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ABSTRACT

Motivation: Bead arrays are becoming a popular platform for high-
throughput expression arrays. However, the number of the beads
targeting a transcript and the variation of their intensities differ from
sample to sample in these arrays. This property results in different
accuracy of expression intensities of a transcript across arrays.
Results: We provide evidence, with publicly available spike-in data,
that the false discovery rate of differential expression is reduced
by modeling bead-level variability with a multi-level mixed effects
model. We compare the performance of our proposed model to
existing analysis methods for bead arrays: the unweighted t-test
and other weighted methods. Additionally, we provide theoretical
insights into when the multi-level mixed effects model outperforms
other methods. Finally, we provide a software program for differential
expression analysis using the multi-level mixed effects model that
analyzes tens of thousands of genes efficiently.
Availability: The software program is freely available on web at
http://ephpublic.aecom.yu.edu/sites/rkim/Supplementary.
Contact: ryung.kim@einstein.yu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Bead arrays are becoming a popular platform to generate high-
throughput expression data (Becanovic et al., 2010; Fernando
et al., 2009; Young et al., 2009). One of the advantages of the
technology is that all beads targeting a transcript have exactly the
same sequence and length (Kuhn et al., 2004): this property rids
the concerns for averaging intensities from probes with different
affinities and a common target transcript. However, in bead arrays,
the number of beads targeting a transcript differs from sample
to sample, usually between 5 and 80 beads. Moreover, variation
of the bead-level intensities targeting a common transcript differs
across samples. Given these differences in the number of beads and
the variation of their intensities, the average expression intensity
for a given transcript will have varying precision across samples.
Although measures of precision are typically generated along with
the computed average gene expression intensities, it is commonplace
to simply compare the intensity levels across experimental groups
using Analysis of Variance (ANOVA; more than two groups) or t-
test (two groups), ignoring the bead-level variability. This approach
is problematic. For example, the standard error of the average is
inversely proportional to square root of the number of beads, and
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intensities for a transcript averaged over 5 beads will be four times
more variable than that over 80 beads.

Recently, there are increasing efforts to incorporate bead-level
technical variability as weights in linear methods (Dunning et al.,
2008a; Fernando et al., 2009; Wong et al., 2008). For example,
Dunning et al. and Fernando et al. used variance of bead-level
intensities as the inverse weight in comparing two sample groups.
Wong et al. (2008), proposed a test statistic based on unweighted
average of bead-level intensities but used bead-level variability to
compute standard errors. Any reasonable use of bead variability
will likely improve the accuracy of differential expression analysis.
However, to our knowledge, formal consideration of under which
model the weighting scheme is optimal, or comparisons between
different weighting schemes, have not been reported. Noticeably, in
all these weighting methods, weights are completely determined by
bead-level technical variation and are independent of the magnitude
of array-level biological variation. Our work adds to the body of
research by modeling bead-level variation by a multi-level mixed
effects model (MLM). Under this model, the weights for the bead
averages are determined by the relative magnitudes of both bead-
level technical variation and array-level biological variation. In
addition, using publicly available spike-in data, we compare the false
discovery rate (FDR), sensitivity, specificity, empirical Type I error
and empirical power of our proposed model to six other methods.

2 METHODOLOGY

2.1 Modeling bead-level intensity with MLM
For simplicity, we consider an experimental design to detect
differential expression in K independent sample groups. We propose
to model bead-level intensity using the following multi-level mixed
effects model.

xkij =θk +bik +εkij (Model 1—MLM)

bik ∼N(0,τ2
k ),εkij ∼N(0,σ2

ki)

for i = 1, …, nk , j=1, ...,mki, k =1, ...,K . Here xkij is the bead-level
expression intensity of j-th bead in i-th sample in k-th group. The
fixed effect θk is the population average intensity of k-th sample
group and represents the parameter of interest in our comparison.
The random effect bik represents array-level variation within each
sample group and εkij represents bead-level variation: they are
assumed to be mutually independent. There are measures for two
levels of variation: τ2

k is the array-level biological variance and σ2
ki

is the bead-level technical variance. To detect differential expression
using this model, we can perform a statistical test of the null
hypothesis that all θk’s are equal. The model is also known as the
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random effect one-way ANOVA when τ2
k are assumed to be constant

across sample groups.
The parameters can be estimated by maximum likelihood (ML)

or restricted ML (REML; Patterson and Thompson, 1971). See
Appendix for an iterative Fisher’s scoring algorithm for ML and
REML estimation of all parameters: the biological variance (τ2

k ), the

technical variance (σ2
ki) and the average group intensities (θk). The

resulting ML (and REML) estimator of θk is the weighted average
of average bead-level intensities (x̄ki) using the variance of x̄ki, i.e.
σ2

ki/mki +τ2
k , as the inverse weights. That is,

θ̂k =
∑nk

i=1 ŵkix̄ki∑nk
i=1 ŵki

where ŵ−1
ki = σ̂2

ki/mki + τ̂2
k .

