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ABSTRACT

Motivation: With recent advances in sequencing, structural and
functional studies of RNA lag behind the discovery of sequences.
Computational analysis of RNA is increasingly important to reveal
structure—function relationships with low cost and speed. The
purpose of this study is to use multiple homologous sequences to
infer a conserved RNA structure.

Results: A new algorithm, called Multilign, is presented to find the
lowest free energy RNA secondary structure common to multiple
sequences. Multilign is based on Dynalign, which is a program that
simultaneously aligns and folds two sequences to find the lowest
free energy conserved structure. For Multilign, Dynalign is used to
progressively construct a conserved structure from multiple pairwise
calculations, with one sequence used in all pairwise calculations.
A base pair is predicted only if it is contained in the set of low
free energy structures predicted by all Dynalign calculations. In this
way, Multilign improves prediction accuracy by keeping the genuine
base pairs and excluding competing false base pairs. Multilign
has computational complexity that scales linearly in the number of
sequences. Multilign was tested on extensive datasets of sequences
with known structure and its prediction accuracy is among the best of
available algorithms. Multilign can run on long sequences (>1500 nt)
and an arbitrarily large number of sequences.

Availability: The algorithm is implemented in ANSI C++ and
can be downloaded as part of the RNAstructure package at:
http://rna.urmc.rochester.edu

Contact: david_mathews@urmc.rochester.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

RNA sequences have been discovered to play remarkably diverse
roles, such as catalysis (Fedor and Williamson, 2005; Nissen et al.,
2000), gene expression regulation (Batey, 2006; Lee, 1993) and
sequence recognition (Kiss-Laszlo, 1996; Vendeix et al., 2008).
Recent studies show that there are a large number of RNA transcripts
that do not encode proteins (Ravasi et al., 2006; Sharma et al., 2010;
The Encode Consortium, 2007; The Fantom Consortium, 2002).
The functional and structural roles of these RNAs are of great
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interest. With current techniques, however, it is slow and expensive
to experimentally determine structures for the majority of those
RNA. Thus, structural and functional analysis of RNA molecules has
lagged behind the rate of sequencing, leaving a large gap needing
to be filled.

Structure prediction is an attractive tool for studying all the
currently available sequences. RNA secondary structure, defined as
the sum of canonical base pairs (A-U, G-U and G-C) is commonly
predicted and these predictions have been used to design structures
(Aguirre-Hernandez et al., 2007; Diamond et al., 2001; Dirks et al.,
2004), discover functional RNA sequences in genomes (Torarinsson
et al., 2006; Uzilov et al., 2006; Washietl et al., 2005a,b), study
folding (Li et al., 2007), design siRNA sequences (Long et al., 2007,
Lu and Mathews 2008; Tafer et al., 2008) and facilitate comparative
sequence analysis (Mathews et al., 1997). The prediction of lowest
free energy structures with a dynamic programming algorithm is a
popular approach for making such predictions (Mathews and Turner,
2006). In this approach, a nearest neighbor energy model with
a set of thermodynamic parameters derived from optical melting
experiments on small RNA models (Mathews et al., 2004; Turner
and Mathews, 2010; Xia et al., 1998) is used to evaluate possible
structures and the dynamic programming algorithm guarantees that
the most stable structure will be found. Only 73% or fewer known
base pairs are predicted by free energy minimization for sequences
shorter than 700 nt (Dowell and Eddy, 2004; Mathews et al., 2004;
Mathews and Turner, 2006). The prediction is worse for longer
sequences, with 20-60% average accuracies for small and large
subunit rRNA (Dowell and Eddy, 2004; Mathews et al., 2004).

‘When multiple homologous sequences are available, evolutionary
conservation can be used to improve RNA secondary structure
prediction accuracy. RNA sequences often change during evolution,
but RNA structures are generally conserved in order to preserve
function. The set of structures that multiple different sequences
can adopt is smaller than the number of structures each can adopt
independently, so determining the conserved structure is more
accurate. A number of computational approaches have been applied
to this problem, as previously reviewed (Bernhart and Hofacker,
2009; Mathews, 2006). Some of the algorithms require a fixed
initial alignment as input (Bernhart er al., 2008). The drawback
to this is that the initial alignment, based on nucleotide matching,
may not reflect the correct alignment because of compensating
changes in the sequence. This imperfect alignment can seriously
restrict prediction accuracy. Sankoff (1985) introduced a dynamic
programming algorithm to find optimal consensus structures and
sequence alignment simultaneously without being constrained to a
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Fig. 1. Multilign algorithm flowchart, illustrating progressive calculations of
S sequences. The index sequence is used with each other sequence as input
to Dynalign. The cycle is repeated for multiple iterations, using the same
index sequence for all iterations. A structure is predicted for each sequence
with the final iteration. The computational complexity for this algorithm is
O(N*) in memory and O(ISN®) in time for I iterations of calculation for
average sequence length of N.

