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Abstract
Understanding how humans remain stable during challenging locomotor activities is critical to
developing effective tests to diagnose patients with increased fall risk. This study determined if
different continuous low-amplitude perturbations would induce specific measureable changes in
measures of dynamic stability during walking. We applied continuous pseudo-random oscillations
of either the visual scene or support surface in either the anterior-posterior or mediolateral
directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet
multipliers and short-term local divergence exponents both increased (indicating greater
instability) during perturbed walking. These responses were generally much stronger for body
movements occurring in the same directions as the applied perturbations. Likewise, subjects were
more sensitive to both visual and mechanical perturbations applied in the mediolateral direction
than to those applied in the anterior-posterior direction, consistent with previous experiments and
theoretical predictions. These responses were likewise consistent with subjects’ anecdotal
perceptions of which perturbation conditions were most challenging. Contrary to the Floquet
multipliers and short-term local divergence exponents, which both increased, long-term local
divergence exponenets decreased during perturbed walking. However, this was consistent with
specific changes in the mean log divergence curves which indicated that subjects’ movements
reached their maximum local divergence limits more quickly during perturbed walking. Overall,
the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the
different perturbation conditions. Conversely, the short-term local divergence exponents exhibited
less specificity in their responses, but were more sensitive measures of instability in general.
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INTRODUCTION
Our ability to remain stable while walking is challenged during many daily activities like
walking on an uneven sidewalk, or stepping off a curb or over an obstacle. Clinically, some
have measured gait variability as a possible indicator of stability. However, there is as yet no
universally accepted measure to directly quantify stability in terms of how people respond to
(either small or large) perturbations. Techniques from nonlinear dynamics provide direct
quantitative assessments of local dynamic stability and have demonstrated measurable
differences between healthy young and elderly people (Granata and Lockhart 2008; Kang
and Dingwell 2008) and between patient populations and healthy individuals (Dingwell and
Cusumano 2000; Dingwell et al. 2007; Yakhdani et al. 2010) during unperturbed walking.
However, how these measures of stability change when people are subjected to external
perturbations has not yet been determined.

Floquet multipliers (FM) and local divergence exponents (LDE) have been used to assess
orbital and local dynamic stability in humans during unperturbed walking (Donelan et al.
2004; Kang and Dingwell 2006; Dingwell et al. 2008; Kang and Dingwell 2008). FM
generally indicate that humans are orbitally stable (i.e. FM < 1) whereas LDE indicate that
humans are locally unstable (LDE > 0) during unperturbed walking (Dingwell et al., 2007).
However, it is not yet known to what extent either measure can be appropriately used to
assess gait. First, human gait is neither strictly periodic (a requirement of FM calculations)
nor strongly aperiodic (an assumption of LDE calculations). Second, FM and LDE are
strictly defined only for deterministic systems and all biological systems are inherently
stochastic. However, the finite-time modifications used to calculate FM and LDE do provide
reasonable estimates of the stability human walking even in the presence of these
limitations. It is yet to be determined if these measures of stability can quantify changes in
stability within a given individual, such as may be experienced with aging or when exposed
to a challenging ambulatory environment.

Virtual reality (VR) systems provide a safe environment in which to apply perturbations
during human gait, but still allow for a variety of types of perturbations to be applied (e.g.,
visual or somatosensory, in particular directions, etc). Changing aspects of the VR
environment such as the angle of visual projection or optical flow speed can induce gait
characteristics that are generally associated with more cautious walking, such as shorter and
wider steps (Nyberg et al. 2006; Hollman et al. 2007; Lamontagne et al. 2007). These
studies indicate the promise of using VR as a tool for studying changes in dynamic stability
during perturbed gait. Recently, O’Connor and Kuo (2009) exposed subjects to sinusoidal
oscillations of the visual scene and found that subjects were more sensitive in the ML than
the AP direction during walking. Their study focused on changes in variability rather than
direct measures of dynamic stability and left open the question of how stability measures
change when exposed to similar perturbations during walking.

We recently exposed individuals to continuous pseudo-random oscillations of either the
visual scene or support surface in a virtual environment with speed appropriate optical flow.
We knew these oscillations would make our subjects qualitatively more unstable. This was
confirmed by the fact that when our subjects were exposed to these perturbing
environments, they exhibited “cautious” gait characteristics, like shorter wider steps, and
they also exhibited increased movement variability (McAndrew et al. 2010). Our purpose
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here was to determine if these same qualitatively destabilizing oscillations could also evoke
measureable changes in dynamic stability, as quantified by Floquet multipliers and local
divergence exponents, during walking. We hypothesized that participants would be: 1) more
dynamically unstable when walking during continuous, pseudo-random perturbations than
without and 2) more dynamically unstable during mediolateral (ML) than during anterior-
posterior (AP) perturbations.