The standard error of the estimator is

ŜE(θ̂k)=
(∑nk

i=1
ŵki

)−1/2
.

Since the bead-level sample mean x̄ki and variance s2
ki are sufficient

statistics (Appendix A), one can fit MLM using only the typical
‘bead summary data’ (the average, the s.d. and the number of beads
for each array). These can be produced by Illumina’s BeadScan
software.

Once the parameters are estimated, a Wald-type test can be used
to compare K groups using the following test statistics:

F = 1

K −1

( K∑
k=1

1

vk

)−1∑
a<b

(θ̂a − θ̂b)2

vavb

where v−1
k =

nk∑
i=1

(
σ̂2

ki
mki

+ τ̂2
k

)−1

.

See Appendix A for derivation of the test statistics. Although
asymptotically, the test for fixed effects in MLM can be performed
using χ2 distribution, it has been reported that, even with a
moderately large sample size, it tends to be anticonservative
(Pinheiro and Bates, 2000) and it is instead desired to use F-test. Still
an active research area, there are a few established approaches in
choosing what denominator degrees of freedom to use for F statistics
when sample size is small (Kenward and Roger, 1997; Pinheiro and
Bates, 2000; Schaalje et al., 2002). Under a balanced design with
common random effects variance, these approaches result in the
denominator degrees of freedom of n1 +n2 −K or a value close to
it. Note that, in two-group comparison studies, the test statistics is
the square of the following:

T = θ̂1 − θ̂2√
v1 +v2

.

By accounting for the number of beads and the variation of their
intensities using the proposed multi-level model, we see in the
following sections an immediate improvement in the accuracy of
detection of differential expressions. The variance structure of the
technology is more complicated than having multiple beads on an
array and the current model can be extended to address different
levels of biological and technical variability. For example, it can
incorporate longitudinal or correlated design, or multiple batch
design, or it can be extended to address correlation between bead
intensities that are located closely on the chip. This is the first work
using multi-level modeling framework in addressing the variance

structure. More in-depth discussions on multi-level modeling can
be found in Pinheiro and Bates (2000).

2.2 An efficient program for multi-level modeling of
bead-level intensity

MLM has been rarely used to model bead-level intensities mainly
because there are restrictions on the size of data that can feasibly be
analyzed. We provide a software program for differential expression
analysis using multi-level model comparing K independent groups,
in R statistical environment. One can choose biological variation
τ2

k to be constant, or to vary, in K groups. Because the software
reads the bead-summary data as input, the computational burden is
reduced dramatically. To efficiently compute and simultaneously fit
multi-level models for thousands of genes, it was important for us to
develop the algorithm that avoids inversion of Fisher’s information
matrix at each gene level. In the Appendix A, we provide technical
details of Fisher’s scoring algorithm for ML and REML estimation.
For example, performing two-group comparisons of 34 699 genes,
12 samples in each group, the parameter estimation and hypothesis
testing were completed within 5 min on a Dell Precision T3400
computer (Intel Quad 2.83 GHz processor with 3.25 GB of RAM).

The software can read in ‘bead summary data’ generated by
Illumina’s proprietary software, if researcher decides to analyze bead
array data in raw scale. However, it is often desirable to analyze data
in log scale (Section 5).

