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ABSTRACT

Motivation: Next-generation sequencing technologies are being
rapidly applied to quantifying transcripts (RNA-seq). However, due to
the unique properties of the RNA-seq data, the differential expression
of longer transcripts is more likely to be identified than that of
shorter transcripts with the same effect size. This bias complicates
the downstream gene set analysis (GSA) because the methods for
GSA previously developed for microarray data are based on the
assumption that genes with same effect size have equal probability
(power) to be identified as significantly differentially expressed. Since
transcript length is not related to gene expression, adjusting for such
length dependency in GSA becomes necessary.
Results: In this article, we proposed two approaches for transcript-
length adjustment for analyses based on Poisson models: (i) At
individual gene level, we adjusted each gene’s test statistic using the
square root of transcript length followed by testing for gene set using
the Wilcoxon rank-sum test. (ii) At gene set level, we adjusted the null
distribution for the Fisher’s exact test by weighting the identification
probability of each gene using the square root of its transcript length.
We evaluated these two approaches using simulations and a real
dataset, and showed that these methods can effectively reduce the
transcript-length biases. The top-ranked GO terms obtained from
the proposed adjustments show more overlaps with the microarray
results.
Availability: R scripts are at http://www.soph.uab.edu/Statgenetics/
People/XCui/r-codes/.
Contact: xcui@uab.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Next-generation sequencing has been rapidly applied to measure
gene expression levels (Marguerat and Bahler, 2010; Wang et al.,
2009). The power of this application (RNA-seq) in quantifying and
annotating transcriptomes is striking. By obtaining tens of millions
of short sequence reads from the transcript population of interest and
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by mapping these reads to the reference genome, RNA-seq produces
digital signals (counts) rather than analog signals (intensities) in
microarrays, and thus leads to highly reproducible results with
relatively little technical variation (Mortazavi et al., 2008). When
enough reads are collected from a sample, it should be possible
to detect and quantify RNAs from all biologically relevant classes
including low and moderate abundance (Mortazavi et al., 2008).

Several methods have been proposed in the literature to calculate
gene expression levels based on RNA-seq data. Cloonan et al. (2008)
adjusted the gene read count data by the length of the transcript.
Mortazavi et al. (2008) used the reads (or counts) per kilobase
(kb) per million reads (RPKM) as the gene expression level, which
adjusted the read counts by the sequencing depth (in units of million
reads) in addition to the transcript length (in units of kb). The RPKM
index facilitates comparison of expression measurements across
different genes and different samples. Based on a Poisson model,
Jiang and Wong (2009) proposed a more sophisticated method to
measure the expression levels of a gene by taking into account all
known isoforms of all genes. All above methods represent gene
expression levels using normalized count data, which can be further
processed and analyzed in a way similar to microarray data, such as
empirical Bayes method (Cloonan et al., 2008; Smyth, 2004)

One of the unique features of RNA-seq data is that the number
of reads obtained from a gene depends on the transcript length.
Therefore, we have more power detecting differential expression
for longer transcripts. It has been shown that, in RNA-seq data, the
proportion of significantly differentially expressed genes increases
with the transcript length, while such bias is not present in
microarray data (Bullard et al., 2010; Oshlack and Wakefield, 2009).
This length dependency can have major impact on gene set analysis
(GSA), which tests sets of predefined genes based on existing
knowledge for enrichment in a list of differentially expressed genes
or for the treatment/condition effect on the gene set as a whole.
GSA is commonly used in gene expression analysis for identifying
pathways and Gene Ontology (GO) terms. The significant GO
terms identified from the RNA-seq data using existing procedures
established for the microarray data tend to be enriched for longer
genes.

One purpose of conducting GSA is to rank predefined gene sets,
such as pathways and GO terms, according to their relevance to
the biological question under study. GSA typically is a two-step
process. The first step is to summarize the data using a gene-level
statistic describing the degree of differential expression of individual
genes, and possibly obtaining a list of significantly differentially
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expressed genes based on the statistic. The second step is to test
for the significant enrichment of a gene set based on the gene-
level statistics or the list of significant genes (Barry et al., 2008).
Ideally, the gene-level statistic used in GSA only depends on the
gene expression levels, such as the fold change and/or the variation
across replicates. However, for the RNA-seq data, the gene-level
test statistic is also affected by the transcript length. If we use the
gene-level statistics to test gene sets directly, for two gene sets with
equal number of genes and equal effect sizes, the gene set with
longer genes will likely be ranked higher than that with shorter
genes. This will become problematic when researchers only select
a few top-ranked gene sets in follow-up studies because the gene
sets with shorter genes will tend to be overlooked. Therefore, some
adjustments for this length dependency could be essential for ranking
gene sets.

