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Abstract
In this paper we develop a new approach of analyzing 3D shapes based on the eigen-system of the
Laplace-Beltrami operator. While the eigenvalues of the Laplace-Beltrami operator have been
used previously in shape analysis, they are unable to differentiate isospectral shapes. To overcome
this limitation, we propose here a new signature based on nodal counts of the eigenfunctions. This
signature provides a compact representation of the geometric information that is missing in the
eigenvalues. In our experiments, we demonstrate that the proposed signature can successfully
classify anatomical shapes with similar eigenvalues.
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1. INTRODUCTION
The analysis of 3D shapes is an important problem in medical imaging. By studying shapes,
we can obtain detailed information about morphometry changes of anatomical structures.
Recently there has been increasing interests in using the eigenvalues of the Laplace-Beltrami
operators to study shapes [1,2]. Features based on eigenvalues, however, have limitations in
resolving isospectral shapes. To overcome this difficulty, we propose in this work a new
signature derived from the nodal counts of eigenfunctions and demonstrate its advantage in
classifying medical shapes.

Using the eigenvalues of the Laplace-Beltrami operator, the shape DNA feature was
proposed in [1] as a vector of eigenvalues ordered according to their magnitude. The shape
DNA feature has been successfully applied to the classification of anatomical structures [2].
One limitation of the shape DNA feature, however, is that it cannot resolve so called
isospectral shapes with the same eigenvalues. There were various examples of isospectral
surfaces created by mathematician [3–8]. In practice, we have also observed shapes with
quite different geometry but very similar distribution of eigenvalues. To address this
ambiguity in the shape DNA feature, we propose here a new signature derived from the
eigenfunctions of the Laplace-Beltrami operator. This new feature is intrinsically defined
over the surfaces and is pose and scale invariant. Using the nodal counts of the
eigenfunctions, this feature provides a compact representation of the new geometric
information that is not described by the eigenvalues. In our experiments, we show that it has
the ability of resolving the ambiguity in the shape DNA feature.
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2. LAPLACE-BELTRAMI SPECTRUM
Let (M, g) denote a Riemannian surface. For any point p ∈ M, we assume a local coordinate
chart {U, (x1, x2)} and represent the metric as g(p) = (gij(x))i,j=1,2 in this chart. For a smooth
function ϕ ∈ C∞(M), the Laplace-Beltrami operator is defined as:

(1)

where (gij) is the inverse matrix of (gij) and G = det(gij).

The Laplace-Beltrami operator is self adjoint and elliptic, so its spectrum is discrete. We
denote the eigenvalues of ΔM as 0 = λ0 < λ1 < λ2 < · · · and the corresponding eigenfunctions
as ϕ0, ϕ1, ϕ2, · · · such that

(2)

The eigen-system  of ΔM is intrinsic to the manifold M and has the nice property
of being isometric invariant. Thus properties derived from the eigen-system of ΔM are robust
to natural pose variations such as rotation and translation.

From a signal processing point of view, the eigenfunctions of the Laplace-Beltrami operator
is an extension of the Fourier basis on Euclidean domains to general manifolds [9]. One
famous example is the spherical harmonics, which are the eigenfunctions of the Laplace-
Beltrami operator on the unit sphere, and they have been used in various shape analysis
tasks. On the other hand, our focus is quite different from Fourier analysis. We believe the
eigenfunctions by themselves contain rich information about surface geometry. In fact, the
heat kernel embedding theorem in [10] shows eigenfunctions of the Laplace-Beltrami
operator should determine the surface itself. So we are interested in using them to analyze
the underlying domain, i.e., the surface. We refer [11] to more detailed properties about the
eigen-system of the Laplace-Beltrami operator. In our previous work [12,13], we showed
that the Reeb graph of the eigenfunctions are useful tools for the analysis of anatomical
shapes such as hippocampus and demonstrated its value in establishing point-wise mapping
of sub-cortical surfaces. In the next section, we develop a new approach of utilizing the
eigenfunctions for shape analysis.

3. THE NODAL COUNT SEQUENCES
In this section, we will introduce the mathematical concept of nodal counts and propose its
use for shape analysis.

Let (M, g) be a given two dimensional compact Riemannian manifold and ϕ be an
eigenfunction of its Laplace-Beltrami operator. The set ϕ−1(0) is then called nodal lines of ϕ
on (M, g). Every connected component of M\ϕ−1(0) is called a nodal domain of ϕ and the
number of nodal domains is called the nodal number of ϕ. Theoretically one can have the
following properties about the nodal lines and nodal domains of eigenfunctions [14].

Theorem 3.1
1. (Courant’s nodal domain theorem) The number of nodal domains of the n-th

eigenfunction ≤ n+1;
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2. The nodal lines are C2-immersed one dimensional closed submanifolds. Therefore,
nodal lines are closed C2-immersed contours on M.

As a demonstration, we plot out the nodal domains of three different shapes in Fig. 1. From
these examples, we can clearly see the above properties are observed.