2.3 Theoretical comparison with other approaches
2.3.1 Unweighted analysis A typical differential expression
analysis (t-test when K =2, ANOVA when K >2) without
consideration of bead-level variability is optimal under the following
model:

x̄ki =θk +εki,εki
ind∼ N(0,τ2

k ) (Model 2—Unweighted Method)

One may either assume variances τ2
k to be identical across K

groups or modify Student’s t-test or ANOVA to allow different
variances. In both cases, the model is inappropriate because it
assumes bead averages to have same accuracy across arrays in each
sample group when in reality they must depend on the the numbers
of beads and the variation of their intensities. Under this naïve
model, the mean intensity of each group θk can be estimated by the
unweighted average of x̄ki’s across the samples. It is straightforward
to compute the relative efficiency, which is the asymptotic ratio of
variances of the unweighted average and MLM estimate:

lim
nk→∞

n2
k∑nk

i=1(σ2
ki/mki +τ2

k )−1 ·∑nk
i=1(σ2

ki/mki +τ2
k )

.

Figure 1A shows the relative efficiency after fixing the bead-level
technical variation σ to be constant across samples and the array-
level biological variation τ to be 0, 10, 25, 50 or 75% of σ. We
generated bead numbers across 100 000 samples from a normal
distribution with mean 40. We repeated the process of computing
the relative efficiency by gradually increasing the variation of the
bead numbers. When biological variation is substantially less than
technical variation, the estimate under MLM is more accurate than
the unweighted estimate, especially as the variation in the number
of beads increases. As we increased the biological variation to be
close to the technical variation, the difference between two methods
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Fig. 1. (A) Relative efficiency of unweighted average compared with the
estimate from MLM. If it is close to 1, standard errors of unweighted average
and MLM estimate are similar. The less it is, the less standard error MLM
has compared with the unweighted average. The technical variation is fixed
constant across hundred thousand samples at σ and the biological variation τ

are set to be 0, 10, 25, 50 or 75 of σ. The bead numbers were first generated
from normal distribution with mean 40, and then rounded and replaced with
five if the number is less than five. We repeated the process of computing the
relative efficiency by gradually increasing the variation of the bead numbers.
(B) Relative efficiency of the WLSa estimate under our proposed model
MLM.

decreased. We confirmed this theoretical property to be true in the
spike-in data in the later sections.

2.3.2 Weighted analysis using only bead-level variation There
are recent efforts to incorporate bead-level technical variation in
linear analysis using the weighted least square estimation (WLS).
First, consider using bead-level variance divided by the number of
beads as inverse weights in a linear model. This weighting scheme
is optimal under the following model:

x̄ki =θk +εki,εki
ind∼ N(0,σ2

ki/mki ·c2) (Model 3—WLSa)

Although an iterative algorithm is needed to estimate the
parameters, it is a common practice to assume σ2

ki =s2
ki and use

the weighted least squares estimator of θk . That is,

θ̂WLSa

k =
∑

w(1)
ki x̄ki∑
w(1)

ki

where ŵ(1)−1

ki =s2
ki/mki.

Both estimates based on MLM and WLSa can be viewed as weighted
average of average bead intensities. The weights are different,
however, as they are inverse of σ2

ki/mki in WLSa and σ2
ki/mki +τ2

k
in MLM. Drawbacks of WLSa are that the biological variance c2

has no influence on estimator of the θk and that it must be constant
across K groups. Figure 1B shows the relative efficiency of the
WLSa estimate under our proposed model MLM. When biological
variation is substantially greater than technical variation, the MLM
estimate outperforms WLSa estimate, especially as the variation
in bead numbers increases. This is opposite to what we observed
with Student’s t-test, which performs as well as MLM with large
biological variation. We confirmed this theoretical property to be
also true in the spike-in data in the later sections.

The weights used in recent reports are in fact different from WLSa.
Dunning et al. (2008a) used variance of bead-level intensities (s2

ki)
as inverse weights and demonstrated that it improves power to detect

differential expression. That is, their test is based on

θ̂WLSb

k =
∑

w(2)
ki x̄ki∑
w(2)

ki

where ŵ(2)−1

ki =s2
ki.

Since WLS estimation is most efficient when the weights are inverse
of the variances of measurements (x̄ki), this weighting scheme is
optimal under the following model:

x̄ki =θk +εki, εki
ind∼ N(0,σ2

ki ·c2) (Model 4—WLSb)

However, we find that the assumption that variance of x̄ki does not
depend on bead numbers is unrealistic. As a result, WLSb does not
take the numbers of beads into account, and will perform poorly
when variation in the number of beads is large.

