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ABSTRACT Lateral diffusion of lipids in biological mem-
branes may be influenced by polypeptides, proteins, and other
nonlipid membrane constituents. Using concepts from scaled-
particle theory, we extend the free-volume model for lipid
diffusion to membranes having an arbitrarily large number of
components. This theory clarifies the interpretation of the
free-volume theory, better reproduces the free-area depen-
dence of lipid lateral diffusion rates, and quantitatively predicts
the experimental observation that the lateral diffusion rates of
membrane lipids are significantly reduced when proteins or
polypeptides are incorporated in the membrane.

Rapid lateral diffusion of lipids in pure monolayer or bilayer
systems is well described by "jump" or "hopping" models
based on the free-volume diffusion theory of Cohen and
Turnbull (1-4). In this model, first applied to biomembrane
systems by Galla et al. (5), diffusion is considered to be a
three-step process in which first a local free volume into
which a molecule may diffuse is created by equilibrium
density fluctuations, then the diffusing molecule "jumps"
into the void, and, finally, another solvent molecule fills the
hole created by this diffusional "jump." Although the results
of this model agree well with experiments for a number of
systems (5-7), the theory is not applicable to complex
systems in which the solvent consists ofmany species having
different molecular dimensions. As a result, it cannot be
directly applied to membrane systems in which the mem-
brane contains nonlipid species, such as proteins. To de-
scribe such systems, Saxton (8) applied effective-medium
and continuum-percolation theories.

Effective-medium theory is usually used to estimate the
electrical conductivity of a composite material in which
particles of one conductivity are embedded within a medium
of another conductivity. Because effective-medium theory
relies on the solution of self-consistency equations for the
electric field within the medium, with which we are not
concerned in molecular diffusion, its a priori applicability to
lipid diffusion is not obvious. The theory predicts total
immobilization of diffusing molecules when impermeable
domains exceed 50% of the membrane area, and it predicts a
linear reduction of diffusion rate with increasing area fraction
of impermeable domains below this point. This threshold is
different than that predicted by percolation theory.

Percolation theory predicts that at a certain critical per-
meable area there will be a sudden increase in the conduc-
tivity of the membrane and thus of observed diffusion rates.
In the vicinity of this critical area the conductivity change
shows a power-law dependence; further from this critical
area the power-law expression is inappropriate, necessitating
another theory, such as the effective-medium theory. The
percolation limit depends on the size and shape of diffusing
molecules but differs from the limit obtained by effective-

medium theory. To reconcile the theories, Saxton constructs
an interpolating polynomial that matches the results of
effective-medium theory for infinitely dilute impermeable
domains and the results of continuum-percolation theory
when impermeable domains occupy 23.2% of the membrane.
Although this hybrid theory predicts a decrease in the
apparent lipid lateral-diffusion constant when impermeable
domains, such as proteins, are present in the membrane, it
apparently does not correctly predict the magnitude of the
reduction (7).

In this paper I develop a model of lipid diffusion that is
based on the free-volume concept. Lateral density fluctua-
tions are treated using a modified scaled-particle theory (9),
however, allowing the incorporation of many species of
different sizes. When applied to a single-component system,
this theory provides insight into the physical interpretation of
the phenomenological constant in the original Cohen-Turn-
bull diffusion theory. In addition, the theory accounts for the
reduction of lipid lateral-diffusion rates observed when poly-
peptides and proteins are incorporated into membranes.

Theory

We assume that diffusion takes place via the free-volume
mechanism (1-5) in three steps: (i) a hole is created in the
solvent via lateral density fluctuations; (ii) a diffusing mole-
cule jumps into this hole from an adjoining site; and (iii) the
resulting void is filled by diffusion of a solvent molecule. We
further assume that the membrane may be approximated by
a two-dimensional collection of randomly distributed hard
disks. In the spirit of Cohen and Turnbull (1), the average
diffusion coefficient is given by

D = fD(R)P(R)dR,R*
[1]

where P(R) is the probability of finding a circular region of the
membrane with radius between R and R + dR that does not
contain any molecules, and R* is the radius of the smallest
hole into which a lipid molecule can diffuse. The probability
of finding such a region is given by

P(R) = exp[-W(R)/kT], [2]

where W(R) is the work required to create a hole of radius R
in the solvent, T is the absolute temperature, and k is
Boltzmann's constant.
Because we have assumed that membrane lipids and

proteins may be approximated by randomly distributed hard
disks, we may obtain W(R) from scaled-particle theory (9).