METHODS
A complete description of our experiment is given in McAndrew et al. (2010). In brief, we
collected data on 12 healthy young adults walking in a Computer Assisted Rehabilitation
ENvironment (CAREN) system (Motek, Amsterdam, Netherlands). While walking,
participants were exposed to continuous, pseudorandom oscillations of the support surface
or visual field. The 5 experimental conditions consisted of unperturbed walking (NOP),
anterior-posterior platform (APP) or visual (APV) oscillations, and mediolateral platform
(MLP) or visual (MLV) oscillations. The order in which each condition was presented was
randomized across subjects to minimize potential learning effects. Subjects walked at the
same speed for all conditions. Perturbations were applied as a pseudo-random sum of sines
equation with 4 incommensurate frequencies (0.16, 0.21, 0.24 and 0.49 Hz). Subjects
completed five 3-minute walking trials for each experimental condition.

A 24-camera Vicon motion capture system was used to collect kinematic data at 60 Hz.
Subjects wore 22 reflective markers (McAndrew et al. 2010). Four markers were placed on
each foot, the head and pelvis. The remaining 6 markers were placed on the acromium
processes, the C7 and T8 vertebrae, the sternum, xyphoid process.

Delay embedded state spaces (Gates and Dingwell 2009) were constructed for the AP, ML
and vertical (VT) velocities of the C7 vertebral marker using the original data and their time
delayed copies (Dingwell and Marin, 2006):

(1)

where S(t) is the dE-dimensional state vector, v(t) is the original 1-dimensional data, τ is the
time delay and dE is the embedding dimension. Time delays were determined from the first
minimum of the Average Mutual Information function (Fraser 1986), yielding average time
lags of 15, 20 and 10 samples for the AP, ML and VT directions, respectively. An
embedding dimension of dE = 5 (Dingwell and Cusumano 2000) was used for all trials, such
that S (t) ∈ ℛ5. For orbital stability analyses, C7 marker data from each entire trial were
used to construct the state spaces. For local stability analyses, 150 continuous strides of data
were re-sampled to 15,000 total data points, or approximately 100 data points per stride
(England and Granata 2007; Bruijn et al. 2009) prior to being delay embedded.

Floquet multipliers (FM) estimated orbital stability of the system, based on well-established
techniques (Hurmuzlu and Basdogan 1994; Nayfeh and Balachandran 1995; Hurmuzlu et al.
1996; Kuo 1999; Donelan et al. 2004). First, state spaces used to calculate FM (described
above) were divided into individual strides and then each stride was time normalized to 101
samples, corresponding to 0 – 100% of the gait cycle (Dingwell and Kang 2007). Poincaré
maps were then defined for each percent of the gait cycle as

(2)
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where S is the state of the system at stride k at each given Poincaré section (i.e., at each % of
the gait cycle). Fixed points for each Poincaré map were defined from the average trajectory
across all strides in a given trial, yielding:

(3)

The orbital stability of the system was then estimated from a linearized approximation of
equation (2).

(4)

Where for S ∈ ℛ5, J(S*) ∈ℛ5×5 is the Jacobian matrix for the system for each Poincaré
section (percent of the gait cycle). The first 4 eigenvalues of J (S*)defined the FM which
quantify how small perturbations grow or diminish for a given Poincaré section between one
cycle and the next (Hurmuzlu and Basdogan 1994; Nayfeh and Balachandran 1995;
Hurmuzlu et al. 1996; Kuo 1999; Donelan et al. 2004; Kang and Dingwell 2008). The last
(i.e., 5th) eigenvalue of J (S*) had a value of ~0 and was thus spurious (Kang & Dingwell,
2008). The magnitude of the maximum FM (maxFM) for each percent of the gait cycle was
then calculated. These maxFM were then averaged for each trial for statistical comparisons.
If maxFM < 1, perturbations on average shrink by the next cycle and the system is
considered stable. If maxFM > 1, perturbations on average grow by the next cycle and the
system is considered unstable.

