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Abstract
Rhesus is the clinically most important protein-based blood group system. It represents the largest
number of antigens and the most complex genetics of the 30 known blood group systems. The
RHD and RHCE genes are strongly homologous. Some genetic complexity is explained by their
close chromosomal proximity and unusual orientation, with their tail ends facing each other. The
antigens are expressed by the RhD and the RhCE proteins. Rhesus exemplifies the correlation of
genotype and phenotype, facilitating the understanding of general genetic mechanisms. For
clinical purposes, genetic diagnostics of Rhesus antigens will improve the cost-effective
development of transfusion medicine.
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1. Introduction
Molecular biology has been applied extensively in characterizing the genetic basis of blood
group systems and developing clinical diagnostic tools for immunohematology and
transfusion medicine1–4. There are now 51 antigens within the Rh system and more than
200 alleles for the RHD gene alone. RHD zygosity has been resolved, epitopes have been
mapped, and many D variants with altered antigens have been identified. The relationship
among the RH family members in various species contributes to our understanding of their
biological importance 5.

Based on the homology of Rh polypeptides to the ammonia transporter AmpB,
computational analyses have modeled the 3D structure of the RhD polypeptide to learn
about additional potential functions of Rh polypeptides 6. The reason for this interest is that
RHAG, a gene located on chromosome 6 (6p11–p21), shares an identical exon structure and
major regions of sequence identity with RHD/RHCE. Moreover, RhAG is essential for the
expression of the Rh polypeptides and was identified in 2008 as the latest blood group
system, no. 30, in its own right 7.
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To date, the function of RhD and RhCE appears associated with membrane integrity, and
possibly transport of gases like carbon dioxide. On the other hand, the Rh-associated
glycoprotein (RhAG) can transport ammonia 8, but whether it does so in red blood cells
(RBCs) is debated. Also, RhAG may contribute to gas exchange across the plasma
membrane, and its mutations are associated with hereditary stomatocytosis 9. Thus,
expression of Rh polypeptides and associated proteins is complex, and molecular
discoveries have broadened our understanding of this important blood group system. This
review summarizes the progress that molecular analyses have made in furthering clinical
applications for Rh.

Three clinically useful discoveries have been made since the cloning of RHCE and RHD: 1)
the molecular basis underlying the common Rh-negative haplotype and the nucleotide
polymorphisms associated with the common Rh antigens have been applied to predict risk
for hemolytic disease of the fetus and newborn (HDFN); 2) the molecular distinction of
partial D and weak D alleles, DEL, RHD-pseudogenes, and the RHD-deleted genome; and 3)
the molecular basis of D antigen epitope expression on the RhCE polypeptide.

Recently efforts by a few independent research laboratories have begun to more fully
characterize the molecular basis of RhCE variants and the allelic variation of RHCE. The
results are applied to improve transfusion support for sickle cell disease (SCD, see a separate
review in this issue) and to identify the deficiencies of monoclonal antisera in assigning
antigen status accurately. It is now apparent that molecular analyses are the most accurate
way to define the complex RH and other blood group systems. In a steadily increasing
number of clinical settings, these molecular approaches facilitate preventing blood group
incompatibilities, avoiding alloimmunizations and hemolytic transfusion reactions, and
contributing to optimal RBC survival in transfusion-dependent immune disorders.

2. Molecular Basis of RH
RH is a bigenic locus comprising RHD and RHCE positioned in a tail-to-tail orientation
toward the end of the short arm of chromosome 1 (p34–36). Another gene, SMP1, is
interspersed between both RH genes in close proximity to the 3’ end of RHCE (Figure 1) 10;
this minute technical feature was instrumental in resolving the physical structure of the RH
gene locus 11. Identification of the single murine equivalent in the mouse genome project
provided evidence that RHCE evolved from the ancestral RH on the basis of the position and
orientation of murine genes in the region (Figure 1). Therefore, RHD arose from a
duplication event that predates modern humans 12. During the duplication event, and
possibly associated with its cause, two approximately 9,000 base-pair-long homologous
repeat sequences, termed Rhesus boxes, were likely introduced that flank the RHD gene in
the genomes of modern humans. RHD was lost from the genome through unequal crossing
over involving the upstream Rhesus box and downstream Rhesus box (Figure 2), an event
that may have occurred more than once. RHD and RHCE share sufficient sequence
homology that RBCs function normally when no RHD gene is inherited. Why the RHD-
deleted genomes have persisted to this day and become more prevalent is the topic of much
worthwhile debate and some esoteric speculation 13,14.

