Skip to main content
. Author manuscript; available in PMC: 2011 Jun 22.
Published in final edited form as: Biometrics. 2010 Jul 21;67(2):495–503. doi: 10.1111/j.1541-0420.2010.01463.x

Table 2.

Maximum penalized likelihood estimates of Yale infant grown data comparing SCAD and ALASSO penalty functions with random effects and ICQ penalty estimates

Fixed Estimatea (Variance Estimate of Random Effectb)

SCAD ALASSO


Variable MLEc RE ICQ RE ICQ
Intercept 7.002* (-) 6.924 (-) 6.988 (-) 6.913 (-) 6.913 (-)
Visit 2.641* (0.230*) 2.576 (0.087) 2.617 (0.109) 2.543 (0.040) 2.548 (0.067)
Age −0.035 (0.017) 0.000 (0.000) 0.000 (0.007) 0.000 (0.000) 0.000 (0.000)
Gestation 0.528* (0.017) 0.424 (0.000) 0.455 (0.011) 0.322 (0.000) 0.424 (0.000)
Race −0.060 (-) 0.000 (-) 0.000 (-) 0.000 (-) 0.000 (-)
Pregnant −0.004 (-) 0.000 (-) 0.000 (-) 0.000 (-) 0.000 (-)
Gender 0.139* (-) 0.022 (-) 0.033 (-) 0.000 (-) 0.000 (-)
Cocaine 0.103* (-) 0.016 (-) 0.022 (-) 0.000 (-) 0.000 (-)
σ2 d 0.512 (-) 0.552 (-) 0.527 (-) 0.612 (-) 0.594 (-)

ICQe 9223.7 11507.32 9660.013 11999.01 11773.25
a

is estimate of β

b

is estimate of diag(D)

c

* indicates significant effects by MLE analysis

d

is the variance estimate of error term of the linear mixed model

e

is a measure of goodness of fit