Local dynamic stability was assessed by calculating local divergence exponents (LDE).
LDE quantify how neighboring trajectories in a state space evolve over time (Rosenstein et
al. 1993; Dingwell and Cusumano 2000). After finding the nearest neighbors, the average
logarithmic separation (i.e., divergence) between neighbors is calculated. LDE are then
calculated by using a least-square fit to estimate the slope of the mean log divergence
(MLD) curve:

(5)

where dj is the Euclidean distance between the jth pair of nearest neighbors after i discrete

time steps and 〈 〉 indicates the average over all j. Short-term  and long-term  LDE
were calculated as the slope of y(i) vs. i between 0 and 1 strides and between 4 and 10
strides, respectively (Kang and Dingwell 2008). Positive LDE indicate local instability.

Max FM and LDE values were computed independently for C7 marker velocities in the AP,
ML and vertical (VT) directions. Two-way analyses of variance (ANOVA) (Condition ×
Subject) and Tukey post-hoc analyses were used to assess statistical significance between
conditions for maxFM, . A p-value of 0.05 was considered significant.

RESULTS
Subjects’ C7 movements in the AP direction were orbitally more unstable during AP
perturbations than during the NOP condition (p < 0.001; Fig. 1 Left). There were no
significant changes in orbital stability during the ML perturbations relative to NOP (p =
0.963 for MLP; p = 1.000 for MLV). APP perturbations caused the greatest increases in
maxFM relative to all other conditions (p < 0.001). Subjects’ C7 movements in the ML
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direction were orbitally more unstable during the ML perturbations than during the NOP
condition (p < 0.001; Fig. 1 Middle). There were no significant changes in orbital stability
during AP perturbations (p = 0.753 for APP; p = 0.104 for APV). MLV perturbations caused
the greatest increases in maxFM relative to all other conditions (p < 0.001). Subjects’ C7
movements in the VT direction were slightly but significantly more orbitally stable during
all perturbation conditions than during NOP (APP, p = 0.032; APV, p = 0.009; MLP, MLV,
p < 0.001; Fig. 1 Right). Subjects were also more orbitally stable during MLP relative to
APP (p < 0.001) and during MLV relative to APV (p < 0.001). Overall, subjects exhibited
orbitally stable (i.e., all maxFM < 1) C7 marker movements in all directions for all
conditions.

MLD curves for C7 movements in the ML direction generally shifted up and to the left for
all perturbation conditions relative to NOP (Fig. 2). Thus, the slopes of these plots between
0 and 1 strides tended to be steeper during perturbation trials. Between 4 and 10 strides,
individual MLD curves became more variable and less “smooth” during the perturbation
conditions relative to NOP. On average, however, these MLD curves tended to be slightly
flatter (i.e., lower slope) in this 4–10 stride region. MLD curves for C7 movements in the
AP and VT directions (not shown) showed similar trends.

For C7 movements in all 3 directions, subjects demonstrated decreased short-term local
stability (increased ) during all perturbation conditions relative to NOP (p < 0.001; Fig. 3).
C7 movements in the AP and VT directions were more unstable during APP than the MLP
perturbations (p < 0.001), whereas C7 movements in the ML direction were more unstable
during MLP than APP perturbations (p < 0.001). Subjects exhibited greater  during MLV
than APV (p < 0.001) for C7 movements in all 3 directions. For C7 movements in both the
AP and VT directions, subjects exhibited the greatest instability in response to APP
perturbations (p < 0.001; Fig. 3 Left and Fig. 3 Right). Conversely, C7 movements in the
ML direction were most unstable during the MLV perturbations (p < 0.001; Fig. 3 Middle).

Subjects’ C7 movements in the AP direction were more stable long-term (decreased )
during all perturbation conditions than during NOP (p < 0.001; Fig. 4 Left). Subjects
exhibited significantly greater  during MLP perturbations relative to APP perturbations (p
= 0.013) and during APV perturbations relative to MLV perturbations (p < 0.001). Subjects’
C7 movements in the ML direction exhibited lower  during ML perturbations than NOP (p
< 0.001; Fig. 4 Middle). However, the AP perturbations yielded no significant changes in 
(APP, p = 1.000; APV, p = 0.337). Subjects exhibited greater  during APP than during
MLP perturbations (p < 0.001) and during APV than during MLV perturbations (p < 0.001).
Subjects’ C7 movements in the VT direction exhibited decreased  during all perturbation
conditions relative to NOP (APP, MLP, MLV, p < 0.001; APV, p = 0.038; Fig. 4 Right).
There were no significant differences between  during APP and MLP conditions (p =
0.570). Subjects exhibited decreased  during MLV relative to APV perturbations (p <
0.001).