One of the commonly used gene-set-level tests in GSA is the
Fisher’s exact test, which is used to compare a list of significantly
differentially expressed genes against all genes being analyzed
to identify the gene sets that are enriched in the significant
gene list. The null distribution of the Fisher’s exact test is
hypergeometric under the assumption that the probability of each
gene entering the significant gene list is the same for genes
with same effect size. However, this assumption does not hold
for the RNA-seq data analysis because of the aforementioned
length dependency. Thus, the hypergeometric distribution is no
longer an appropriate null distribution for the Fisher’s exact test
in GSA for RNA-seq data. To address this problem, Young et al.
(2010) estimated the probability of each gene to be included in
the significant gene list by fitting a six-knot cubic spline model
relating the empirical identification probability of a gene to its
transcript length. This probability was then used in a random
sampling procedure to estimate the null distribution for the Fisher’s
exact test. They showed that the random sampling procedure
can be approximated using Wallenius’ non-central hypergeometric
distribution and the adjustment resulted in dramatic rank changes of
the GO terms. This strategy is similar to the GSA method proposed
for analyzing databases of regulating sequences although the latter
used a non-central binomial distribution (Taher and Ovcharenko,
2009).

In this study, we proposed two approaches of adjusting GSA for
RNA-seq data. In the first approach, we introduced the transcript-
length adjustment for gene-level test statistics. The benefit of
gene-level adjustment is that it is more general. It can adjust the
transcript length bias in the identification of differentially expressed
genes even if no GSA is conducted. For GSA, once genes are
ordered by properly adjusted gene-level statistic, powerful non-
parametric tests such as Wilcoxon rank-sum test can be applied at
the gene set level. In the second approach, we used a transcript-
length-based Wallenius’ non-central hypergeometric distribution as
the null distribution for the gene-set-level test. Using a transcript-
length-based random sampling procedure as a gold standard, we
showed that Wallenius’ distribution is a closer approximation than
the non-central binomial distribution. We also demonstrated that
using transcript length directly (one parameter) for calculating the
non-central parameter for Wallenius’ distribution is an effective
alternative to fitting a six-knot cubic spline function (six parameters)
from the percentage of differentially expressed genes. Finally, we
compared the effectiveness of all these adjustments using a real
dataset.

2 METHODS

2.1 GSA with transcript-length adjustment at the
gene-level test statistics

Since the RNA-seq data are counts in nature, the Poisson distribution has
been used to model the number of reads obtained for each gene when no
replicates or only technical replicates are present in the experiment (Marioni
et al., 2008). If we denoted X1, X2 as the total counts of the same gene from
two different tissues (or conditions), the gene is claimed to be significantly
different in these two tissues if the absolute value of the (Wald-type) test
statistic,

Z1 = X1 −X2Q
√

X1 +X2Q2
, (1)

is larger than a chosen cut-off value. A P-value can also be obtained based
on an approximate standard normal distribution. Here, Q is the ratio of
the total sequence reads from the two tissues. Note that the Wald-type
statistic is asymptotically the same as a likelihood ratio test used in Marioni
et al. (2008). As pointed out previously (Bullard et al., 2010; Oshlack and
Wakefield, 2009), the percentage of differentially expressed genes identified
by this statistic has a positive correlation with the transcript length. Even
averaging over the transcript length using RPKM does not eliminate this
problem (Oshlack and Wakefield, 2009). To adjust for the effect of transcript
length (L), we can subtract a length-dependent factor from the statistic in
Equation (1) for each gene to obtain

Z2 =Z1 −sign(Z1)c
√

(L−d), (2)

where the read length d is 32 bp in the RNA-seq data from Marioni et al.
(2008).

For comparison, we also tried to adjust for the length dependency using
division in a similar way as Bullard et al. (2010) except the constant c.