fixed alignment. The computational complexity scales O(N3S) in
time and O(N2S) in memory, where N is the average length of the
sequences and S is the number of sequences. Dynalign is a variant
of Sankoff’s algorithm that uses the complete nearest neighbor
thermodynamic model to find the lowest free energy structure
common to two RNA sequences (Mathews and Turner, 2002). An
X-Dynalign was reported to simultaneously fold and align three
sequences (Masoumi and Turcotte, 2005). It improves prediction
accuracy, but is extremely computationally demanding even for
sequences as short as 5S rRNA. A profile alignment algorithm using
Dynalign was also explored to find strict common base pairs in
all the input sequences (Bellamy-Royds and Turcotte, 2007). Its
performance on 5S rRNA and tRNA was reported to be comparable
with other benchmarked methods, but depends highly on the quality
of the guide tree that is used to guide the progressive alignment
(Bellamy-Royds and Turcotte, 2007).

In this contribution, a new algorithm, called Multilign, is
introduced to solve the high-computational complexity of predicting
structures common to three or more sequences. Multilign is based
on multiple Dynalign calculations. It departs from previous greedy
approaches that build upon fixed decisions made early in the
calculation. Instead, Multilign uses a single index sequence and
performs Dynalign calculations with the index sequence and each
other sequence in turn. Base pairs for the index sequence that are
in low free energy structures are allowed in subsequent Dynalign
calculations. This progressively refines the set of allowed pairs
utilizing comparison with each sequence. Multilign works well
for an arbitrary number of long sequences, e.g. >1500nt, with a
memory requirement the same as Dynalign and a time requirement
that scales linearly with sequence number. In accuracy, Multilign
performs as well as the best available methods.

2 METHODS

2.1 Progressive templating

The progressive calculations used by Multilign are illustrated in Figure 1.
A sequence is chosen as the index sequence. This sequence is then utilized
for pairwise structure prediction with each other sequence in the set using
Dynalign, one after another. In each calculation, the energy dot plot is
calculated (Mathews, 2005). This plot determines, for each possible pair
in each sequence, the lowest total free energy for a conserved structure
and alignment that contains that pair. During the progressive calculations,

subsequent calculations only allow the set of pairs for the index sequence that
were found in low free energy structures in prior calculations. The allowed
pairs are determined using a threshold described below.

As the Multilign calculation proceeds, the energy dot plot for the index
sequence becomes less crowded with possible pairs because few pairs are in
low free energy structures with all previous Dynalign calculations. This relies
on the hypothesis that the true base pairs are in low free energy structures
predicted by all Dynalign calculations, but the competing false base pairs
are not. Supplementary Figure S1 shows that the set of relatively low free
energy structures contains the vast majority of true base pairs for a diverse
set of RNA families. An example of the removal of false pairs by Multilign
is shown in Figure 2. After calculations with all other sequences, the folding
space of the index sequence is well constrained, but the folding spaces for
the other sequences is not as well defined. Thus, subsequent iterations in
the same progressive manner and with the same index sequence can be used
to constrain the folding of the other sequences until a common structure is
determined.

2.2 Determination of parameters

A threshold is used to select pairs that will be allowed for the index sequence
in subsequent Dynalign calculations. The optimal threshold is one that allows
just all true base pairs and few false positive base pairs in subsequent
calculations. There is, however, no universal cutoff for all types of RNA
as shown in Supplementary Figure S1, either in absolute free energy or in
percentage of free energy change. Empirically, it was found that a threshold
that allows a specified number of pairs (MaxPairs) in conjunction with a
percentage cutoff (maxdsvchange) provided the best average performance.
The cutoff maxdsvchange allows all pairs found in structures with folding
free energy within a maximum percentage interval above the lowest free
energy structure. The criterion for allowing pairs at each step is the one that
allows the most pairs in subsequent calculations.