3 MATERIALS AND METHODS

3.1 Microarray data
We examined the difference between the analysis methods of differential
expression by performing two group comparison of a publicly available
spike-in dataset (Dunning et al., 2008a). In their study, Dunning et al.
hybridized 48 arrays on Illumina Mouse-6 chips with a complex mouse
background. In addition to the standard ∼48 000 bead types, the chips were
modified to include 33 bead types (spikes) targeting bacterial and viral genes
absent from the Mouse genome. The spikes were added at 12 concentration
levels, each on four arrays: 1000, 300, 100, 30, 10, 3, 1, 0.3, 0.1, 0.03,
0.01 and 0 pM. The spikes on a given array were all added at the same
concentration.

3.2 Preprocessing
Bead-level data for the spike-in experiment has gone through image
sharpening and background subtraction and was summarized in the log2

scale (Dunning et al., 2008b). We further normalized all 48 arrays using the
robust spline normalization (Du et al., 2008). We included in our analysis
the 33 spikes and all 34 666 non-spike bead-types targeting genes annotated
with Genbank IDs.

3.3 Differential expression analysis
We performed seven different differential expression analyses comparing
two sample groups: (i) Student’s t-test, (ii) Welch’s t-test, (iii) WLSa, (iv)
WLSb, (v) MLM, (vi) MLM assuming common biological variance and
(vii) Student’s t-test after the variance stabilization transformation (VST;
Lin et al., 2008). First six tests were applied to log2 scale data. For the
last test, VST was performed on unlogged raw data: VST becomes similar
to log2 transformation for high intensities. We ranked genes from the
most differentially expressed to the least differentially expressed based on
the corresponding P-values from each test. For WLSa, we performed the
weighted linear regression analysis with an intercept and a group indicator
variable and used bead-level variance divided by number of beads as the
inverse weights. Then, we used the standard P-value for testing non-zero
coefficient of the indicator variable to rank the transcripts. For WLSb, we
used the bead-level variance as the inverse weights. For both MLM methods,
we used the software we developed. For the analyses in this article, the
degrees of freedom for MLM-based tests were set to be n1 +n2 −2 because
we have balanced design and we assumed common biological variance (τ2).

3.4 Measuring the performance of differential
expression analysis

For each analysis result of differential expression, we counted the number
of spikes and non-spikes (i.e. annotated transcripts in the Mouse genome)
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among up to top 100 detected transcripts. For a given gene list, the number
of false discovery is defined as the number of non-spikes in the list and false
discovery rate is defined as the number of false discovery divided by the
size of the list. For a given gene list, sensitivity is defined as the number of
spikes in the list divided by the total number of spikes, 33, and specificity
is defined as the number of non-spikes not included in the list divided by
the total number of non-spikes, 34 666. In differential expression analysis
of microarrays, specificity is often >0.99 in even poor analyses because the
number of differentially expressed transcripts is typically much smaller than
total number of transcripts in the array. For this reason, we only considered
up to top 100 transcripts, and receiver operating characteristic (ROC) curves
are only defined above the specificity at 0.998.

In addition, for each of seven methods, we computed empirical Type 1
error and power as nominal Type I error changes. For a given nominal Type
I error, the corresponding empirical Type I error is defined as the number
of non-spikes with P-values less than the nominal value divided by the
number of all non-spikes. The corresponding empirical power is defined
as the number of spikes with P-values less than the nominal value divided
by 33, the number of spikes.

4 RESULTS
In the dataset, the number of beads ranged from 3 to 86. For all 33
spikes (bead types), the largest bead-level standard error among 48
arrays was at least 324 times larger than the smallest standard error.
These observations confirmed that the accuracy of mean intensity
differs greatly across samples, justifying the need to incorporate
bead-level technical variability in the analysis.

4.1 When biological variation is less than technical
variation

For each gene, we performed seven tests to detect differentially
expressed transcripts between four arrays with 0.01 pM spikes and
four arrays with no spikes (i.e. 0 pM): (i) Student’s t-test, (ii) Welch’s
t-test, (iii) WLSa, (iv) WLSb, (v) MLM, (vi) MLM assuming
common biological variance and (vii) Student’s t-test after the VST.
We counted the number of spikes and non-spikes among up to top
100 detected transcripts to compute sensitivity, specificity and false
discovery rates. We then repeated the whole process with other 10
non-zero concentration levels. Although we do not view our model
as a scaling method, we included the last method in our comparison
because VST is often regarded as the current best practice; if VST
can be expanded to bead-level data, then the transformation can be
used in conjunction with our method.