DISCUSSION
Understanding how humans remain stable during challenging locomotor activities is critical
to developing effective tests to diagnose patients with increased fall risk. Imposing carefully
structured locomotor challenges in contexts like virtual environments may also provide
effective training interventions to reduce fall risk in these patients. The purpose of this study
was to determine if exposing subjects to different types of continuous pseudo-random
perturbations which destabilized their walking movements would evoke measureable
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changes in proposed measures of dynamic stability (i.e., Floquet multipliers and local
divergence exponents). In general, subjects exhibited direction-specific responses in
dynamic stability to these perturbations. Subjects were always orbitally stable (maxFM < 1)
and locally unstable (λ* > 0), consistent with previous results from unperturbed walking
(Dingwell and Kang 2007; Dingwell et al. 2007). These findings also directly extend those
of (McAndrew et al. 2010), who demonstrated that these same subjects also exhibited
“cautious” gait characteristics (e.g., shorter wider steps) and increased movement variability
when exposed to these perturbations.

Subjects exhibited direction-specific responses to perturbations in all stability measures
quantified. For example, subjects had significantly larger maxFM in the AP direction during
the AP perturbations but not during ML perturbations and significantly larger maxFM in the
ML direction during ML perturbations but not during AP perturbations (Fig. 1). In addition,
subjects appeared to be more sensitive to ML perturbations than to AP perturbations. For
example, maxFM for AP movements during APP perturbations increased by only ~ 0.2
above NOP, whereas maxFM for ML movements during ML perturbations increased by ~
0.4 above NOP. Thus, subjects’ stability changed more in response to a ML perturbation
than an AP perturbation. These results are consistent with the mean standard deviation
(meanSD) position results from this dataset, which indicated that in the ML direction,
subjects had significantly greater position variability than during the ML perturbations than
during the AP or NOP conditions (McAndrew et al. 2010). Moreover, these results are
consistent with both modeling predictions (Kuo 1999;Bauby and Kuo 2000) that suggested
humans are more unstable in the ML than the AP direction, and also with experimental work
that indicated increased metabolic cost for maintaining ML stability (Donelan et al.
2004;Dean et al. 2007).

Hobbelen and Wisse noted that one drawback to the ability of FM to reflect disturbance
rejection, or the ability to not fall, is that FM look only at very small perturbations to a
walker’s state space as opposed to the effects of real world disturbances (Hobbelen and
Wisse 2007). While their study focused on modeling and robotic applications, their
observation is also relevant to our study. Our FM results indicate that even small
perturbations to our subjects during the perturbed walking conditions would cause their
maxFM to increase significantly, particularly in the direction in which the perturbation was
applied (Fig. 1). Thus, it appears that in humans being exposed to real world perturbations,
FM do reflect an increased capacity to be disturbed during walking, or that they are more
unstable. While we do presume that decreased stability leads to increased risk of falling, we
did not test that directly in this study, since we did not apply perturbation large enough to
induce falls. The direct connections to actual falls should be explored in future research.

Su and Dingwell (2007) demonstrated that a 2-dimensional biped model walking down a
bumpy slope exhibited no significant changes in orbital stability as the irregularity of the
walking surface was varied across the range of feasible perturbations. The present study is
the first study to expose human subjects to similar continuous perturbations. Unlike Su and
Dingwell (2007) however, we found that while humans did not become orbitally unstable
while walking, they did experience significant increases in maxFM for C7 movements in the
same directions in which the perturbations were applied, indicating that human stability was
significantly affected by the perturbations (Fig. 1).

MaxFM results for ML movements demonstrated that the ML perturbations induced
decreased orbital stability relative to NOP, while AP perturbations induced no changes in
orbital stability (Fig. 1). This was anecdotally consistent with subjects’ perceptions, which
were that the ML perturbations were more challenging conditions in which to walk. This is
noteworthy because it further supports the possibility of maxFM as a clinically relevant
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measure of walking stability. Previous work suggests that maxFM measures might detect
differences between age groups (Granata and Lockhart 2008;Kang and Dingwell 2008), but
otherwise my not be sensitive enough for clinical use. The effective ‘dose-response’
relationship between perturbation magnitude and stability responses was not determined in
this study, however. Such relationships should be explored in future studies for
rehabilitation applications.

Subjects were locally unstable during all experimental conditions in this study including
NOP. The  (Fig. 3) indicated direction-specific responses that were similar to those
observed in the orbital stability results (Fig. 1), with the greatest responses being to those
perturbations acting in the same directions as the movements analyzed. However, 
indicated de creased stability during all perturbations relative to NOP. This finding supports
previous work indicating that  is more sensitive than maxFM to changes in stability in
both humans (Dingwell and Kang 2007) and dynamic walking models (Su and Dingwell,
2007). It is also consistent with the variability and gait parameter results of this study which
indicated that gait parameters were affected during all perturbation conditions relative to
NOP (McAndrew et al. 2010).