Abbreviation: Myr2-PtdCho, dimyristoylphosphatidylcholine.
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The work W(R) required to create a cavity of radius R from
which fluid particles are totally excluded is

W(R)/kT = -1/kT{ln[1 - irlp,(Rj + R)2]} [3]

forR c 0. This is an exact result which does not depend upon
scaled-particle theory. In the scaled-particle theory, when R
. 0, W(R) is approximated by a three-term Taylor series
expansion around R = 0

W(R)/kT = -1/kT{ln[1 - irlPRp] +

27r(YpizyR,)R/[l - IrpR2]} + rPR2, [4]

where pi is the number density of particle i, Ri is the radius
of particle i, y, are semiempirical constants, and P is the lipid
lateral-spreading pressure. The first term of Eq. 4 is an
excluded volume term, which corresponds to the exact result
from Eq. 3 at R = 0. The third term in Eq. 4 is a pressure-area
term, which is required to satisfy thermodynamic consider-
ations for cavities with radius R of macroscopic size. The
second term of Eq. 4 is the "surface work" required to
expand the cavity; Lebowitz et al. (9) assume that W' (R) is
continuous across R = 0, so that vy = 1. We relax this
assumption, for which there is no a priori necessity, to allow
greater flexibility in defining the behavior of the lipid mem-
brane without sacrificing either the simple functional form or
the essential physical principles underlying the scaled-parti-
cle theory. By combining Eqs. 2 and 4 we obtain the
probability

P(R) = [1 - 1T~piR7]exp[-2iry(IpjR,)R/
(1 - irpRl)]exp(- 7TPR2/kT) [5]

of finding a hole of radius R at a particular site in the
membrane. Molecules can diffuse only when a sufficiently
large void has been created. Hence,

D(R) = OforR <R*, and
D(R) = D(R*) = constant, for R > R*, [6]

where we now assume that R* is the effective radius of a lipid
molecule. Thus,

D = D(R*) J P(R)dR. [7]

For lateral pressure P = 0 we have, when the probability of
finding a hole of radius R 0 is properly normalized to 1 -

D = D(R*)[1 - 1piRR]exp[-21r(yipiRd)R*/
(1-s~~p^R2)]. ~[8]

For molecules whose diffusion is hindered primarily by
collisions with other molecules in the lipid bilayer, D(R*) is
expected to have the form D(R*) = c (2kT/m)"12, where c is
a constant and m is the mass of the diffusing molecule. For
molecules whose motion is hindered by the forces of the
aqueous solvent and midplane of the bilayer D(R*) = c kT/f,
where c is a constant and f is a translational friction
coefficient (10). The latter expression seems to give a better
fit to experimental data and gives a more reasonable limiting
value for the diffusion rate in membranes that have low
densities. For this analysis, I will assume that D(R*) is
independent of the molecular composition of the bilayer and
present the results in a manner independent of its precise
form and origin.

Application to Single-Component Membranes

For a single component, Eq. 8 reduces to

D = D(R*)(1 - 7rpR*2)exp[-2iTypR*2/(l - TrpR*2)], [9]

where R* is the effective radius of the lipid molecule. If we
define a hard-core lipid areaAHC = lrR*2, this further reduces
to

D = D(R*)(AF/AL)exp(-2YAHC/AF), [10]

where AHC is the "hard-core" area of the lipid molecule and
AF is the free area per lipid molecule, and AL is the total area
per lipid molecule = AF + AHC. The exponential part of this
equation has the same form as that used by Galla et al. (5),