Other factors that may influence the Multilign prediction accuracy include
the choice of the index sequence, the order of the pairwise Dynalign
calculations, the number of iterations and the total number of sequences
used. How these factors impact the prediction result were tested (Section 3
and Fig. 3).

The default settings are a maxdsvchange of 1%, a MaxPairs equal to the
average length of all the input sequences, the index sequence as the first
of the input sequences and the number of iterations set to two. The default
settings were used for the benchmarks here. The index sequence was chosen
at random.

2.3 Benchmark

Default options and parameters are used for all the programs except
RNAshapes. For RNAshapes prediction on tRNA and 5s rRNA, the options,
‘-t 3 —c 50’ were used to have less abstract levels and wider energy ranges.
For the other RNA families with longer sequences, default parameters (*-t 5
—c 10”) were used to reduce memory requirement. All the calculations were
done on cluster compute nodes each having two quad-core Intel Xeon 3.0
GHz processors with 16 GB of RAM. Multilign has both serial and parallel
versions available, where the parallel version works on shared memory
architectures. The parallel version was used in the benchmark. ClustalW2
(Larkin et al., 2007) was used to predict an alignment for RNAalifold
(Bernhart et al., 2008), which requires a sequence alignment as input.
Secondary structures determined by comparative sequence analysis were
used as reference structures for testing Multilign. These structures are
accurate; it has been shown that >97% of base pairs in ribosomal RNA
secondary structures predicted by comparative sequence analysis exist in
high-resolution crystal structures (Gutell et al., 2002). The dataset includes
types of RNA used in previous benchmarks (Harmanci et al., 2008; Mathews
et al., 1999, 2004), including tRNA (Sprinzl and Vassilenko, 2005), 5S
rRNA (Szymanski et al., 1999), Signal Recognition Particle (SRP) RNA
(Larsen et al., 1998), RNase P RNA (Brown, 1999) and small subunit rRNA
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Fig. 2. Energy dot plots of 5S rRNA sequence from Methanobacterium thermoautotrophicum A1 (Szymanski et al., 1999) predicted by Dynalign or Multilign.
In each plot, a dot indicates a base pair between nucleotides with indices as indicated along the x and y axes. The lower triangle shows the base pairs in the known
structure and the upper triangle shows all base pairs possible for secondary structures with folding free energy change within the percentage intervals above
the minimum free energy structure as annotated by color. In (A) and (B), the base pairs were predicted by Dynalign with M.thermoautotrophicum B 5S rRNA
and Methanococcus voltae [Ink] 5S rRNA as the second sequences, respectively. In (C), the base pairs were predicted by Multilign together with other nine
58 rRNA sequences from M.thermoautotrophicum A2, M.thermoautotrophicum B, M.thermoformicicum, Methanobrevibacter ruminantium, Methanothermus
fervidus, M.thermolithotrophicus, M.vannielii [Lnk], M.vannielii [Xtr], M.voltae [Lnk]. For these calculations, the default settings of Multilign were used.
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Fig. 3. The impact of parameters on the performance of 5S rRNA secondary
structure prediction by Multilign. Results in (A) are predicted with MaxPairs
setting the number of allowed base pairs to 20, the average length of the five
sequences (= 120 in this test), or 500. (B) shows the results when structures
are predicted for three different orders, chosen at random. This randomization
also changes the sequence that is chosen to be the index sequence. (C) shows
the prediction accuracy from 1 to 4 iterations.

(Gutell, 1993). For SRP RNA, sequences shorter than 200 nt were removed
from the dataset since they do not accommodate a consensus structures with
longer sequences.

From the sequence pool, 400 tRNA, 100 5S rRNA, 20 SRP RNA, 60
RNase P RNA and 40 small subunit rRNA were randomly selected without

replacement. The sequences in each RNA type were divided into groups
of 5, 10 or 20 sequences in a randomly ordered list. All methods except
Dynalign and the single-sequence free energy minimization method (Fold
in RNAstructure package; Reuter and Mathews, 2010) ran on these divided
groups. Fold was run on each sequence. Dynalign also ran on the divided
groups of sequences but in a different style because it only predicts structures
of two sequences at a time. For each group, the first sequence (used as the
index by Multilign) in the group is predicted along with each of the other
sequences by Dynalign. Therefore, there is more than one predicted structure
for the first sequence, and only the structure predicted by the last Dynalign
calculation is included in scoring.