More than 200 RHD alleles have been reported and may be grouped according to serological
and molecular features (Table 1). Most of the alleles harbor either single nucleotide
polymorphisms (SNPs) or present as RHD/RHCE hybrid alleles. The tail-to-tail orientation
(Figure 3) may facilitate the large number of alleles; the identification of corresponding
nucleotides in both genes suggests that most hybrid alleles arise through gene conversion
events. A clinical benefit of the molecular characterization of the RH locus is that RHD
zygosity can be assigned with near certainty. In the past, Rh haplotype tables based on

Flegel Page 2

Transfus Apher Sci. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



serological analyses were used to predict the ‘most probable genotype’ and thus RHD
zygosity for Caucasians and African Americans.

3. Modeling of Rh Polypeptides
The Rh proteins belong to the ammonium transport (E. coli AmtB)/methylammonium
permease superfamily. Initially, molecular modeling of both Rh proteins and the RhAG
protein on the crystal structure of E. coli AmpB suggested that the Rh proteins and RhAG
form trimers in the red cell membrane, and may therefore function as ammonium transport
proteins 15. A few independent investigators have shown that RhAG facilitates ammonium
transport in yeast and Xenopus oocytes without co-transfection of RhD and RhCE
polypeptides 8. Similar ammonium transport activity was shown directly in erythrocytes 16.
However, RhD and RhCE do not appear to transport ammonium or carbon dioxide; key
amino acid substitutions in the transmembrane channel do not appear to meet the
requirements for facilitating transport 17.

The model of red cell Rh proteins is consistent with the 6 exofacial loops that were first
proposed on the basis of computational hydropathy plots 18. A critical component of the
structure of RhD and RhCE is the amino acids that reside in the extracellular Rhesus
vestibule of the channel formed by the transmembrane regions (Figure 4) 19. A few studies
have shown that amino acid changes in the vestibule alter the molecular structure
sufficiently to make persons susceptible to the formation of anti-D, although their red cells
phenotype as Rh-positive 19,20. Thus, molecular studies have convincingly confirmed the
hypothesis of Tippett and coworkers that some D variants lack the expression of some D
antigen epitopes and can permit an immune response to the missing parts 21.

4. Molecular Classification of Rh Phenotypes
RHD and RHCE share regions of identity, with the translated RhD polypeptide differing at
up to 36 amino acid positions depending on which RhCE polypeptide it is compared with.
Both Rh polypeptides comprise 12 transmembraneous protein segments and 6 extracellular /
intracellular loops (Figure 4). Historically, serologic studies classified the D antigen into six
major categories (DII through DVII, with DI being obsolete). Three epitope models were
proposed comprising 9-epitopes or 37-epitopes or the combination of both based on the
serological reaction pattern of > 80 monoclonal anti-D antibodies 22,23. Many variants
express altered D antigen, but no absolute correlation exists between phenotypic expression
and clinical relevance of RHD alleles. RHD alleles have been classified on the basis of their
phenotypic relationship to the molecular variation: partial D, weak D types, DEL, and
nonfunctional alleles 24,25.

partial D
The classification of partial D variants is based on the premise that certain amino acid
substitutions on an extracellular loop affect linear D epitopes or, more often, the 3-
dimensional conformation of that loop. Many partial Ds are identified using monoclonal
antibodies that target specific domains or loops on the surface of the erythrocyte 26. The D
categories (DII to DVII) represent a subset of all partial Ds. DII and DVII are caused by
single extracellular amino acid substitutions, while DIII, DIV, DV, and DVI are caused by
RHD-CE-D hybrid alleles and comprise several subtypes each. The classification as partial
D is of clinical relevance because carriers often produce anti-D upon exposure to the normal
D antigen R 27.

