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Abstract
There is compelling evidence demonstrating a key role for autophagy in host defense against
microbial infections. Induction and regulation of autophagy involves complex pathways including
signaling molecules that have widespread roles in cell biological functions. For example,
inhibiting mTOR by rapamycin, the most widely used chemical approach to induce autophagy,
can also result in immunosupression. Nevertheless, advances in our understanding of autophagy
provide a new opportunity to modulate host cellular responses as a potential therapeutic strategy to
combat microbial infections in humans.

Introduction
As part of the innate immune response, microbial pathogens are phagocytozed by
macrophages and dendritic cells (DCs), where they traffic via the endolysosomal pathway.
Subsequently, the macrophage or DC mounts a direct antimicrobial activity to eliminate the
pathogen and may also process and present microbial antigens to instruct the acquired
immune response. However, microbes have evolved evasion strategies to escape or inhibit
lysosomal processing and destruction. For example, Toxoplasma gondii and Mycobacterium
tuberculosis are intracellular pathogens that inhibit phagosome maturation and fusion with
lysosomes [1,2]. In contrast, Listeria monocytogenes or Shigella flexneri escape from the
endolysosomal pathway to reside in the cytoplasm of infected cells [3,4]. In addition, many
pathogens live in the extracellular space and must be opsonized to be taken up by cells of the
immune system, where they can effectively be killed.

Autophagy is a conserved biological process, in which cytoplasmic material is enclosed in a
double-membrane structure, called the autophagosome. Through subsequent fusion with
lysosomes, resulting in the formation of an autophagolysosome, the cytoplasmatic material
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is subjected to lysosomal degradation. In the last decade, collective evidence has established
a role for autophagy as a host defense mechanism to counteract immune evasion strategies
of numerous pathogens, including extracellular, phagosomal and cytoplasmic infection
(reviewed in [5]). Autophagy impacts the host response on several levels, including
antimicrobial activity, regulation of thymic selection [6], and modulation of MHC class I-
and MHC class II-dependent antigen-presentation (reviewed in [7]). However, it has also
become evident that several pathogens have evolved strategies to escape autophagy
mediated killing (reviewed in Ogama et al [8]). Autophagy has even been described as a
bacterial escape mechanism resulting in enhanced pathogen survival [9]. Furthermore, there
is conflicting information regarding autophagy related genes and their ability to negatively
and positively regulate type I interferon production in the antiviral response [10,11]. Here
we review recent advances in understanding the role of autophagy in combating microbial
pathogens towards the potential regulation of the autophagic process as a novel therapeutic
strategy against human infectious disease.

Induction of autophagy during microbial infection
Several studies have demonstrated the ability of microbial ligands to trigger autophagy and
autophagy-related pathways through activation of pattern recognition receptors (PRRs), such
as Toll-like receptors (TLRs) and NOD-like receptors (NLRs) [12–19]. In addition, the
human inhibitory complement receptor CD46 has been reported to be a direct inducer of
autophagy [20]. CD46 is a type I glycoprotein expressed by all nucleated human cells and
binds multiple pathogens, including measles virus, human herpes virus 6 (HHV6), Neisseria
bacteria, and several serotypes of group A streptococcus.

Although in many instances the innate immune system is sufficient to protect against
infection, some conditions, in particular when bacterial immune evasion strategies are
efficient, require the effector functions of the acquired immune system. Thus, several studies
have investigated the role of the acquired immune system, in particular T cells to activate
innate immune cells and induce autophagy. Andrade et al showed that activation of
macrophages by CD40L expressing T cells was sufficient to restrict intracellular growth of
toxoplasma in macrophages and was dependent on CD40 ligation [21]. As opposed to Th2
cytokines which inhibit autophagy [22], the key Th1 cell derived cytokine IFN-γ, was also
found to be sufficient to trigger autophagy and control intracellular infection in macrophages
[22–24]. IFN-γ induced autophagy in mouse macrophages was mediated via the function of
immunity-related GTPases (IRGs) [24,25]. In contrast, human IRGs are not inducible by
IFN-γ [26], although this does not preclude its involvement. Nevertheless, it is reasonable to
infer that IFN-γ-induced autophagy in human and mouse macrophages involve distinct
mechanisms.