Z3 = Z1

c
√

L−d
(3)

Both Z2 and Z3 have an unknown constant, c, in the formula. How to
determine the value of c and how much effect c has on GSA analysis results
are important issues. Since it has been shown that the microarray data do not
show transcript length bias, a good c should result in less variation among
the differences between the two Z statistics above and the corresponding
t statistics obtained from the microarray data. We chose the value of c by
minimizing the variance of the differences between the statistics from the two
data sources. This criterion is intended to minimize the difference between
RNA-seq data and microarray data in transcript length dependency. This may
not be the best criterion for determining the value of c. Interestingly, the best
c values for Z2 and Z3 are very similar if not exactly the same using this
criterion. The value obtained for c is around 0.031. In reality, most RNA-seq
experiments do not have corresponding microarray data. Therefore, we also
obtained the value of c by just fitting a linear regression through the origin
to the total number of reads from each gene against the transcript length.
The c value obtained based on regression (0.0436) is very similar to the one
obtained using microarray data. Our examinations showed that the Wilcoxon
rank-sum test-based GSA results are not very sensitive to the value of c and
the two estimated c values gave very similar results. When Z3 is used, the
analysis is completely insensitive to the value of c because the change of c
in Z3 does not affect the rank of the gene-level statistics.

2.2 GSA with transcript-length adjustment at gene set
level

Due to the length dependency of the gene-level statistics, we propose to use
the Wallenius’ non-central hypergeometric distribution instead of the central
hypergeometric distribution to calculate the P-values for the Fisher’s exact
test. The former is a generalization of the hypergeometric distribution with
items sampled in a biased fashion represented by a non-central parameter w,
which is the odds ratio of the two groups to be sampled. This non-central
parameter is estimated as w=median

1≤i≤M

(√
Li −d

)/
median
M<i≤N

(√
Li −d

)
where M,
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N,Li, and d are the number of genes in a particular gene set, the total number
of genes, the transcript length for each gene and the sequencing read length,
respectively (See Supplementary Material for more details).

2.3 Simulations for comparison of methods at gene set
level

We conducted some simulations to compare three distributions: the proposed
Wallenius’non-central hypergeometric distribution, the non-central binomial
distribution (Taher and Ovcharenko, 2009), and the central hypergeometric
distribution, in respect to their suitability for serving as the null distribution
for Fisher’s exact test in GSA of RNA-seq data. Since the identification
probability of a gene is approximately linear to the square root of its transcript
length, we developed the following random sampling procedure to obtain the
number of significant genes expected from a particular gene set under the
null hypothesis.

(1) Define wi =√
Li −d (i=1,2,...,N) as the weight for the identification

probability for gene i.

(2) Randomly pick a gene set of Mgenes from a particular quartile of the
human transcript length distribution.

(3) Randomly choose K genes without replacement from the total N genes
expressed according to the weight defined in (1).

(4) Record the number of genes among the K genes chosen in step (3)
that are from the gene set.

(5) Repeat steps (2) to (4) 1000 times to obtain the empirical distribution
of number of genes from the gene set under the null hypothesis.

In our comparison, the total number of genes (N) was set to be 10 000.
Although it is smaller than the number of genes in most tissues, the scale
is in the right neighborhood. The gene set size (M) was set to be 10, 50,
100 and 500 because gene sets too small or too big are often excluded from
analyses in practice. The number of significant genes (K) was set to be 50,
500 and 2000 to represent various proportions of significant genes in real
data. The transcript length (L) was sampled from the human transcript length
data downloaded from NCBI. To simulate gene sets with different transcript
lengths, we randomly sampled transcript lengths from the first quartile, the
fourth quartile and the middle two quartiles of the human transcript length
distribution to represent sets of genes with short, long and average length,
respectively. The sequencing read length was set to 32 bases to be consistent
with the real data. We computed the mean and standard deviation for each
distribution obtained from the simulation and used them for comparison.

The above simulation was for gene sets randomly sampled from particular
quartiles of transcript length distributions, which is a good representation of
the general trend. However, it does not reflect any true biological gene set.
To examine the four distributions discussed above using a few true gene
sets, we selected some GO terms that have various numbers of genes and
various median transcript lengths. The GO terms were randomly selected
from specific quartiles in the distribution of the median transcript length of
all GO terms with genes expressed in the Marioni dataset. The number of
genes in each GO term was also taken into consideration.

2.4 Real data analyses
To compare the proposed and available methods in the GSA analysis of
RNA-seq data, we used a real dataset from the Marioni study (Marioni et al.,
2008) to examine the reduction of length effect in the GO term enrichment
test. Since this study has both RNA-seq data and microarray data from the
same samples, we used the results obtained from the microarray data as the
standards because results from microarray data are not found to be correlated
with the transcript length (Oshlack and Wakefield, 2009).

2.4.1 Datasets The RNA-seq dataset from Marioni et al. (2008) were
generated for human liver and kidney samples with 7 runs per tissue, five
runs for the 3 pM concentration and two runs for the 1.5 pM concentration.