Given the eigenfunction sequence {ϕ1, ϕ2, · · ·} of (M, g), we can define the Laplace-
Beltrami nodal count sequence of M as the sequence {l1, l2, · · ·}, where ln is the number of
nodal domains of the n-th eigenfunction. Similar to the eigenvalues of ΔM, the nodal count
sequence is rotation and translation invariant. In addition, it has the nice property of being
scale invariant. The notion of nodal count sequence has previously been explored in the
physics literature [15–19]. In particular, it poses the question: “can one count the shape of a
drum?” This is an analog of Kac’s famous question: “Can one hear the shape of a drum?”
Intuitively, if two isospectral surfaces share the same shape DNA and have different
geometry, they should have different eigenfunctions, which implies the possibility of the
nodal count sequence containing more information than the shape DNA about the surface
geometry. In our work, we extend this idea to the analysis of anatomical shapes. More
specifically, we will study whether the nodal count sequences can provide extra information
than the feature of shape DNA.

Numerically, we use the finite element method (FEM) to compute the eigen-system of the
Laplace-Beltrami operator. For any given surface M in ℝ3, we represent M as a triangular
mesh { }, where vi is the i-th vertex and Tl is the l-th triangle. We denote
hl as the diameter of the triangle Tl and h = max {hl}. One can choose linear elements

, such that  and write . Then the discrete version of the
continuous variational problem is to find a ϕh ∈ Sh, such that

(3)

If we write

(4)

Then the discrete variational problem is equivalent to the generalized matrix eigen-problem
that can be easily solved with MATLAB:

(5)

To compute the nodal number of a given eigenfunction ϕn of surface (M, g), we count the
number of connected components of the triangular mesh with the same sign of ϕ.

Following [20], we have the upper bounds for the numerical accuracy in computing the
eigenfunction and eigenvalues.
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Theorem 3.2

Let ( ) be the eigen-system computed with FEM, then we have:

(6)

(7)

where (ϕn, λn) are the true eigen-system, and C and δ are constants.

From the above theorem, we can see the accuracy of the eigenfunction decreases as the
order n increases for a given h. As a result, the nodal counts for high order eigenfunctions
are noisier than that of the low order eigenfunctions. However, the more eigenfunctions we
can use, the more geometric information can be obtained. We need to find a balance
between using the nodal number of high frequency eigenfunction and overcoming the
numerical issue. Based on this consideration, we propose the following weighted l2 distance

between two nodal count sequences  and :

(8)

where α > 0. In our experiments, we demonstrate that the nodal count sequences under this
weighted l2 distance provide robust performance for shape classification.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results to demonstrate the application of the nodal
count sequence in shape analysis. In particular, we show that the nodal counts of the
Laplace-Beltrami operator is able to resolve isospectral shapes.

The 3D shapes used in the first experiment are three putamen and three caudate surfaces
shown in Fig. 2. While the putamen and caudate are visually quite different, they share very
similar distribution of eigenvalues, i.e., the shape DNA, as shown in Fig. 2(g). For each
group of surfaces, we use their nodal count sequences and the shape DNA to embed them
into a 2D space with multi-dimensional scaling(MDS) technique. The details of this
embedding process is summarized as follows.

1. For a given surface (M, g) represented by a triangle mesh, we compute the first N
eigenvalues and eigenfunctions of the Laplace-Beltrami operator by the finite
element method to obtain the signature.

2. For a group of surfaces, we compute the pairwise weighted l2 distance of their
corresponding signatures. The pairwise distances are stored in a distance matrix.

3. Using the distance matrix, the MDS technique is applied to embed the surfaces into
the Euclidean space.

In our experiment, we choose N = 300, α = 1, and the embedding results with the shape
DNA and the nodal count sequences are shown in Fig. 2(g) and (h). From the results, we can
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see clearly that the nodal counts provide better separation of these two groups. This
demonstrates the ability of the nodal count sequences in resolving isospectral surfaces.

In the second experiment, we demonstrate the above shape classification procedures to a
larger data set. This data set includes three groups of surfaces: 20 hippocampus, 20 putamen,
and 20 caudate. For the three groups, the eigenvalue sequences and nodal count sequences
were computed. By applying the same MDS technique as in the first experiment to these
signatures, we can embed the 60 surfaces into a 2D space and the results are shown in Fig. 3.
Clearly this results show that the nodal count sequence provides better classification.

5. CONCLUSIONS AND FUTURE WORK
In this paper we proposed to use the nodal count sequences of the Laplace-Beltrami
eigenfunctions as a novel signature of 3D shapes. We demonstrated its ability of resolving
isospectral shapes by classifying anatomical structures with very similar distribution of
eigenvalues. In our future work, we will apply it to the task of shape retrieval from
databases. We are also investigating its application in classifying hippocampal surfaces from
normal controls and Alzheimer’s disease.
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Fig. 1.
(a): Nodal lines and nodal domains of the 2-nd eigenfunction of a putamen and the nodal
number is 3. (b) Nodal lines and nodal domains of the 4-th eigenfunction of an armadillo,
the nodal number is 5. (c) Nodal lines and nodal domains of the 4-th eigenfunction of a cow
and the nodal number is 3.

Lai et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
(a)(b)(c) Caudate surfaces. (d)(e)(f) Putamen. (g) Top: the first 300 eigenvalues of the 6
shapes. Bottom: MDS embedding results with the shape DNA. (h) Top: The first 300 nodal
counts of the 6 shapes. Bottom: MDS embedding results with the nodal count sequences.
(red: caudate; blue: putamen.)
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Fig. 3.
Top: the MDS embedding of the surfaces with the shape DNA signature. Bottom: the MDS
embedding of the surfaces with the nodal count sequences. The first 300 eigenvalues and
eigenfunctions were used in both embeddings. (red ’ ·’: caudate; blue ’+’: putamen;
black ’*’: hippocampus.)
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