When the difference in true concentration is too small (e.g. 0.01
versus 0 pM), all methods failed to detect differential expression. On
the other hand, when the difference is too large (e.g. 1 versus 0 pM),
all methods successfully detected differential expression. When
comparison is made between moderately different concentration
levels (0.3 versus 0 pM; Fig. 2A and Table 1), MLM resulted in the
least false discoveries. For example, the numbers of false discoveries
in the top 20 transcripts are 5 (t-test), 6 (WLSa) and 1 (MLM).
In the top 33 transcripts, they are 16 (t-test), 16 (WLSa) and 9
(MLM). Table 1 shows the results for all seven tests. Figure 2B
shows that the ROC curve for MLM is consistently higher than that
of t-test and WLS. The sensitivity among top 33 transcripts by MLM
(73%) is statistically significantly higher than that of t-test (52%)
and WLS (52%): MLM detected seven spikes that were not detected
by t-test (or WLS) and missed none that was detected by t-test
(or WLS; P-value <0.016; Exact McNemar’s Test). Supplementary

Table 1. False discovery rates among top 20 and 33 genes and sensitivities
among the top 33 transcripts (0.3 versus 0 pM)

FDR of top 20 Sensitivity of
(and 33) transcripts top 33 transcripts

Student’s t-test τ1 =τ2 5/20 (16/33) 17/33
t-test after VST τ1 =τ2 7/20 (16/33) 17/33
WLSa τ1 =τ2 6/20 (16/33) 17/33
WLSb τ1 =τ2 6/20 (16/33) 17/33
MLM τ1 =τ2 1/20 (9/33) 24/33
Welch’s t-test τ1 �=τ2 7/20 (17/33) 16/33
MLM τ1 �=τ2 0/20 (9/33) 24/33

Fig. 2. (A) Number of false discoveries in comparison between 0.3 versus
0 pM: only results assuming constant biological variance (τ2) are shown.
(B) An ROC curve for up to top 100 transcripts. (C) Empirical Type 1 error
estimated by non-spikes. (D) Empirical power estimated by 33 spikes.

Figure S1 shows the number of false discoveries and ROC curves
when comparing each of 11 non-zero concentration levels to the four
samples with no spikes.

In addition, we compared empirical Type I error and power of the
seven methods as nominal Type I error changes. Figure 2C shows the
empirical Type I error in the range of nominal values that results in
FDR < 0.9. For practically meaningful results (FDR < 0.3), MLM
was conservative but all other methods were anticonservative.
Nonetheless, the power (Fig. 2D) of MLM was comparable with
that of other six tests. With small degrees of freedom, we expect
empirical Type I errors to be different from the nominal values (ideal
pattern) since all seven tests are based on model assumptions: it is
advisable to use the tests to order genes and determine the number
of differential expressions, e.g. by permuting the sample labels to
estimate false discovery rate.
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Fig. 3. Estimate of variance components of 33 spikes under multi-level
model across (A) four samples with true mean spike-in concentration at
0 pM and SD 0 pM, (B) four samples with mean 0.3 pM and SD 0 pM, (C)
12 samples with mean 0.11 pM and SD 0.14 pM and (D) 12 samples with
mean 37.0 pM and SD 46.7 pM.

Figure 3A and B show the relative size of estimated variance
components of 33 spikes in the multi-level model for samples with
0 and 0.3 pM spike concentration. The result for non-spikes is in
Supplementary Figure S2. By averaging over replicates, τ/σ for
spikes at 0.3 and 0 pM are estimated at 0.06 and 0.07, respectively.
For non-spikes, they are 0.08 and 0.09. Therefore, technical variation
is much larger than biological variation and it is clear that one needs
to avoid using unweighted methods, which uses only the biological
variation in estimating sampling variation for their test statistics. The
assumption of common biological variation seems to be appropriate
for both spikes and non-spikes.

Supplementary Figure S3 shows the variance components,
weights under different models and standard errors of the genes
in three groups: (i) spike-ins detected by both MLM and t-test,
(ii) spike-ins detected by MLM but not by t-test and (iii) non-spikes
detected by t-test but not by MLM.