The microarray data from the same study were generated from the same
kidney and liver samples with each sample profiled on three Affymetrix
Human Genome U133 Plus 2.0 Arrays (GSE11045).

2.4.2 Data downloading and preprocessing The RNA-seq dataset was
obtained from the Supplementary Table 2 of Marioni et al. (2008). The
gene ID in this dataset is Ensembl gene ID. GO terms mapped to the genes
with Ensembl IDs were extracted using Bioconductor package biomaRt.
The microarray dataset was downloaded from gene expression omnibus
(GEO) (GSE11045). After downloading the raw microarray data, we applied
the robust multiple-array analysis (RMA) procedure (Irizarry et al., 2003)
with quantile normalization (Bolstad et al., 2003) for preprocessing the raw
microarray data before identifying differentially expressed genes between
kidney and liver using a t-test. For comparison purposes, the Affymetrix gene
IDs were mapped to the Ensembl gene IDs using biomaRt. When multiple
Affymetrix probe sets have the same Ensembl gene ID, the median expression
of these probe sets was used as the expression level for the Ensembl gene
ID.

We also applied three filters to select a set of genes and a set of GO terms
to be used in the analysis:

(1) We removed genes in the RNA-seq data that have less than 10 reads
in total to avoid uncertain low counts.

(2) We removed genes that are not on the Affymetrix U133 plus 2.0
microarray for comparison purpose.

(3) We discarded GO terms with fewer than 5 and more than 500 genes
in our final list of genes as commonly practiced in microarray data
analysis.

Human transcript lengths were obtained from two databases. In
our simulation study, we downloaded the human RefSeq as a flat
file ‘human.rna.ghff.gz’ from NCBI (ftp://ftp.ncbi.nih.gov/refseq/) and
calculated the transcript lengths accordingly. In the real data analysis,
we extracted transcript lengths using Bioconductor package biomaRt
(http://www.bioconductor.org/). The Ensembl gene ID in the RNA-seq data
was used as the attribute to extract transcript lengths. The median transcript
length was used for genes with multiple transcripts and genes were discarded
if their transcript lengths are not available.

2.4.3 Identifying differentially expressed genes For identifying
differentially expressed genes from the microarray data, we first conducted
a two-sample t-test to generate a list of significant genes with a false
discovery rate (FDR; Benjamini and Hochberg, 1995) value of 0.05. For
the RNA-seq data, we conducted a Wald-type test as shown in Equations
(1–3) and obtained the corresponding P-values based on the standard
normal distribution. Bonferroni correction was used to select the lists of
significant genes at a significance level of 0.05. To evaluate the effect of
gene-level adjustments on identifying differentially expressed genes, we
divided the genes into bins of 247 genes with similar length and identified
the percentage of differentially expressed genes within each bin for the
RNA-seq data using the test statistics Z1, Z2 and Z3.

2.4.4 GSA for GO terms To examine the effect of our adjusted gene-level
test statistics on the gene set enrichment analysis, gene-level test statistics
Z1, Z2 and Z3 were combined with the GO-term-level Wilcoxon rank-sum
test. Significance level was set to 0.05 in the calculation. The results were
compared with those from the microarray data analysis based on the t-test
at gene level and the Wiconxon rank-sum test at GO-term level.

For comparing gene-set-level methods, GOseq package (version 0.1.5)
(Young et al., 2010) was downloaded from the author’s web site
(http://bioinf.wehi.edu.au/software/goseq/). The GOseq Wallenius version
was run with default parameter settings. The gene set enrichment P-values
were directly used in our comparisons. Our gene set-level method was
compared against GOseq, non-central binomial, central hyper geometric and
reference null from our simulation.
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Fig. 1. The differences between the RNA-seq data and the microarray data
in the percentage of genes identified as significant using the three Z-tests.
Each point represents a group of 247 genes with similar transcript length.
Significance level was set to 0.001 to avoid the lack of significant genes
from microarray data. Genes with zero or low counts (the sum of all counts
is less than 10) were excluded from the analysis. The linear regression lines
are shown.