Autophagy as a therapeutic target
Based on the important role of autophagy in combating microbial pathogens, it is tempting
to speculate that it may be possible to target autophagy, i.e. induce autophagy, as a novel
therapeutic strategy against human infectious diseases. Insight into this possibility can be
derived from the clinical use of agents which induce autophagy. For example, rapamycin is
a pharmaceutical agent that induces autophagy, and is approved for use in humans. The
mammalian target of rapamycin (mTOR), which is the catalytic subunit of at least two
distinct multiprotein complexes (mTORC1 and mTORC2), negatively regulates autophagy.
Inhibition of mTOR by rapamcyin and its chemical derivates are the most widely used
chemical approaches to induce autophagy. A large screen of chemical inducers of autophagy
has identified numerous drugs that promote autophagy by inhibiting the mTOR complex 1
(mTORC1) function, including amiodarone, rottlerin, niclosamide and perhexiline [27].
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In addition to inducing autophagy, the pharmacologic inhibition of mTOR function has
widespread effects on cell biological function. In the case of T cells, inhibition of mTOR
function induces anergy and inhibits cell proliferation [28]. These immunosuppressive
effects have been exploited clinically; for instance rapamycin is used in transplantation
medicine to prevent organ rejection. Thus, concerns about the strategy of targeting mTOR to
treat infections have been raised [29]. Indeed, viral and mycobacterial infections, have been
documented as side effects of rapamycin treatment [30]. It has been stated that the rational
design of therapeutics will required a better understanding on how autophagy is induced and
regulated by the interaction of the host immune system with the invading pathogen [29].
However, our rapidly growing understanding of the role of autophagy and the underlying
signaling pathways provide new tools to address those questions [31]. Inhibiting mTOR by
rapamycin is not only immunosuppressive, but also has complex immunostimulatory effects
[28]. In this regard, a recent study by Araki et al describes an important role of mTOR
signaling in CD8 T-cell differentiation [32]. The authors show that rapamycin treatment
improves both the quality and quantity of the memory CD8 T-cell responses against viral
infection in mice and non-human primates.

Potential approaches to treat microbial infections
There is limited data on the potential utility of pharmaceutical agents that induce autophagy
as therapeutic agents for human infectious disease. Sarkar et al performed a two-step screen
of small molecules to identify inducers of autophagy [33]. First, small molecules were tested
for their ability to modulate growth inhibitory effects of rapamycin in yeast. Subsequently, a
second screening step was performed in mammalian cells, and several molecules that
induced autophagy downstream or independent of mTOR were found. Within this set of
molecules, two were shown to restrict the growth of M. bovis in human macrophages in vitro
[34]. In a human monocytic cell line, another small molecule, a celecoxib derivate, induced
autophagy and eradicated intracellular Francisella tularensis without cytotoxicity to the host
cells [35]. The same drug cleared intracellular Salmonella enterica serovar Typhimurium
infection from murine macrophages [36].

The ability of the active form of vitamin D, 1,25-dihydroxivitamin D (1,25D), to induce
autophagy has provided a new approach to both understand and potentially treat microbial
infections in humans [37,38]. A link between insufficient vitamin D levels and increased
risk of infection has been widely reported [39]. In the case of M. tuberculosis infection, the
identification of a vitamin D-dependent antimicrobial pathway resulting in the induction of
autophagy in combination with the generation of antimicrobial peptides provides an
underlying mechanism for the anti-infective effects of vitamin D [15,38,40,41]. Those
studies provide evidence that the intracrine conversion of biologically inactive 25-hydroxy
vitamin D (25D) to the active form 1,25D is key for the induction of antimicrobial peptides
and autophagy. The responsible enzyme, CYP27b1, was induced by TLR2/1 ligation, and its
ability to convert 25D to 1,25D to sufficient intracellular levels to activate the vitamin D
receptor was dependent on the bioavailability of 25D. Additionally, vitamin D has been
linked to naïve T cell signaling, in which CYP27b1 and vitamin D receptor function were
both required for inducing PLC-γ1 [42].