The inclusion of D categories among partial D makes intuitive sense, because they share the
common feature of exofacial amino acid substitutions in different spatial arrangements.
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However, for many partial D, anti-D immunization events are apparently rare, and for
several partial D there has been no observation of any patient with anti-D so far. These facts
are compatible with the conclusion that carriers of several distinct partial D may be at a very
low or no risk of anti-D immunization.

weak D
A weak D type is a variant of the RhD protein that comprises an amino acid substitution
located in the transmembraneous or intracellular segments and expresses a reduced amount
of D antigen (generally less than 5,000 D antigens per RBC) 28. A group of 16 distinct weak
D types were described originally, but the total number of weak D types including their
subtypes now exceeds 80. The substitutions are thought to cause folding problems during
integration of the protein into the RBC membrane, which can impede protein integration,
affecting palmitylation or anchoring of the polypeptide to the RBC cytoskeleton 29. Hence,
the amount of D antigen expressed on the RBC surface is quantitatively reduced, but the D
antigen itself remains, by-and-large, qualitatively unchanged. Therefore, the normal D
antigen is not usually immunogenic 28,30–36.

Like the mentioned exception for several partial D that cannot be immunized, there is an
exception for some weak D types. Anti-D immunization in weak D carriers is rare, but there
are exceptions: examples include weak D type 15, weak D type 4.2, also known as DAR,
and weak D type 7 37–39. The weak D types 1, 2, 3, and 4.0/4.1, which are the most
prevalent in any European and Caucasian population, represent more than 95% of all weak
D types. To date, more than 10 years after their molecular description, the literature has not
documented any carrier of weak D types 1 through 4.1 being alloimmunized and producing
allo-anti-D. Those observed produce low titer antibodies of autoantibody nature. The
observation that the common weak D types fail to make allo-anti-D is particularly relevant
in the prevention and management of anti-D alloimmunization in pregnancy, which we will
address in detail below.

DEL
A very weakly expressed D antigen is called DEL (formerly Del) because it was originally
detected only if anti-D adsorbed and then eluted from RBCs. Thus, the D antigen detection
is by elution only (DEL). Typically, RBCs with DEL express 200 or fewer copies of the D
antigen per RBC 40.

The most common DEL is caused by the RHD(K409K) allele harboring the C1225A
nucleotide substitution in exon 9 41. Because it is very prevalent in D negative Asians, it has
been dubbed the “Asian type” DEL 36. This substitution is a silent single nucleotide
polymorphism (SNP), i.e. the amino acid lysine (K) at position 409 remains unchanged.
However, the substitution causes missplicing mRNA such that the complete full messenger
mRNA has never been documented and at most represents a very minor form of transcript
for translation 42.

Other DEL alleles have underlying molecular changes that cause more pronounced effects
than in weak D and strongly impede but do not completely abrogate membrane integration
41,43–45. Even combined, all DEL phenotypes are rare in Europeans. Up to 30 % of
seemingly D-negative East Asian people carry the DEL RHD(K409K), but other DEL alleles
are also more frequent in Asia than in Europe.

DEL is of interest worldwide because of its potential to cause anti-D alloimmunization when
DEL-positive blood donors are inadvertently labeled as D negative 46. In addition, DEL
alleles can cause genotype-phenotype discrepancies and should be taken into consideration
when fetal blood group genotyping methods depend on the ethnicity of the parents
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31,33,47,48. The fetal inheritance of DEL would not be considered a risk of hemolytic
disease of the fetus and newborn (HDFN).