3 RESULTS

3.1 Adjustment at the gene-level test statistics
We proposed two ways to adjust for transcript length at the gene-
level testing statistics as shown in Equations (2) and (3). These
adjustment methods were compared with methods without such
adjustments in analyzing the RNA-seq data from Marioni et al.
(2008). The effects of the adjustments on identifying differentially
expressed genes were evaluated by comparing with the results from
the microarray data (Fig. 1 and Supplementary Fig. 2). Without
adjustment, the difference of the proportions of significant genes
between RNA-seq and microarray shows a positive dependency on
transcript length (Fig. 1). This trend is substantially reduced although
not completely eliminated by the adjustment in Z2. However, over-
adjustment of the length effect was observed from the adjustment
in Z3, which results in negative dependency on transcript length.
Here, we used the significance level of 0.001 at nominal level for
identifying differentially expressed genes to ensure the presence of
substantial number of significant genes in the microarray results for
comparison. The plots are in similar fashion at other significance
levels (results not shown).

Fig. 2. Effect of gene-level statistic adjustment in the GSA analysis. The
differences between the percentages of significant GO terms from RNA-
seq data and those from the microarray data are plotted against the median
transcript length of the GO terms. GO terms are binned according to the
median transcript length with 65 GO terms in each bin. Significance level
for testing each GO term was set to 0.05. The linear regression lines are
shown and the P-values from testing against the slope of 0 are shown as
inserts.

For evaluating the effect of these two gene-level adjustment
methods in GSA analysis, Z1, Z2 and Z3 were combined with the
Wilcoxon rank-sum test for GO term analysis. The results were also
compared with those from the microarray data. The differences of the
proportions of significant GO terms from RNA-seq and microarray
are plotted against transcript length in Figure 2 and Supplementary
Figure 3. A significant positive relation with the transcript length
was observed when no adjustment was applied (with a P-value
of 0.02 for the slope). The adjusted gene-level statistic, Z2, can
largely reduce such effect with a non-significant P-value of 0.11 for
testing the slope. However, for the adjustment Z3, the slope becomes
significantly negative with a P<0.04. In general, the transcript
length dependency is less dramatic in the GO term analysis than
that in the gene-level analysis as shown in Figure 1.

3.2 Adjustment of the null distribution for Fisher’s
exact test at gene set level

To correct the transcript length bias at the gene set level, we
proposed a simple weight,

√
L−d, for the identification probability

665



[14:42 2/2/2011 Bioinformatics-btr005.tex] Page: 666 662–669

L.Gao et al.

Fig. 3. Comparison of different candidate null distributions for Fisher’s
exact test with the reference null distribution established by resampling
simulations. ‘<Q1’, ‘Q1–Q3’ and ‘>Q3’ represent the genes in the gene
set randomly sampled from less than the first, between the first and third
and larger than the third quartiles of the transcript length distribution,
respectively. Each gene set contains 50 genes. The non-central parameters
were calculated based on the identification probability weight

√
L−d for

the relevant distributions. The Wallenius’ distribution has similar mean and
variance to the reference null distribution established by the simulations.

of each gene, with L and d representing the transcript length
and the sequencing read length, respectively. This weight was
then used to calculate the odds for Wallenius’ non-central
hypergeometric distribution (refer to Section 2), which was used
as the null distribution for Fisher’s exact test instead of the central
hypergeometric distribution.

To evaluate Wallenius’ distribution, the central hypergeometric
distribution, and a non-central binomial distribution (Taher and
Ovcharenko, 2009) for Fisher’s exact test in GSA, we compared
these three distributions with a reference null distribution obtained
from a random sampling procedure based on the weight

√
L−d

for each gene. The results (Fig. 3) showed that the central
hypergeometric distribution dramatically overestimates the expected
number of significant genes from a gene set when the gene set
consists of genes with short transcripts sampled from the first quartile
of the length distribution of all human transcripts. In contrast,
it dramatically underestimates the expected number of significant
genes when the gene set consists of genes with longer transcripts
sampled from the fourth quartile of the length distribution. The
degree of difference did not seem to vary with the size of gene
set. The expected numbers of genes from Wallenius and the non-
central binomial distribution were close to the expected number in
the reference null distribution established by the random sampling
procedure (Fig. 3, top panel). However, the non-central binomial

Fig. 4. Comparison of the three candidate null distributions with the
reference null distribution for three real GO terms. The three GO terms
are: GO:0006120 with 37 expressed genes of median length 725.5 bp;
GO:0008380 with 209 expressed genes of median length 1612.5 bp; and
GO:0046777 with 81 expressed genes of median transcript length 2670 bp.
They are separated by vertical gray lines. Wallenius’ distribution has the best
approximation to the reference null distribution at both mean and standard
deviation (SD) for these GO terms.

distribution shows inflated variation compared with the reference
null distribution and Wallenius’ distribution (Fig. 3, bottom panel).
This inflation is more obvious when the genes are from the fourth
quartile of the transcript length distribution. Figure 3 only shows
results for gene sets with 50 genes. The general pattern is the same
for gene sets of different sizes, such as 10, 100 and 500 genes,
although the absolute values of the expected number of genes and
the standard variation are different (Supplementary Fig. 4).