2.4 Scoring of prediction accuracy

Predicted structures are evaluated by comparison with known structures.
Two scores, sensitivity and positive predictive value (PPV) are calculated.
Sensitivity is the fraction of known pairs correctly predicted and PPV is the
fraction of predicted pairs in the known structure (Mathews, 2004). When
determining whether a predicted pair is consistent with a known base pair,
up to one nucleotide rearrangement on one side of the base pair is allowed.
Therefore, a predicted base pair (i, j) is correctly predicted if either (i, j),
(-1, ), (i+1, ), (i, j—1) or (i, j—1) appears in the reference structure
(Mathews et al., 1999). This scoring scheme reflects the uncertainty of
base pair matches in comparative sequence analysis and the conformational
dynamics of RNA secondary structures.

3 RESULTS
3.1 Factors that may influence the accuracy of
multilign

Multilign uses a series of Dynalign calculations on two sequences
to predict the common secondary structure for multiple sequences
(Fig. 1). The threshold for allowing pairs in subsequent calculations,
the choice of index sequence, the order of the sequences and the
number of calculation iterations may impact the Multilign structure

628



Multilign

prediction. Their influence on prediction accuracy was tested using
5S rRNA sequences.

First, the influence of the threshold was tested. Empirically, it was
determined that using both a maxdsvchange of 1% and a MaxPairs
equal to the average length of the input sequences provides the
best performance. These two cutoffs should be set to allow all
the true base pairs in subsequent calculations, and also exclude
competing false base pairs. In many cases, false base pairs can
occur in structures with comparable or lower free energy changes
than true base pairs because of imperfections in the nearest neighbor
parameters. As shown in Figure 3A, when MaxPairs is set too small,
e.g. 20, the false base pairs of low free energy are removed at the cost
of removing true base pairs, therefore PPV is improved at the cost of
sensitivity. When MaxPairs is set too large, e.g. 500, the competing
false base pairs were not efficiently excluded. False positives were
incorporated into the predicted structures and this compromised the
prediction accuracy. Setting the MaxPairs to the average length of
the input sequences, 120 in this example, is a reasonable choice.

The influence of the choice of index sequence and the order of the
other sequences were tested. The order of sequences was randomized
and the first one was chosen as index sequence. Overall, it was found
that this random ordering does not adversely affect the accuracy.
Figure 3B shows an example of this with three different random
orderings of 5S rRNA sequences. On average, the performance is the
same with the three random orders, although in detail, the accuracy
of structure prediction on a single sequence can vary.

The final choice that may influence the accuracy is the number
of iterations of the process. For example, after the first iteration,
the folding space of index sequence should be well constrained,
but those of the other sequences may not be. Figure 3C shows
that a second iteration is necessary to improve the prediction of
all sequences while extra iterations beyond appear to make no
difference in the accuracy.

3.2 Benchmark

The performance of Multilign in structure prediction was evaluated
and compared with the nine other methods that predict conserved
structures for three or more sequences: FoldalignM (Torarinsson
et al., 2007), mLocARNA (Will et al., 2007), MASTR (Lindgreen
et al., 2007), Murlet (Kiryu et al., 2007), RNA Alignment and
Folding (RAF) (Do et al., 2008), RNASampler (Xu et al., 2007),
RNAshapes (Steffen ez al., 2006), RN Aalifold (Bernhart ez al., 2008)
and StemLoc (Holmes, 2005). For comparison, the prediction results
of single-sequence free energy minimization (Fold; Reuter and
Mathews, 2010) and Dynalign on the same dataset are also shown.

The accuracy of structure prediction is illustrated in Figure 4. For
each type of RNA, the methods were evaluated over a dataset that
is divided into groups of 5, 10 or 20 sequences to show how the
number of sequences influences the prediction accuracies.

All multiple sequence methods predict structures of tRNA with
high accuracy. Multilign significantly improves the prediction
in terms of sensitivity and PPV by 3-4%, as compared with
Dynalign. As expected, Fold, the single sequence method, has the
lowest prediction accuracies both in sensitivity and PPV. Multilign,
FoldalignM, mLocARNA, RAF, RNASampler and StemLoc predict
both sensitivity and PPV around or above 90%. The sensitivity
of RNAalifold is about the same as Fold, although the PPV is
significantly higher.