Notice that, even with small biological variation, WLS methods
perform as poorly as unweighted method, while Figure 1 seems to
suggest that WLS can perform as well as MLM. When τ is small, the
WLS and MLM estimates of θk essentially become the same because
the weights become similar. Nevertheless, the standard error, or
the denominator of the test statistics, differs in two tests due the
difference in model assumptions. Specifically, the statistic based on
WLS is further scaled by the residual standard error ĉ:

TWLS = θ̂WLS
1 − θ̂WLS

2

ĉ
√

1
/∑

ŵ1i+1
/∑

ŵ2i

.

This difference in standard error is causing the relatively poor
performance of WLS tests although the estimates for the mean
intensities are similar in WLS and MLM.

Fig. 4. (A) Number of false discoveries in comparison between 37.0 versus
0.11 pM; only results assuming constant biological variance (τ2) are shown.
(B) An ROC curve for up to top 100 transcripts. (C) Empirical Type 1 error
estimated by non-spikes. (D) Empirical power estimated by 33 spikes.

While the results so far show that MLM outperforms other
methods, the true variation among spike-ins in each group is close to
zero, so the array-level biological variation is much smaller than the
bead-level technical variation. This may not represent the settings
in many transcriptional experiments. In fact, for in vivo data, it is
quite common to compare heterogeneous populations with multiple
unknown subgroups or outliers in each group (Tibshirani, 2007;
Wu, 2007). To compare methods across a wide range of possible
study settings, we performed the similar comparison using an altered
spike-in dataset in the following section.

4.2 When biological variation among differentially
expressed genes is greater than technical variation

As shown in Figure 1, when biological variation is greater than
the technical variation, it is possible for unweighted t-test to
perform similarly to MLM. On the other hand, the relative
performance of WLS will likely be poor because it does not use
biological variation in the weights. To test this hypothesis, we
increased the heterogeneity and sample sizes within each sample
group: three groups of arrays with relatively high concentration
(100, 10 and 1 pM) were pooled and another three groups
of arrays with low concentration (0.3, 0.03 and 0 pM) were
pooled. Overall, there were 12 samples with high-concentration
level (mean = 37.0 pM; SD = 46.7 pM) and 12 samples with low-
concentration level (mean = 0.11 pM; SD = 0.14 pM). That is, the
means and SD of spikes are both 1000/3 times larger in high-
concentration group. For each gene, we again performed the seven
tests to detect differentially expressed transcripts.

Figure 4 demonstrates that MLM again detects differential
expression with the least false discoveries. For example, the numbers
of false discoveries in the top 20 transcripts are 3 (t-test), 7 (WLSa)
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Table 2. False discovery rates among the top 20 and 33 transcripts and
sensitivities among top 30 transcripts (37.0 versus 0.11 pM)

FDR of top 20 Sensitivity of
(and 33) transcripts top 33 transcripts

Student’s t-test τ1 =τ2 3/20 (8/33) 25/33
t-test after VST τ1 =τ2 13/20 (18/33) 15/33
WLSa τ1 =τ2 7/20 (14/33) 19/33
WLSb τ1 =τ2 9/20 (14/33) 19/33
MLM τ1 =τ2 2/20 (6/33) 27/33
Welch’s t-test τ1 �=τ2 13/20 (21/33) 12/33
MLM τ1 �=τ2 1/20 (8/33) 25/33

and 2 (MLM). In the top 33 transcripts, they are 8 (t-test), 14 (WLSa)
and 6 (MLM). Table 2 shows the results for all seven tests. The
ROC curve (Fig. 4B) shows that the sensitivities of MLM and t-test
are similar and they are consistently higher than that of WLS. The
sensitivity among top 33 transcripts by MLM (82%) is significantly
higher than that of WLS (58%; P-value <0.008; exact McNemar’s
test; MLM detected eight spikes that were not detected by t-test
and missed none that was detected by t-test). In this comparison,
biological variation between samples is much bigger than the bead-
level technical variations, and Student’s t-test performs as well as
MLM as we expected. However, the performance of tests based
on WLS is poor because the weighting depends only on technical
variation.

Figure 4C shows the empirical Type I error in the range of nominal
values that results in FDR < 0.9. For practically meaningful results
(FDR < 0.3), all seven tests were mildly anticonservative. The power
(Fig. 4D) of MLM was higher than other tests.