The simulation results shown in Figure 3 are based on random
sampling of genes from particular quartiles of the length distribution
to form a gene set, which is a good representation of general trend,
but it does not reflect any true biological gene set. To test a few
true gene sets, we selected some GO terms with various numbers of
genes and various median lengths to compare the four distributions
discussed above. The results from three true gene sets that contain
various numbers of genes and various median transcript lengths
are shown in Figure 4. More results are shown in Supplementary
Table 1. In general, the results are consistent with what we observed
from Figure 3. The hypergeometric distribution overestimates the
mean number of expected significant genes for gene sets with short
genes but underestimates it for gene sets with longer genes. The
non-central binomial distribution overestimates the variance. Both
results showed that Wallenius’ distribution is a good approximation
for the reference null distribution based on random sampling, which
is consistent with what was found recently (Young et al., 2010). The
difference between our procedure and that of Young et al., which
is implemented in GOseq package, is at the non-central parameter,
where we used the square root of transcript length while they fitted
a cubic spline to the percentage of differentially expressed genes.

3.3 Comparing methods for length effect adjustment in
GSA

To compare the two categories of methods for reducing transcript
length bias in GSA, we examined the trend of the difference
between the proportions of significant GO terms along the median
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Fig. 5. Comparison of different methods for adjusting transcript length
bias based on the Fisher’s exact test. Each point represents 65 GO terms
with similar median transcript length. Significance level for GO terms
is nominal P-value of 0.05. The significant gene list for microarray data
is generated using significant level of FDR 0.025, while that for RNA-seq
is generated using significant level of 0.05 with Bonferroni correction.
Different significant levels are used to avoid extremely short gene list from
microarray data.

transcript length from the RNA-seq and that from the microarray
data (Figs 2 and 5). The combination of unadjusted test Z1 with
hypergeometric distribution (Fig. 5A) shows positive correlation at
shorter GO terms but slight negative at the longer GO terms. A
perfect bias correction method would remove these trends along the
transcript length and keep the percentage of significant GO terms
high. For the GOseq method based on the Wallenius’ distribution,
the trends are largely reduced, but the percentage of significant GO
terms decreases dramatically (Fig. 5B). In comparison, replacing
the hypergeomentric distribution with the Wallenius’ distribution
using our parameterization, the positive correlation at the lower
end is removed and the percentages of significant GO terms are
kept high (Fig. 5C). When the gene-level adjustment statistics Z2
(Fig. 5D) and Z3 (Fig. 5E) are combined with the hypergeometric
distribution, the effect is in between the combination of Z1 with
hypergeometric distribution (Fig. 5A) and the Wallenius distribution
(Fig. 5C). For the Wilcoxon rank-sum based tests, results from Z1
and Z2 are similar except that Z2 has a smaller and non-significant
slope. The Z3 test shows a slight negative trend (Fig. 2).

To examine the rank order of the results from all methods, we
examined the ranking of the common GO terms that have 5–500

Fig. 6. Comparison of the top-ranked GO terms generated by different
methods. The GO terms were ranked based on the P-values from each
method. The proportions of overlapping GO terms between the microarray
data and the RNA-seq data are plotted. For the Fisher’s exact test based
methods, GO term ranks generated from RNA-seq data using central
hypergeometric distribution (black), Wallenius’ distribution parameterized
in GOseq (blue) and Wallenius’ distribution with our parameterization
(magenta) were all compared with the microarray data analyzed based on
central hypergeometric distribution. For the Wilcoxon rank-sum test-based
global analysis, the GO term ranks generated from RNA-seq data using
unadjusted (green) or adjusted (red) gene-level statistics were compared
with the GO term ranks generated from microarray data based on Wilcoxon
rank-sum global test without adjustment.

genes represented in both the microarray and the RNA-seq data.
Figure 6 shows the overlaps of the top-ranked GO terms between
RNA-seq and microarray from the two types of analysis methods,
the Fisher’s exact test methods and the Wilcoxon rank-sum test
methods. In general, the results from the Fisher’s exact test methods
show much lower overlap than those from the Wilcoxon rank-
sum test methods. This observation is consistent with the common
understanding that the Wilcoxon rank-sum strategy is better than the
Fisher’s exact test strategy in GSA (Allison et al., 2006).