D negative
The most common D negative haplotype in all populations is caused by the deletion of the
whole RHD gene with the concomitant presence of the hybrid Rhesus box (Figure 2).
However, other D negative haplotypes exist 49,50. Some individuals who are D negative can
harbor a nonfunctional RHD allele. One of the first nonfunctional RHD alleles was termed
RHD pseudogene (RHDψ). Since that time, several RHD-CE-D hybrid alleles have been
reported, including Cdes with its characteristic hybrid RHD/CE exon 3 (Table 1). Both
nonfunctional alleles occur rather frequently in African populations. Less common D
negative alleles are caused by a host of different hybrid RHD-CE-D alleles or nonsense and
frame shift mutations 41,51. It is important to note that the distinction between apparent D
negative and DEL phenotypes by serology may be somewhat arbitrary. But the clinical
significance is not: DEL blood transfused to D negative transfusion recipients is
immunogenic, and the common “Asian type” DEL is not prone to making anti-D after its
carrier is transfused with normal D positive RBC units. Therefore, in Asian populations, in
whom D negative blood is rare, identifying DEL transfusion recipients (approximately 1/3
of all serological D negative) could significantly reduce the demand for Rh-negative blood
42,52,53.

Rhnull
The lack of both RhD and RhCE proteins may be caused by the inheritance of two
nonfunctional RHCE alleles in the background of an RHD deleted haplotype. This
constellation gives rise to the amorph type Rhnull phenotype (lack of any Rh protein), in
which neither D nor CE antigens are expressed 54,55. Alternatively, because the expression
of either Rh protein requires the presence of RhAG for appropriate assembly on the RBC
membrane, defects in RHAG alleles cause the lack of both RhD and RhCE proteins. This
biological background explains why defects in RHAG alleles cause the regulator type Rhnull
phenotype (lack of expression of Rh protein), in which D and CE antigens may be
undetectable but are in principle expressed 56.

Rhnull alloimmunization in pregnancy can be extremely difficult to manage in the setting of
HDFN, largely due to the lack of compatible allogenic blood. Maternal blood has been used
as a source of blood for the fetus and neonate 57.

RhCE variants
Partial antigens have been reported for the common RhCE antigens; C, c, E, and e, although
several RHCE alleles have been characterized and many other alleles may exist 58–68.
Moreover, as with partial D, carriers of partial CE antigens can make antibodies to epitopes
that are missing on the variant RhCE protein. Unlike RHD, RHCE is not often deleted.
Therefore partial CE antigens are less obvious from serology, because they are covered by
the regular RhCE protein from the second chromosome. For example, erythrocytes
expressing an e variant may be assumed to be E homozygous. Few people carry these
variants, which is one reason that alloimmunization is uncommon. The clinical relevance of
RhCE variants may be more appreciated once molecular analysis allows deeper insight into
their associated immunization events, like, for instance, in sickle cell disease (SCD) patients,
in pregnancies, and in chronically transfused patients.
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5. RHD Phylogeny
The phylogenic study of RHD alleles delineated 4 clusters: the Eurasian D cluster with the
consensus RHD (Genbank mRNA accession NM_016124.3), the most common allele
expressed in humans, and three African clusters designated DIVa, DAU, and weak D type 4.
Clusters are defined by an allele that differs from the consensus RHD allele and comprise
many alleles that gained additional amino acid substitutions 69. As the genetic characteristics
are unraveled and we gain more information about RHCE alleles (Genbank mRNA
accession NM_020485.3) and their linkages to specific RHD alleles in haplotypes, the actual
phylogenic tree will become more complete and well defined 19.

For example, it is expected that a few distinct RHD alleles are associated with RHCE alleles
lacking hrS or hrB expression, and it may be possible to identify specific non-sister
chromatid exchanges between haplotypes through such studies. On the other hand, there are
examples of similar alleles that arose from independent gene conversion events within the
Eurasian D cluster. Some DV alleles appear to have been caused by random or independent
molecular events, and for these reasons, the DV group of partial D is not defined as a cluster
70.