For the predictions of 5S rRNA, all the multiple sequence methods
again perform better than single sequence structure prediction.
RNASampler stands out as having a particularly high PPV (> 90%),
but at the cost of sensitivity. The accuracy of prediction by single-
sequence free energy minimization is the worst, especially for PPV,
which has an average of only 62.4%.

The methods were also evaluated on longer sequences, namely
the SRP RNA, RNase P RNA and small subunit rRNA. Not
all the methods would run for these sequences on the available
hardware because of their computational complexity. Surprisingly,
for SRP RNA, Dynalign outperformed all the other methods in
sensitivity, including Multilign. This is because some of the true
base pairs are incorrectly ruled out early in the Multilign process
(Supplementary Fig. S2). For RNase P, single-sequence free energy
minimization outperforms all the other methods in sensitivity, but
not PPV. One possible explanation is that structures of RNase P
RNA vary more than those of other RNA types. It is therefore
difficult to determine a single consensus structure, causing the
algorithms tested here to perform poorly. For small subunit rRNA,
only Multilign, Dynalign, RNAalifold, mLocARNA and RAF run
successfully on the entire benchmark set. Multilign and mLocARNA
have comparable sensitivities and PPVs. The sensitivity of small
subunit rRNA prediction by Multilign is much higher than those of
RAF (>10%) and RNAalifold (>5%), although RAF outperforms
Multilign by ~3% in PPV.

It is also notable that the methods demonstrate different patterns
of prediction accuracy as a function of number of input sequences.
Prediction accuracies of some methods changes remarkably in 5-,
10- and 20-sequence calculations, while scores of others are stable.
Multilign, FoldalignM and MASTR tend to have comparable or
higher accuracy when using more sequences up to 20, as shown in
Figure 4. The prediction accuracies of the other methods show either
an opposite pattern or a stochastic pattern in number of sequences
utilized.

The CPU time is reported for all the calculations in Table 1.
The CPU time requirement for Multilign is roughly equal to the
product of Dynalign time requirement, the number of iterations and
the number of sequences in the calculation. Table 1 shows that
among all the algorithms that work with three or more unaligned
sequences, i.e. not including Fold, Dynalign or RNAalifold, the time
requirement for Multilign and RN Ashapes scale the best in terms of
the number of sequences. Although the absolute CPU time of some
Multilign calculations is large, Multilign is the only parallelized
software and a prediction of five small subunit rRNA sequences
can be done in <1 day with Multilign running in parallel on eight
cores.

4 DISCUSSION

Multilign combines free energy minimization and comparative
sequence analysis to predict RNA secondary structures of multiple
sequences with higher or comparable accuracy to Dynalign. It has
among the best accuracy as compared with other algorithms that
predict conserved structures for multiple sequences.

4.1 Strengths and limitations of Multilign

Multilign inherits the strengths of Dynalign. It uses a dynamic
programming algorithm to guarantee that the lowest free energy
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Fig. 4. The average structure prediction accuracies (PPV, left and Sensitivity, right) of 12 methods over tRNA, 5S rRNA, SRP RNA, RNase P and small
subunit rRNA datasets. There are 400 sequences in tRNA, 100 in 5S rRNA, 20 in SRP RNA, 60 in RNase P and 40 in small subunit rRNA. The dataset for
each RNA type is divided into groups of 5, 10 or 20 sequences and predictions were done on each group. The missing bars for some predictions indicate that
the methods did not proceed on available hardware. The plotted error bars are 95% confidence intervals.

conserved structure will be found for two sequences. The total free
energy score optimized by Dynalign does not depend on sequence
identity, which allows the algorithm to predict consensus secondary
structures for homologous sequences with little sequence identity,
e.g. as low as 20% in previous benchmarks (Harmanci et al.,
2007). Suboptimal structures can be predicted to provide alternative
solutions and show the well-definedness of prediction by creating
dot plots.