For the Fisher’s exact test based method, our parameterization
has a better overlap with microarray for the 100 top-ranked GO
terms, but has very little improvement on the overlap when more top
GO terms were considered. In contrast, the GOseq method showed
less improvement at the top-ranked GO terms but show substantial
improvement after top 200 GO terms (Supplementary Fig. 5). The
combinations of the gene-level adjustments, Z2 and Z3, with the
hypergeometric distribution show comparable levels of overlap with
the combination of Z1 and the Wallenius distribution at top-ranked
GO terms but show substantial improvements for GO terms ranked
between 100 and 200.

The GSA methods based on the Wilcoxon rank-sum test show
high consistency in terms of the GO term ranks (70–80%) for
the unadjusted Z1 test. Minimal improvement on the rank overlap
is observed from Z2 over Z1. For Z3, substantial improvement is
observed in some rank ranges, such as around the first 20 GO terms
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Fig. 7. Flowchart for the analysis pipelines from preprocessed RNA-seq
data to GSA. The two locations for correcting transcript length bias are
highlighted with gray background. DE, differentially expressed.

and between 100 and 200 GO terms. The lack of large difference
among the three tests is consistent with the fact that the Spearman
correlations between the three Z statistics from the RNA-seq data
and the t statistics from microarray data are very similar, 0.753,
0.755 and 0.764 for Z1, Z2 and Z3, respectively.

3.3.1 Summary Similar to microarray data analysis, RNA-seq
data analysis often has two steps, the gene-level analysis and
the GSA. The second step can be based on the significant gene
lists obtained from the first step using the Fisher’s exact test
or the statistics for each gene directly using the Wilcoxon rank-
sum test (Fig. 7). Based on our analysis of the Marioni data,
the Wilcoxon rank-sum test is preferred over the Fisher’s exact
test for its high overlap with microarray results. Transcript length
adjustment at gene-level statistics followed by Wilcoxon rank-sum
test has improvements but relatively small (Z3 slightly better than
Z2). For gene-level testing, subtraction-based adjustment Z2 shows
better performance in reducing the dependency on transcript length,
while the division-based Z3 tends to over adjust the effect. For the
Fisher’s exact test, gene-set-level adjustments show relatively large
improvement.

4 DISCUSSION
RNA-seq is a rapidly growing technology that has the potential to
replace microarray in profiling gene expression. However, when
previously established methods for GSA were directly used on
RNA-seq data, gene sets that consist of longer genes tended to
be identified as significantly enriched. In this article, we proposed
two strategies to reduce such length dependency. The first strategy
is to adjust the gene-level statistics by removing transcript-length
dependency before applying a standard Wilcoxon rank-sum test at
the gene-set level. The second strategy is to adjust the gene set
enrichment test by replacing the central hypergeometric distribution
with Wallenius’ non-central hypergeometric distribution in Fisher’s

exact test based on significant gene lists (Fig. 7). Our results showed
that both strategies are effective in reducing length dependence in
GSA analysis for RNA-seq data. However, the Wilcoxon rank-sum
based strategy shows a substantial higher level of overlap with
microarray results.

The RNA-seq technology is more sensitive to longer transcripts
because it generates more reads from longer transcripts. Therefore,
we have more statistical power to detect longer transcripts for
differential expression. However, in this situation, the statistical
power not only reflects the standardized effect size and sample size
but also reflects the transcript length. To our knowledge, transcript
length has not been found to be relevant to biological processes.
The detection bias for longer transcripts is arguably a candidate to
be corrected in identifying differentially expressed genes from RNA-
seq data. Our adjustments of gene-level statistics modify the length
effect substantially at gene-level tests. However, the two methods,
Z2 and Z3, perform differently. Z2 reduces the positive length effect
substantially but not completely removing it, while Z3 over adjusts
the relationship to negative. Further, fine-tuning these formulas is
necessary to achieve ideal effect.

Transcript length bias in RNA-seq is just one obvious bias to
be corrected. Young et al. (2010) found that the percentage of
differentially expressed genes also depends on gene expression
levels (number of reads). They proposed to remove this dependency
using the same method as for the length bias if the investigator
desires. We also saw similar bias along the number of reads from the
Marioni data. However, it is not clear to us that completely removing
the expression intensity bias is biologically correct because there
has been evidence showing that the level of stochastic expression
of genes is associated with the level of gene expression (Bar-Even
et al., 2006; Newman et al., 2006). Therefore, we decided not to
pursue the adjustment for expression levels in the GSA analysis of
RNA-seq data here. If the adjustment is desired, a similar strategy as
described here can potentially be applied to remove the expression
level bias.