6. Population Studies
It is apparent from systematic studies in African populations as well as sporadic
observations in alloimmunized patients, as in those with SCD, that the allelic variation
among Africans is much larger and more variable than in any other population. The reason
for the presence of so many RH alleles in Africans remains unknown. Identifying a potential
selective pressure or advantage may shed light on the function of Rhesus. The prevalence of
distinct alleles in South Africans and West Africans also differs, and has not been fully
evaluated, while studies from East Africa are largely lacking.

Europeans and East Asians share a small and overlapping subset of the African alleles called
the Eurasian D cluster. The primordial alleles of this cluster are of African origin and are
still fairly prevalent in African populations. The Eurasian D cluster may have more known
alleles than the other 3 clusters combined but this almost certainly represents an observation
bias and hints to the host of yet-to-be discerned alleles in all populations. Arab and Indian
peoples represent the largest populations for which Rhesus gene polymorphisms have hardly
been explored.

More clusters may be characterized, because two “orphan” alleles are known, which may
represent the primordial alleles for two novel D clusters. Other topics for further research are
the nucleotide sequence diversity beyond the coding region of RH alleles and the linkage of
RHCE alleles to RHD alleles.

The prevalence of alleles in the Eurasian D cluster 69 differs widely between the European
and East Asian populations. For example, weak D type 15 and 17 are common in East
Asians and rare in Europeans, while the prevalent “European” weak D types 1 to 4.1 are
rarely encountered in East Asians. A random survey has identified additional diversity
within exon 5 of RHD, which seems to be the region with the largest allelic variation, but
this may be another observation bias. Prudently devised population studies have proved to
be instrumental and worthwhile for research in Rhesus and much of its current clinical
application, but they are not often chosen for funding.
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7. Clinical Applications
Evaluation of anti-D alloimmunization in pregnancies

It is important to recognize that, in spite of our efforts in the last 50 years, anti-D
alloimmunization still occurs in 1:2000 D negative pregnancies, a number that seems to defy
further reduction. Apart from the lack of appropriate prophylaxis, the reasons for anti-D
alloimmunization include the inappropriate administration of prophylaxis, pre-
alloimmunization due to maternal-to-fetal transmission of D positive blood, early
transplacental passage of fetal cells in the pregnant woman, and administration of DEL
positive RBC units. But the source of a potential immunizing event often is not explored
and, hence, is unlikely to be recognized. Advances in preventing anti-D alloimmunizations
can be realized by ongoing surveillance of anti-D immunization in D positive recipients and
identification of the root cause 71.

Prenatal diagnostics
Fetal RHD genotyping is performed routinely as part of the management of HDFN. Most of
these cases are still caused by anti-D in D-negative women, although it may occur in women
with partial D as well 72,73. The use of amniotic fluid-derived DNA to predict of fetal D and
other blood group antigens is very reliable and has been the method of first choice for more
than 10 years 74. Obtaining fetal tissue by amniocentesis avoids the high-risk procedure of
taking blood from fetal cord for blood group testing. However, amniocentesis will likely be
abandoned in favor of an even safer procedure, testing of fetal DNA derived from mother’s
peripheral blood 75,76.

Cell-free fetal DNA in maternal plasma
The sensitivity of quantitative or real-time PCR in detecting cell-free fetal DNA in maternal
peripheral blood was proposed in 1998 77,78. This fetal DNA represents rather small DNA
fragments 79,80 found in maternal plasma, derived from fetal cells that are exposed to the
maternal circulation. The advantage of cell-free fetal DNA is that this DNA is essentially
cleared from maternal blood within hours after birth 81. Any fetal cell with its cellular DNA
that may remain in the mother’s circulation for years is not tested at all. Several laboratories
in various European countries have successfully implemented this technology to identify
pregnancies at risk of HDFN, and algorithms have been devised to withhold RhIg
prophylaxis for the RHD gene negative pregnancy 82–85.