D = D(R*)exp(-yAHc/AF), [11]

to fit data on the thermal dependence of lipid lateral-diffusion
rate constants. The coefficient AF/AL of Eq. 10 results from
properly normalizing the probability of hole formation in the
solvent to account for the excluded area of the lipids. This
factor was omitted by Cohen and Turnbull (1-4). To fit the
thermal data (5), or data on the dependence of lateral
diffusion in lipid monolayers as a function of area (11, 12), it
is necessary to use y < 1, whereas scaled-particle theory
gives y = 1 if we assume that W' (R) is continuous at R = 0.
There are in principle several reasons that y = 1 might not

be appropriate: (i) We assume that particles are hard disks,
whereas a different shape, such as rod or ellipsoid, might be
more appropriate. Scaled-particle theories (13, 14) based on
two-dimensional rods and capped rods have effectively larger
values for y, rather than the smaller values necessary to
match the experimental values. (it) We assume that all lipids
may be represented by disks of uniform size. It would be
more realistic to assume a distribution of sizes for liquid
crystalline-phase lipids. Numerical experiments, however,
demonstrate that compensating for this only changes y
slightly. (iii) Scaled-particle theory could overestimate the
size of the hole required for diffusion, since lipid molecules
are very flexible and trans-gauche isomerization occurs
rapidly by comparison with diffusion, perhaps allowing lipids
to fit into oddly shaped cavities. However, since we assume
a minimum hard-disk area that corresponds to that of the
headgroup on an all-trans chain, such effects should not be
very important. (iv) Scaled-particle theory (with y = 1)
overestimates the "surface component" (second term) ofthe
work required to create a cavity, because it neglects the ways
in which the lipid differs from a hard disk. In particular, it
tends to overestimate the change in surface pressure as the
lipid membrane is expanded, because it ignores the stabilizing
effects of trans-gauche isomerization and van der Waals
attraction. We may include the effects of such interactions,
which could also be included via one or more additional terms
in Eq. 4, within the scaled-particle formalism by allowing y
j 1. Decreasing the value of y decreases the theoretical
lateral-spreading pressure at any density and also the rate
with which this pressure changes as the density (free area) is
varied. Determining the most appropriate value for y is not
within the scope of this theory, but y should clearly be
considerably lower than 1; approximate fitting of the theory
to the data of Beck and Peters (11, 12) suggests that a value
of 0.25 may be appropriate (see below). Use of y < 1 results
in a discontinuity in W' (R) at R = 0 and hence does not
correspond to the original formulation of scaled-particle
theory. As stated earlier, there is no a priori reason why such
a discontinuity cannot exist; it seems reasonable and accept-
able in the present context, because it corresponds to a
change in the lipid molecule from all-trans to partially gauche.
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In the all-trans bilayer, one expects no stabilization due to
trans-gauche isomerization, and so the value y = 1 that
comes from the original scaled-particle theory seems reason-
able. The change of y cannot be used to completely describe
the lipid-bilayer phase transition, however, since it ignores
the entropic effects and details of the major structural
changes that occur at this phase transition.
Because the excluded volume interactions are better treat-

ed in this theory than in the original Cohen-Turnbull theory,
we expect this theory to better describe diffusion in single-
component lipid systems. Fig. 1 illustrates the agreement
between the theory and experimental results on diffusion of
dilauroylphosphatidylcholine, for y = 0.25 and AHC = 0.425
nm2 [the values determined by Peters and Beck (11) using the
Cohen-Turnbull theory]. Although no attempt was made to
adjust the hard-core-excluded area AHC or y, the agreement
between theory and experiment is better, particularly for low
values of AF/AHC, for the new theory than for the old.
Comparison of the two theories, moreover, clearly dem-

onstrates that the factor yin the Cohen-Turnbull theory is not
necessary so much to compensate for the overlap of free
volume in cell models as to account for the surface energy of
cavity formation. It further explains why the y obtained from
lipid systems is significantly lower than that seen in liquids;
normal liquids lack the conformational flexibility which gives
rise to the cavity-stabilizing effects of surfactant molecules,
such as phospholipids. Finally, it explains why the slopes of
lnD vs. l/AF curves differ for different phospholipids with the
same headgroup-'y is expected to be sensitive to the effects
of chain-length differences on trans-gauche isomerization
and van der Waals interactions between chains. In the
discussion that follows on the effects of polypeptides and
proteins on lateral diffusion, we will assume that a value of
0.25 for y, which reproduces experimental data on monolayer
systems (11, 12), is appropriate to both pure lipids and
lipid-protein dispersions.