Multilign extends Dynalign to multiple sequence prediction and
improves the prediction accuracy as shown in Figure 4 for all
types of RNA tested except for SRP RNA. Although the average
improvement of Multilign over Dynalign does not appear large,
this is because the improvement on sequences is averaged. The
improvement of prediction accuracy for a single sequence can
be large. Dynalign predicts structures well for a majority of the
sequences, but poorly for a subset of sequences. Multilign, however,
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Table 1. The average CPU time of 12 methods over the 5S rRNA and small subunit rRNA reported by the Linux time command

RNA Type 5S rRNA Small subunit rRNA

Sequence Number 5 10 20 5 10 20

Multilign 3m:39.7s 9m:18.5s 27m:5.8s 135h:26 m:16.9s 299h:30m:47.3s 774h:9ml4.2s
Fold 0.16s S5m:17.7s
Dynalign 34.6s 20h:28 m:9.6 s
RNAalifold 0.05s 0.06s 0.11s 11.92s 12.83s 26.39s
FoldalignM 1m:36.8s 6m:38.2s 28m:11.3s N/A N/A N/A
mLocARNA 3.63s 13.3s 49.4s 21h:38m:22.1s 120h: 1 m:4.5s 462h:15m:7.9s
MASTR 2225 1m:7.64s 4m:9.5s N/A N/A N/A

Murlet 6.37s 23.0s Im:27.1s N/A N/A N/A

RAF 0.58s 1.86s 7.75s 4m:6.6s 11 m:40.2s 37m:40.3s
RNASampler 12.9s 1m:39.1s Tm:13.1s N/A N/A N/A
RNAshapes 50.3s 1m:42.7s 3m:32.2s N/A N/A N/A

StemLoc 20m:41.2s 1h:23m:6.9s 6h:7m:19.5s N/A N/A N/A

For Fold and Dynalign, the average of each calculation is reported here. Times are reported in hours (h), minutes (m) and seconds (s). N/A, ‘Not Applicable,’ is reported for programs

that did not complete the calculation for small subunit rRNA on the available hardware.
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Fig. 5. The comparison of Multilign and Dynalign prediction on the level
of single sequences. The plot shows Multilign and Dynalign prediction of
five small subunit rRNA sequences from species listed along x axis.

tends to improve the average accuracy of sequences for which
Dynalign does well, but additionally it also dramatically improves
the accuracy for structures poorly predicted by Dynalign (Fig. 5 and
Supplementary Table S2). In other words, Multilign does well by
ensuring that the structure prediction accuracy will be uniform and
generally good for all sequences in a set.

Additionally, Multilign is able predict structures of an arbitrary
number of long sequences. To our knowledge, this work is the first
report of the prediction of multiple unaligned sequences as long as
small subunit rRNA, which have a mean length of 1526 nt in this test
set. Most algorithms failed to predict structures for long sequences
or large number of homologous sequences on the hardware used
for this study. Multilign has computation complexity linear to the
number of sequences in time. In memory, the requirement does not
increase with increasing number of sequences.

Overall, Multilign improves prediction accuracy as compared
with Dynalign. This is not, however, guaranteed in all cases, such
as SRP RNA. Dynalign is accelerated by two steps of prefiltering
that restrict the space of solutions that needs to be considered.

One prefilter predicts structures for each sequence by free energy
minimization and only base pairs that are in secondary structures
within 30% of the lowest free energy are then allowed in Dynalign
(Uzilov et al., 2006). The other constrains the allowed alignment
space with a probabilistic model predicted using a Hidden Markov
Model (Harmanci et al., 2007). It is known that these two steps
exclude few genuine base pairs from consideration. Therefore, they
influence a Dynalign structure prediction little, but they turn out to be
a hidden problem for Multilign. If a genuine base pair is prohibited
by a particular pairwise Dynalign calculation, it is permanently
prohibited in all the following calculations (Supplementary Fig. S2).
This effect is cumulative and can be a problem for sequence families
that have diverse structures.

4.2 Prospectus

Great efforts have been placed on improving RNA secondary
structure prediction. One way is to mimic comparative sequence
analysis by predicting a structure for multiple sequences
simultaneously. Some RNA types demonstrate great structural
diversity, however, and are hard for current existing algorithms to
predict their structures accurately. As reported in this work, structure
prediction of SRP RNA and RNase P RNA remains a difficult
problem because of structural heterogeneity.

Another point worth noting is that not all methods predicting
conserved structures for multiple sequences are guaranteed
to perform better on average than single sequence folding.
Furthermore, many of the available algorithms do not necessarily
improve in prediction accuracy when more homologous sequences
are utilized by the prediction. Clearly, no method yet replaces human
expertise for comparative sequence analysis. The predictions from
these programs need to be considered as hypotheses. Users may, for
example, want to use multiple programs to develop hypotheses for
subsequent study.
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