The increased maxFM and  indicated greater instability of participants during perturbed
walking. However, during the perturbed walking trials, relative to walking normally, these
subjects also exhibited decreased  (Fig. 4). One reason for this is that during the perturbed
walking conditions, the MLD curves (Fig. 2) from which  are derived, generally
shifted up and to the left. Because no subject fell down, the total magnitude of the
divergence is expected to remain bounded. Therefore, as the MLD curves become steeper
over the  range, it is no surprise that they also become flatter over the  range. Together,
both changes indicate that subjects’ movements reached their maximum local divergence
limits more quickly during perturbed walking. This is precisely what we observed.

This also suggests that choosing ranges other than 0–1 and 4–10 strides for calculating
, respectively, might be more appropriate for the perturbed walking conditions.

However, changing the ranges over which  are calculated would potentially
confound attempts to make appropriate comparisons across conditions. Likewise, we
emphasize that these  do not represent true “Lyapunov exponents” (Dingwell and
Cusumano, 2000) and so assessing the degree of linearity of the fits to the MLD curves (Fig.
2) is less critical for our analyses. These  exponents calculated here still provide
valid estimates of the average local instability observed over the ranges indicated. Our
results thus imply that changes in  may exhibit an inverse relationship during
perturbed walking.

The trends in the VT direction results for this study were notably different from those in the
AP and ML directions. MaxFM and  both indicated increased stability for VT C7
movements during all perturbation conditions relative to NOP (Figs. 1 and 4). With respect
to the latter, the results are similar to the AP direction  results. However, in this study we
did not apply comparable perturbations in the VT direction and so the physical interpretation
of these results is not immediately obvious. These changes likely resulted in some way from
the mechanical coupling between the AP, ML, and VT movements of the C7 marker.

Defining an appropriate state space for performing orbital and local stability calculations is
important (Gates and Dingwell 2009). Here, we used delay embedding (Dingwell and
Cusumano, 2000) of the C7 velocity data. The perturbations applied in this study caused
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subjects to move around on the treadmill significantly. This introduced nonstationarities into
their movements that made it inappropriate to use displacement coordinates as state
variables (Dingwell and Marin 2006). Computing accelerations numerically from raw
position data introduces significant noise, which is also problematic. Thus, for this
experiment, using delay embedding of the velocity time series achieved the best balance
between stationarity and noise in the resulting state spaces.

In conclusion, subjects experienced decreased orbital and short-term local dynamic stability
in a direction-specific manner when walking during the continuous pseudo-random
perturbations applied in the present study. Our results indicate that orbital dynamic stability
can be influenced in humans by applying pseudo-random perturbations during walking and
that these changes are consistent with subjects’ perceptions of which perturbation conditions

are the most challenging in which to walk. Short-term local stability  measures were
more sensitive than orbital stability measures, but also detected strong direction-specific

responses to perturbations. Conversely, long-term local dynamic stability  appeared to
improve during perturbations. However, this was consistent with the idea that when subjects
do not overtly fall, their movements will remain at least loosely bounded and therefore so
will the magnitudes of their resulting MLD curves (Fig. 2).
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Figure 1.
Floquet multipliers for each test condition for C7 marker movements in the AP, ML and VT
directions. Each “*” indicates a statistically significant difference from the NOP condition at
p < 0.05. Symbols are as follows: “×” indicates perturbations in the AP direction; “○”
indicates perturbations in the ML direction and “■” indicates NOP.
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Figure 2.
Average mean log divergence (MLD) curves for ML movements of the C7 marker for all
perturbation conditions. In each sub-panel, squares (“□”) indicate the specified perturbed
condition. For comparison, circles (“○”) indicate the unperturbed (NOP) condition, which is
the same in each panel. Error bars indicate between-subject ±1 standard deviations.
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Figure 3.

Short-term local divergence exponents  for each test condition for C7 marker
movements in the AP, ML and VT directions. Each “*” indicates a statistically significant
difference from the NOP condition at p < 0.05. Symbols are as follows: “×” indicates
perturbations in the AP direction; “○” indicates perturbations in the ML direction and “■”
indicates NOP.
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Figure 4.

Long-term local divergence exponents  for each test condition for C7 marker movements
in the AP, ML and VT directions. Each “*” indicates a statistically significant difference
from the NOP condition at p < 0.05. Symbols are as follows: “×” indicates perturbations in
the AP direction; “○” indicates perturbations in the ML direction and “■” indicates NOP.
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