Decision to administer RhIg in pregnancy 86

Pregnant women with the prevalent weak D types 1 to 4.1 may be transfused with D positive
blood, and there is no indication for RhIg prophylaxis. In fact, the risk of alloimmunization
of these weak D types is so low that the potential risks of unknown infectious agents or other
adverse effects of RhIg prophylaxis should be considered as equally risky; this limited
exposure approach has been taken with neonatal transfusion and to a lesser extent in adults.
In terms of cost, RHD genotyping performed early in the first pregnancy may spare woman
several RhIg exposures and may be implemented at a cost-neutral endpoint 73,87.
Furthermore, utilizing RHD genotyping tests would identify women with rare weak D types
who are prone to anti-D immunization and would benefit from RhIg prophylaxis.
Transfusion medicine guidelines currently do not address this issue in any health care
system, but a handy decision tree has been proposed to address this problem from a practical
standpoint 88.
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Monoclonal anti-D as therapeutics
Recombinant engineering has been used to design anti-D with the same variable region
genes, i.e. identical epitope specificity, and Fc portions that do not elicit red cell
sequestration, in effect to producing potential ‘drugs’ to prevention immune destruction of
red cells in utero by the fetus 89. Potentially, these or similar anti-D can be produced with
recombinant technology and substitute for human blood-derived RhIg preparation 90. It
would be worthwhile to use such drugs in a clinical setting in the not-too-distant future.
Further, the use of these molecular techniques is not limited to Rh antigens.

RHD zygosity in HDFN
The accurate determination of zygosity is important in the perinatal care of anti-D
alloimmunized women and the study of Rhesus variants. Given today’s world migration
patterns and inter-racial marriage rates, it is more accurate to evaluate RHD zygosity than to
rely on limited ‘most probable genotype’ tables or calculations. Zygosity can be determined
on the basis of 1) detection of the hybrid Rhesus box harboring the chromosomal breakpoint
for the RHD deletion 11,74,91,92 and 2) quantitative PCR to determine RHD dosage. Both
techniques are complementary and require proper controls. Altered hybrid Rhesus boxes can
confound zygosity as can the presence of non-functional RHD alleles. Long-range high-
fidelity nucleotide sequencing encompassing a long stretch across the RHD breakpoint 11

produces the least error, but it is technically challenging and hardly ever used in clinical
applications.

The serological approach used the expression of the common Rh antigens to determine the
‘most probable genotype’ on haplotype tables published up to the 1970s. This approach
should be abandoned, because exact empirical data for local populations are largely lacking
and any molecular technique is more specific. Thus, this limitation of accurately assigning
RHD zygosity was overcome by the genetic characterization of the RHD-deleted genome
and the discovery of Rhesus boxes 11.

Methods that identify the RHD deletion, either directly or indirectly, can be used to
determine the RHD heterozygous father. Therefore, a mother with an allo-anti-D can be
assigned either a 50 % or 100% chance of conceiving a D-negative fetus 93. This genetic
information can be used to determine whether to apply either invasive or non-invasive tests
to predict fetal inheritance of RHD.

Exalted D antigen expression
The lack of expression of the RhCE polypeptide 94 can cause an exalted expression of the D
antigen. Expression of D epitopes by hybrid RHCE-D-CE alleles is another mechanism.
Such RBC represent excellent reagents for anti-D antibody screening. Moreover, when
exalted D antigen expression is found serendipitously, the nucleotide change leading to the
RHCE null allele should be evaluated to gain a better understanding of the types of
molecular changes leading to nonfunctional alleles or hybrid RHCE-D-CE alleles.

Molecular identification of partial D versus weak D types in patients
Problems with determining Rh status are most often associated with a restricted number of
prevalent RHD alleles. D discrepancies observed in the transfusion service laboratory
include carriers of RHD alleles who can be immunized by the normal D antigen 30, but also
include alleles that are not known to make anti-D. Therefore, the distinction is clinically
relevant. It is important to realize that monoclonal anti-D reagents have variable reactivity
with both partial D and weak D types, so they cannot reliably distinguish partial D from
weak D types. Generally, the reagents detect most D category and partial D RBC in the
direct agglutination phase of testing. Molecular techniques not only prove limitations of
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serology with polyclonal and monoclonal anti-D, they also meet the clinical need to
distinguish partial D from weak D types and normal D from D negative.