Figure 3C and D show the relative size of estimated variance
components in the multi-level model of 33 spikes for samples with
mean spike concentration at 0.11 and 37.0 pM. The result for non-
spikes is in Supplementary Figure 2. By averaging replicates, for
spikes, τ/σ for 37.0 and 0.11 pM are estimated at 9.74 and 0.64,
respectively. For non-spikes, they are 0.09 and 0.11. The assumption
of common biological variation seems to be appropriate for non-
spikes but not for spikes. Since biological variation in spikes is
much larger than technical variation, it is clear that one needs to
avoid using WLS methods, which does not account for biological
variation in weights. We also notice that the log2 transformation
stabilized the variance, as the bead-level variation does not increase
as intensity level increases.

Supplementary Figure 4 shows the variance components, weights
under different models and standard errors of the genes in three
groups: (i) spike-ins detected by both MLM and WLSa, (ii) spike-
ins detected by MLM but not by WLSa and (iii) non-spikes detected
by WLSa but not by MLM.

It is not surprising that Student’s test outperforms Welch’s test
(Table 2) although the true biological variances of the spikes
in two conditions are very different. Non-spikes, from the same
biological material across all samples, have common variance in
two conditions. With sample size balanced, Student’s test-statistics
and Welch’s test-statistics are identical and the difference in P-values
comes only from the difference in degrees of freedom, which in turn
come from the difference in variances. Since there are 12 samples in
each group, Student’s test uses 22 degrees of freedom for both spikes

and non-spikes. The degrees of freedom for Welch’s test are near the
maximum value, 22, for all non-spikes due to homogeneity, and near
the minimum possible value, 11, for all spikes due to heterogeneity.
Therefore, the two tests control the Type I error equally but Welch’s
test has much less power.

5 DISCUSSION
In this article, we presented a way to account for both biological and
technical variation in weighting by fitting a multi-level mixed effects
model of bead-level intensities. We compared existing analysis
methods for bead arrays, showing the conditions under which each
method would be optimal. Theoretical results suggest that, when
array-level biological variation is substantially less than bead-level
technical variation, the MLM provides more accurate estimate than
the unweighted method especially if the variation in number of
beads is large across samples. When biological variation is close
to or greater than technical variation, the difference between two
methods becomes small. On the contrary, when biological variation
is substantially greater than technical variation, the WLS provides
inaccurate results compared with the unweighted method or the
MLM. Given these theoretical considerations, our proposed method
is based on the reasonable and realistic assumption that variance of
the bead-level average is additive across the two levels of variation,
technical and biological.

We confirmed these theoretical properties to be true in the spike-in
data. We provided evidence that accuracy of differential expression
analysis is improved by accounting for the bead-level variation with
the multi-level model especially when biological variation is small.
We also showed that when biological variation is large, weighted
methods that ignore biological variation might even have lower
accuracy than unweighted methods. The multi-level model, which
accounts for both biological and technical variation in weighting,
reduced the false discovery rate and increased the sensitivity in both
settings.

We provide a software program to the research community for
differential expression analysis using the multi-level model that
analyzes tens of thousands of genes efficiently. The key to efficient
programming was avoiding numerical inversion of tens of thousands
of Fisher’s information matrices.

We acknowledge the limitation of the spike-in data to answer
questions about biological variability. Only spikes had real
biological variability across samples, and non-spikes were biological
replicates in all arrays. Type I error and specificity, which are
estimated only by non-spikes, will be different from the reported
values in real biological data. However, when biological variation
exists in non-differentially expressed genes, we expect MLM to
outperform methods that do not include biological variation in
weights.

All differential expression analyses were performed for one gene
at a time. There have been efforts, however, to combine these
with empirical Bayesian method to move sample variance toward a
pooled estimate across genes. These have shown to result in stable
inference when the number of array is small (Smyth, 2004). For
example, the empirical Bayesian method has often accompanied
unweighted methods (Hageman et al., 2010; Iorns et al., 2010) and
weighted methods (Fernando et al., 2009). It will be interesting
to investigate the effect of variance modification in the multi-level
mixed effects model.
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Finally, on a practical note, we recommend researchers to
keep bead-level data from Illumina BeadScan software. The same
recommendation was made in multiple other reports (Dunning et al.,
2008a; Stokes et al., 2007). Without bead-level data, for example,
one cannot analyze expression intensities in log scale and consider
bead-level variation at the same time. We repeated the analysis in
this article using data in raw scale, and the performance of all seven
tests were markedly poorer than that based on log2 scale, especially
when biological variance were large among spike-ins. For example,
top 874 genes detected by t-test did not include any spike-ins. To
analyze data in log scale, researcher needs to use existing software,
e.g., beadarray (Dunning et al., 2007), to convert bead-level data
to bead summary data on log scale before applying the software
provided in this article.
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APPENDIX A