Application to Lipid-Protein Membranes

We assume for our calculations that the area occupied by a
single lipid molecule does not change on addition of proteins
or other impurities. For many liquid crystalline-phase lipid-
protein systems, there is ample justification for this assump-
tion. For example, Raman spectra obtained for a number of
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lipid-peptide and lipid-protein systems (15, 16) show no
change in lipid C-H stretching region spectra, which reflect
both acyl chain trans-gauche isomerization and chain pack-
ing (17) when peptides or proteins are incorporated into liquid
crystalline-lipid bilayers well above the phase-transition
temperature. Although this assumption is probably not uni-
versally valid, the theory allows effects of proteins on
membrane area to be separated from their direct effects on
diffusion. We further assume that for protein and polypeptide
species, -y, = 1, as given by original scaled-particle theory.
This assumption also seems reasonable, given the success of
hard-sphere virial equations in describing the nonideal solu-
tion behavior of concentrated proteins (18, 19). Although the
use of a different y changes the numerical results, it does not
change any qualitative conclusions. For purposes of these
calculations, we consider only two-component bilayers; the
theory should be valid for any number of components,
however. We define the lipid as species L with density PL and
hard-core radius RL, and we define the protein as species P,
with density pp and radius RP. Because the area per lipid AL
is held constant for each set of calculations, we have

AL = (1 - 1rPPR2)/PL- [12]

The lateral pressure P is zero, because the system is in
thermodynamic equilibrium, and the pressure of the mem-
brane is thus balanced by an equal external pressure. This
assumption is also appropriate for multilamellar liposomes
(20).

Fig. 2 illustrates the effects on the diffusion constant of
incorporating a protein ofradius Rp = 10 RL in the membrane.
There is a reduction in the lipid diffusion rate at all lipid areas,
with the most dramatic decrease occurring at small free
areas. The effects of proteins are more pronounced at higher
protein concentrations and for proteins with larger radii. This
is further illustrated in Fig. 3 A and B respectively for tightly
packed and more loosely dispersed lipids. For a given protein
concentration and radius, the fractional reduction in diffusion
rate from the value in pure lipid is independent of yL, although
the absolute magnitude of the diffusion rate is not.
The magnitudes ofthe reductions of lipid diffusion rates are

similar to those observed experimentally in dimyristoylphos-
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FIG. 1. Theoretical and experimental results on diffusion of lipids
in pure dilauroylphosphatidylcholine monolayers. *, Experimental;

, best fit of the data (Peters and Beck, ref. 11) to the original
free-volume diffusion theory. D, diffusion rate. At low values of
AHC/AF the predicted diffusion rate differs from the experimental
diffusion rate by nearly 50%. , Prediction of the present theory,
using values of AHC and y determined by Peters and Beck. At low
values ofAHC/AF, the agreement ofpresent theory with experimental
data is substantially better than that of the original free-volume
diffusion theory.
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FIG. 2. Theoretical predictions on the reduction of lipid diffusion
rates (D) for various concentrations of a protein with protein radius
RP equal to lOx the lipid radius RL. , Pure lipid; ---, pp = 2.5
x 10-4/nm2; ---, pp = 5 x 10-5/nm2.
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FIG. 3. Theoretical predictions of the reduction of lipid lateral-
diffusion rates resulting from incorporation of proteins of various
sizes as a function ofprotein density for tightly packed (A, AL = 0.47
nm2) and loosely packed (B, AL = 0.64 nm2) membranes. Lipids are
assumed to have a cross-sectional areaAHC = 0.425 nm2. Proteins are
assumed to have areas 9 (-), 25 (---), 100 (---), and 400 (-.-)

times that of the lipid.