Antibody investigations in the 1960s identified D category VI (DVI) as the most important
allele at risk for D antigen alloimmunization in D positive patients. Later on a strategy was
developed to deem DVI as D negative among Europeans 95. In the late 1980s, monoclonal
anti-D reagents developed for use in direct hemagglutination tests allowed separation of
DVI RBC from normal D positive RBC, a discovery that was not part of a purposeful
design. By 1995, monoclonal anti-D reagents that do not detect DVI were widely accepted
for use in routine D typing 95. Using this strategy, the DVI transfusion recipient and
pregnant woman are typed “false negative” to avoid transfusion with D positive blood and
anti-D immunization is prevented 96. Many other partial D variants, like DIV, could benefit
from the same serological reagent design strategy 97. Moreover, some oligoclonal anti-D
(mix of two or more monoclonal anti-D) reagents are very useful for donor typing, but they
should be used judiciously in the transfusion laboratory and prenatal testing. We do not
recommend using human polyclonal anti-D or polyclonal/monoclonal anti-D for any routine
serological test.

Transfusion recipients
In contrast to the immunized carriers of partial D, anti-D alloimmunizations in weak D type
1 to 3 and 4.0/4.1 have not been observed. These alleles are the most common and together
comprise more than 95 % of all weak D types in European or Caucasian populations.
Transfusion recipients and pregnant women harboring these weak D types may be safely
transfused with D positive blood. This may save up to 5% of D negative units, which are
generally in short supply and should be reserved for patients who benefit from these D
antigen matched transfusions 39,98,99. Of note, in African populations approximately 50 %
of the weak D types are weak D type 4 subtypes. One of them, the weak D type 4.2, also
known as DAR, permits anti-D immunization and requires D negative transfusion in carriers
and RhIg prophylaxis in pregnancy.

Transfusion recipients with DEL
The corollary to the transfusion of D positive RBC to weak D patients is the transfusion of
normal D positive RBC to DEL patients. In this setting, the risk of alloimmunization is
theoretically nil. In Asian populations, where D-negative blood is in short supply, it should
be safe to use D positive blood in the DEL transfusion recipient. Adopting such a policy
would lessen the demand for rare D negative blood, which is found in less than 1 % of Asian
populations. Transitioning a third of all patients currently classified as D negative to the
group of transfusion recipients who can safely receive D positive RBC is a significant step.
Additional evidence needs to be gathered, but current results are very encouraging 42,52,53.
The “Asian type” DEL needs to be specifically detected as other DEL types are known or
likely to be at risk of immunization.

Genetic diagnostics in specific diseases
Immunohematology investigations of transfused patients who have auto- and allo-hemolytic
anemias are difficult to perform and often standard serology is not possible 74,100–102.
However, genetic typing can distinguish whether anti-D is alloor auto-immune in nature or
whether an apparent null allele is present instead a case of antigen masking.

Blood donors
RHD genotyping in donors is beneficial to transfusion recipients, because it can exclude
weak D and DEL donors among apparent D negative blood donors 41. It is becoming
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obvious that determining a donor’s phenotype and genotype is a more powerful quality tool
than two or more serological tests alone. Without such phenotype/genotype detection
algorithms, transfusion recipients of weak D and DEL positive blood units have been anti-D
immunized 31,45,48,103, an issue of significant practical relevance 47,98. Another potentially
serious risk is posed by serologically D negative donors who are D positive/D negative
chimeras. These individuals carry few D positive red cells, albeit with normal expression,
such that a single RBC unit transfusion contains as many RhD polypeptides as 10 mL of
‘normal’ D positive blood. Therefore, these transfusions are capable of causing an anti-D
immunization 41 even though the D positive RBC are not detected through routine
serological methods 47.