A FISHER’S SCORING ALGORITHM FOR ML AND
REML

A.1 ML estimation
Here, we provide the technical details of Fisher’s scoring algorithm
we used in our program to maximise the likelihood of MLM to detect
differential expression of K independent groups. The model has the
following log-likelihood:

l= − 1
2

K∑
k=1

nk∑
i=1

{
log(τ2

k mki +σ2
ki)+(mki −1)

log(σ2
ki)+ (x̄ki−θk)2

σ2
ki/mki+τ2

k
+ (mki−1)s2

ki

σ2
ki

}
Notice that x̄ki and s2

ki, the bead average and variance for each
sample, are the sufficient statistics. Given the two variances, it is
straightforward to show that

θ̂k =
∑nk

i=1wkix̄ki∑nk
i=1wki

where w−1
ki =σ2

ki/mki +τ2
k .

The first derivatives of the likelihood are

δl
δτ2

k
= − 1

2

(
nk∑

i=1
wki −

nk∑
i=1

w2
ki(x̄ki −θk)2

)
, δl
δσ2

ki

=− 1
2

(
wki−w2

ki(x̄ki−θk)2

mki
+ mki−1

σ4
ki

(σ2
ki −s2

ki)
)
.

Although xki1,...,xkink
are correlated, using the quadratic theorem

of normal variable, one can show (mki −1)s2
ki/σ

2
ki still has χ2

distribution with the degrees of freedom mki −1 and that s2
ki is

an unbiased estimator of σ2
ki. By taking the expectation of second

derivatives of the likelihood, and substituting E(x̄ki −θk)2 =w−1
ki

and Es2
ki =σ2

ki, we have all elements of the information matrix:

−E δ2l
δ[τ2

k ]2 = 1
2

nk∑
i=1

w2
ki, −E δ2l

δ[σ2
ki]

2 = 1
2

(
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+ mki−1
σ4
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)
,

and −E δ2l
δσ2

kiτ
2
k
= 1

2
w2

ki
mki

.

All other elements of the information matrix are zero. Taking the
inverse of the information matrix, we have the following Fisher’s
scoring algorithm:

(1) Set initial values at

σ2
ki =s2

ki, τ2
k =

∑nk

i=1
(x̄ki − x̄k)2/(nk −1)−n−1

k

∑nk

i=1
s2

ki/mki .

(2) θnew
k =∑nk

i=1 wkix̄ki/
∑nk

i=1 wki with wki =wki(τold
k ,σold

ki )
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(3)
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]
(5) Repeat Steps (2)–(4) until convergence.

If we assume constant τ across K conditions, Steps (3) and (4) change
to the following:

τ2new =τ2old +
K∑
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ck

/
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hkiw
2
ki,
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/
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2
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A.2 REML estimation
For our linear model, the REML estimator of τ2 is obtained by
maximizing the following restricted likelihood (Laird, 2004):

lREML = lML + 1

2
log
∣∣∣var

(
θ̂(σ,τ)

)∣∣∣= lML − 1

2

∑
k

log
(∑nk

i=1
wki

)

Conveniently, one can modify Step (3) of the ML algorithm by
adding the following term to the right-hand side of the equation
(Laird, 2004):

1
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2
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If we assume constant τ across K conditions, the term changes to

τ4∑
k nk

∑
k

∑
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2
ki∑nk

i=1wki
.

A.3 Wald-type test
Once the parameters are estimated, one can perform a Wald-type
test to compare K groups. Let θ̂T to be (θ̂1,...,θ̂k), � to be a
diagonal matrix with i-th diagonal element being vk where v−1

k =∑nk
i=1(σ̂2

ki/mki + τ̂2
k )−1, and H to be a (k−1)×k matrix with i-th

and (i+1)-th elements of i-th row set as 1 and −1, and all other
elements set as zero. With some algebraic work, one can derive the
following Wald-type test statistic:

θ̂T HT (H�HT )−1H θ̂= 1

k−1

⎛⎝ K∑
k=1

1
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