phatidylcholine (Myr2-PtdCho) membranes reconstituted
with bacteriorhodopsin. Peters and Cherry (21) report a 60%
reduction in dioctadecyloxatricarbocyanine diffusion rates
when bacteriorhodopsin is incorporated in Myr2-PtdCho
membranes at a 1:70 mol ratio. If we assume a protein radius
Rp of 1.8 nm (22), an area/lipid (AL) of 0.51 (computed using
thermal expansion data for Myr2-PtdCho cited in ref. 10), and
a protein/lipid ratio of 1:65, the theory yields a diffusion
constant that is 42% that ofthe diffusion constant in pure lipid
membranes. The excellent agreement between the theoreti-
cal prediction and the experimental results suggests that the
scaled-particle diffusion model provides a reasonable de-
scription of the effects of proteins on lipid diffusion in
membranes.
The magnitudes of the reductions in lipid diffusion rates

predicted by this theory are similar to those predicted by
Saxton's theory (8). Thus, like Saxton's theory, the scaled-
particle diffusion model fails to predict the magnitude of the
difference in diffusion rates between fibroblast plasma mem-
brane and bilayers composed of pure fibroblast lipids (23).
This disagreement between the theoretical predictions and
the experimental data may result from the fact that the
freeze-fracture experiments used to estimate protein concen-
trations may not detect all relevant membrane proteins (7) or
could easily result from a slight reduction in the area per lipid
(AL) in intact fibroblast plasma membranes as compared with
bilayers created from fibroblast lipids.

Discussion

In this paper I have presented a model for lipid diffusion in
complex biological membranes. Diffusion is assumed to
proceed by "hopping" ofmolecules into vacancies formed by
lateral-density fluctuations. The probability of vacancy for-
mation is calculated using concepts derived from scaled-

particle theory. For single component membranes, the theory
has the same functional form as the free-volume diffusion
theory of Turnbull and Cohen (1-4), except for a pre-
exponential factor. This factor is required to properly nor-
malize the probability of finding a hole at a particular site in
the membrane; its inclusion substantially improves the agree-
ment between theory and experimental data on lipid lateral
diffusion obtained from pure lipid monolayers. The theory
predicts that incorporation of proteins into lipid membranes
will reduce the lipid diffusion rate and accurately predicts the
amount by which the lipid diffusion rate is reduced by
incorporating bacteriorhodopsin into Myr2-PtdCho mem-
branes. Although the magnitudes of the predictions of this
theory are similarto those obtained using Saxton's theory (8),
the scaled-particle diffusion model is conceptually simpler
and is applicable to arbitrarily complex membranes. When
the formula incorporates experimentally accessible molecu-
lar dimensions, it readily accounts for changes in lipid
structure that affect diffusion. Because the calculations may
be done on a hand calculator or represented by a computer
program requiring fewer than 20 lines of FORTRAN code, it
should prove easy to apply to the analysis of experimental
data.
Two specific predictions should be useful in testing the

theory. First, at a given concentration of a given protein, the
reduction in lipid lateral-diffusion rate should be greater for
more condensed liquid crystalline-phase membranes than for
less condensed liquid crystalline-phase lipids; data presented
by Peters and Cherry (21) for Myr2-PtdCho-bacteriorhodop-
sin membranes support this prediction. Second, for lipids
with a given hard-core area and a specific free area per lipid,
the reduction in the lipid diffusion rate resulting from incor-
poration of a given amount of a given protein should be
independent of the precise chemical structure of the lipid. I
am unaware of any data that test this prediction. If this
prediction can be confirmed experimentally, the modified
free-volume diffusion theory should prove valuable in de-
scribing diffusion in reconstituted lipid-protein systems.

Note Added in Proof. Eisinger et al. (24) recently published a model
for lipid diffusion in complex membranes. In this model, imperme-
able domains such as proteins are spatially fixed, unlike the model
developed in this paper. Several differences in the relative effects of
small and large protein molecules on lipid diffusion result.

I thank Dr. Bruce Cornell for stimulating my interest in this
problem and for sharing with me the results of his simulations on
diffusion in lipid-protein systems.
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