (SFC)/

106 PBMC. Mean SFC background values for negative control

wells were always lower than 5–10 SFC/106. Thresholds for

positive responses for the test wells were defined as a mean SFC

greater than two times the mean SFC of the negative control wells.

14. Ab measurements by ELISA
The ELISA test was used to determine the presence of Abs

against gp160 in serum following procedures previously described

[42]. Purified gp120LAV (Protein Sciences Corp) or HIV-1BaL

gp120 (NIH AIDS Research and Reference Reagent Program Cat

No. 4961) were employed to coat the plates 1 mg/ml. Ab detection

was performed after the addition of peroxidase-conjugated goat

anti-mouse IgG (Jackson ImmunoResearch Laboratories Inc),

diluted 1:5000. Reaction was developed with the peroxidase

substrate TMB (Sigma) and stopped by adding 2 N H2SO4,

absorbance was measured at 450 nm on a Multiskan Plus plate

reader (Labsystems, Chicago, Ill). Samples were considered

positive if optical density exceeded the mean value +3 SDs

obtained for serum samples of the control group.

15. Bioinformatic analysis
The MHC binding affinity of peptides was predicted using web-

based immunology tools: SYFPEITHI Epitope Prediction and

PREDEP prediction softwares.

16. Data analysis
All data were expressed as the mean 6 SD of triplicate

determinations for each group (4 mice per group) and are

representative of two to three independent experiments.

The significance of differences between the different groups of

the immunized mice was determined using a two-tailed Student’s t

test assuming equal variance (GrapphPad prism4 software). A

value of P,0.05 was considered statistically significant.

Supporting Information

Figure S1 Serum antibody levels against gp120B. Serum

IgG levels against recombinant gp120BAL and gp120IIIB found

in the groups of mice indicated, the absorbance values shown were

obtained at a serum dilution of 1/100. Results shown are

representative of two independent experiments.

(TIF)

Figure S2 Recognition of EnvBF and EnvB by HIV-
infected patients. (A) Characteristics of the HIV-1 infected

patient donors of the PBMC used in the human ELISPOT assay.

(B) Total anti Env T-cell responses employing EnvB and EnvBF

pool peptides corresponding to the C1, C2 and V3 protein regions

(using an IFN-c ELISPOT assay as described in the Methodol-

ogy). The bars show the sum of the responses against C1, C2 and

V3 regions (measured as SFC/106 PBMC6SD) for each patient.

Background spots were subtracted. Significant differences,

*p,0.05 and ** p,0.01, between BF and B responses. Cut off

criteria to consider positive responses was that the number of spots

in the pools stimulated wells must be .26 background values.

(PDF)
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