Mass scale genotyping
No blood group system is as complex as the genetic basis of RH. The sheer number and
complexity of alleles among various populations make it challenging to develop a
comprehensive tool to identify all clinically relevant alleles. Mass scale genotyping may be
an appropriate solution for widespread use in different clinical settings 47,98,104,105, and
several such mass scale applications have been developed 106–109. Modifications to the
current static high-throughput technologies will address genotyping of large donor and
patient cohorts and the ‘dry matching’ of genotyped units 110. Furthermore, the computer
systems to match donors and patients must be modified to present the appropriate allelic
information; current commercial clinical database systems that house serological
information are not particularly suitable.

8. Future Perspectives
Applications using genetic analysis of blood groups have become a reality in transfusion
medicine 111–115. The way the genetic results are used is not different than with serological
testing, and no new legal or ethical issues have been raised 74. Pregnant women expressing
weak D type alleles or carrying D negative fetuses, which can be specifically detected by
RHD genotyping, may be spared RhIg prophylaxis 52. This policy could lower their overall
health care bill while avoiding potential risks associated with RhIg and be implemented at a
cost equal to current practice 75,99. Such a strategy may involve some initial costs given that
blood group genetic testing has yet to be implemented to a significant degree in most
transfusion service laboratories. However, the genetic analysis of donor blood groups can
avoid the transfusion of foreign antigens that can illicit red cell alloimmunization in
transfusion recipients.
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Figure 1. Duplication of the RH gene and loss of the RHD gene
The ancestral configuration is shown as represented by the RH gene locus in mouse. The
single RH gene is in close proximity to the three genes SMP1, P29-associated protein (P),
and NPD014 (N). A duplication event introduced a second RH gene in reverse orientation
between N and SMP1. At the two break points in front and behind the RHD gene, DNA
segments of approximately 9,000 base pairs (bp) occur. Both DNA segments are flanking
the RHD gene and dubbed ”upstream Rhesus box“ and ”downstream Rhesus box“. In the
RHD positive haplotype, the RHD gene may have been lost by a recombination event (see
Figure 3).
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Figure 2. RHD deletion
An unequal crossing over event between an upstream Rhesus box and a downstream Rhesus
box caused the RHD deletion. If one of the two crossed-over chromosomal threads are
resolved, an RH gene locus results that lacks the RHD gene completely and harbors a hybrid
Rhesus box.
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Figure 3. RHD/RHCE hairpin formation
The schematic diagram depicts the mechanism of gene conversion at the Rhesus gene locus
on one chromosome. (i) The RHD and RHCE genes are inversely orientated, which is
typical for clustered genes. (ii) A hairpin formation of the chromosome would generate the
close proximity of homologous segments in identical orientation. This structural feature is
generally instrumental in gene conversion events in cis. (iii) Resolving the hairpin yields an
RHD-CE-D hybrid gene structure, many of which have been observed to date at the RH
gene locus. The RHD-CE(4–7)-D hybrid exon structure shown here is an example. Modified
from Wagner et al., licensee BioMed Central Ltd. Reprinted with permission.
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Figure 4. Model of Rhesus proteins in the red blood cell membrane
Both Rhesus proteins comprise 417 amino acids, shown here as circles. Mature proteins in
the membrane lack the first amino acid. The amino acid substitutions that distinguish the
RhCE from the RhD protein are marked in yellow, with the 4 amino acids that code for the
C antigen in green and the one that codes for the E antigen in black. The single amino acids
substitutions which code for partial D are in blue, and those that code for weak D are in red.
The mutations that had been identified at the Ulm Institute since 1999 are in light blue and
orange. The extracellular Rh vestibule is depicted by the inverted black arc and bordered in
part by amino acids of loops 3 and 4. The nine exon boundaries in the RHD cDNA, as
reflected in the amino acid sequence, are indicated by black bars.
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