Skip to main content
. 2011 Feb 18;6(2):e16875. doi: 10.1371/journal.pone.0016875

Table 1. Classification performance by the trained classifier on the training and an independent test set.

Sets TP TN FP FN SEN SP ACC MCC AUC
Train 972 2,493 134 341 0.74 0.95 0.88 0.52 0.94
Independent 360 1,983 165 100 0.78 0.92 0.90 0.45 0.93

TP = true positive; TN = true negative; FP = false positive; FN = false negative; N =  total number of proteins in dataset; SEN  =  TP/(TP+FN); SP  =  TN/(TN+FP); ACC  =  (TP+TN)/N; MCC  = (TPxTN-FPxFN)/√((TP+FN)(TP+FP)(TN+FP) (TN+FN)); AUC is described in (37).