In GSA, the transcript length dependency is also obvious. Since
one of our goals of conducting GSA analysis is to rank the gene sets
based on pathways and GO terms according to their relevance to the
biological question under study for follow-up studies, the rank of
gene sets identified from the GSA should only depend on biological
relevant parameters, such as the fold change of the gene expression
and/or the variation of the expression across samples. Therefore,
we believe that some adjustment for the transcript length bias is
beneficial.

The Fisher’s exact test is a simple procedure for identifying over
represented gene sets based on comparing a set of significantly
differentially expressed genes against all genes under study. When
a set of significantly differentially expressed genes is generated
from the RNA-seq data, this method is a natural and common
choice for the GSA (Allison et al., 2006). However, it has been
demonstrated that the GO terms identified using this method tend to
be the ones with longer transcripts (Oshlack and Wakefield, 2009)
if no adjustment is applied to the gene-level statistics. One solution
for this problem is adjusting the null distribution used in the
Fisher’s exact test for obtaining P-values. To take into account of
the transcript length in the null distribution, we used a non-central
hypergeometric distribution with a noncentral parameter determined
by the transcript length. The non-central parameter represents the
average detection power difference between the genes in the GO
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term and those outside the GO term. Some resampling procedures
were used both by Young et al. (2010) and us to establish the
null distribution. However, we both showed that Wallenius’
non-central hypergeometric distribution, which can reduce the
heavy computation demand of the resampling procedure, is a good
approximation. The only difference between our method and Young
et al.’s GOseq method lies in the parameterization of the non-central
parameter for Wallenius’ distribution. Young et al. (2010) used
a six-knot spline to fit the percentage of differentially expressed
genes against transcript length to determine the probability of each
gene to enter the list of significantly differentially expressed genes.
In our study, we simply used the square root of the transcript length
based on the assumption that the number of reads obtained from
each transcript is linear to its transcript length. Our parameterization
is simpler and the performance of our method is better than the
GOseq method for the high-ranked GO terms in our real data
analysis (Fig. 6).

The non-central parameter for the Wallenius’ distribution is based
on the weighting factor

√
L−d. It depends on a few factors. One

factor is the expressed genes in a dataset because only the genes that
are expressed above certain level (e.g. total 10 reads in our analysis)
in the dataset are used in calculating this non-central parameter.
Therefore, the non-central parameters are dataset specific. There is
not a universal value for a given gene set that can be used for the
analysis of any dataset. Another factor is the sequence depth. As
the sequencing depth increases the power for detecting differential
expression increases. When the power increases to a certain level, the
difference of identification probability among genes will be reduced
to a negligible size and the non-central parameter for Wallenius’
distribution will be close to 1. Wallenius’distribution approaches the
central hypergeometric distribution. Therefore, the transcript length-
based adjustment is only necessary when the sequencing depth is
not high enough for the power of detecting differential expression
approaching 1. The third factor is the read length determined by
the sequencing technology. Since the non-central parameter was
calculated based on

√
L−d, when d is long enough, for example,

longer than the transcript length of all genes, there will be no
length dependency because the number of reads will only be
dependent on the number of transcripts. These are just some of
the factors that influence the non-central parameter. Other factors,
such as mapability and sequence accuracy, also potentially affect the
non-central parameter. Further improving the parameterization can
be achieved using more complex relationships between transcript
length and number of reads by incorporating all these factors
mentioned above.

It is important to point out that this study is based on the RNA-seq
experiments with only technical replicates, which is seen in many
of the published RNA-seq experiments. The technical replicates are
modeled as independent Poisson distributions. It has been shown
recently that negative binomial distribution is a better model to
incorporate larger variance for handling biological replicates or
replicated libraries (Anders and Huber, 2010; Robinson and Smyth,
2007, 2008). The transcript length bias issue also needs to be
evaluated for these models.

One potential problem of transcript length bias correction at the
gene level is the change of statistical power and FDR. With length
bias adjustment, both FDR and power could increase for short genes

but both could decrease for the long genes depending on methods.
The overall net change is unknown. Evaluating the gain and loss as
well as how to tweak the adjustment in order to minimize the FDR
and maximize the power is some immediate future work to consider.
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