In vivo systemic 1,25D levels are controlled by parathyroid feed-back on the activity of renal
CYP27b1. However, elevated levels of 1,25D can cause live threatening hypercalcaemia.
Thus, 1,25D might not be an optimal candidate to induce autophagy therapeutically.
However, vitamin D analogues and nonsecosteroidal vitamin D receptor ligands with
reduced calcemic effects are being developed and will potentially be of therapeutic use in
this regard [43]. Since the intracellular conversion of 25D to 1,25D in T cells and
macrophages controls the intracellular level of 1,25D, it may be important to maintain serum
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25D levels in a sufficient range for the natural host response and in immunomodulatory
strategies that aim to trigger autophagy. However, studies investigating the effect of vitamin
D supplementation alone have not provided satisfying answers about the therapeutic
effectiveness of vitamin D in tuberculosis [44] or any other infectious disease. It remains to
be determined whether the form, dose and duration of vitamin D treatment are relevant
determinants of therapeutic efficacy.

A key question in autophagy research is how cytoplasmic material can be selected for
autophagy mediated delivery to lysosomal compartments. Recent findings have shown an
important role of ubiquitination in targeting cytosolic antimicrobial peptides to
autophagolysosomes as well as cytosolic bacteria to autophagosomes. In starvation and IFN-
γ induced mouse macrophages, the p62/SQSTM1 dependent autophagy pathway resulted in
the delivery of ubiquitinated cytosolic precursor proteins of antimicrobial peptides to
autolysosomes [45]. The induction of autophagy and the key adaptor molecule p62, which
targets the ubiquitinated proteins to autolysosomes, provided a protective mechanism against
M. tuberculosis infection in this model. Another ubiquitin-binding adaptor molecule,
NDP52, was found to bind ubiquitinated Salmonella enterica serotype Typhimurium and
Streptococcus pyogenes in the cytosol and deliver these bacteria to autophagosomes [46]. In
summary, these ubiquitin-dependent mechanisms provide potential targets to selectively
promote autophagy as a host defense mechanism against microbial infection. An additional
target might be a recently described diacylglycerol-dependent signaling pathway that
contributes to autophagy independently of p62, yet results in an antibacterial response [47].

Approaches in neurodegenerative disease and cancer research and
potential use in infections

Insight into mechanisms of autophagy has been applied to the development of therapies in
human diseases in the fields of cancer and neurodegenerative diseases research (reviewed in
[31,48,49]). The underlying concept is that the induction of autophagy would result in a
reduction in cell growth or inflammation, respectively, by promoting apoptosis or
autophagic cell death. Thus, these strategies need careful evaluation regarding their
usefulness in infectious conditions, in which reduction of inflammation or cell death might
be harmful to the host. Nevertheless, based on these studies, numerous drugs have been
identified that target AMPK and Akt signaling pathways, including metformin and AICAR,
a performance enhancing drug listed on the World Anti-Doping prohibited list [50–52].
AMPK is a critical component of TLR induced and vitamin D mediated autophagy leading
to antimicrobial activity against M. tuberculosis [15,38]. However, the broad roles of AMPK
and Akt signaling pathways in cell biology, including regulation of mTOR, could make
them less attractive direct targets for the treatment of infectious diseases.

Resveratrol, a natural phytoalexin found in grapes, induces autophagy independent of
beclin-1 via the p62/SQSTM1 dependent pathway [53]. In addition, resveratrol was also
found to inhibit mTOR and activate AMPK. Interestingly, resveratrol also has antiviral
activity in vitro, for example against influenza a virus infection [54]. However, more
intensive studies will be necessary to determine whether resveratrol as an autophagy
activator can be used therapeutically. It is intriguing that red wine is a major source of
resveratrol and has been implemented in the health promoting effect of the French diet.

Enhancing acquired immune response
The induction of autophagy has been associated with enhanced antigen presentation of
cytosolic and nuclear peptides, some of which originate from viral or bacterial antigens.
Thus targeting autophagy therapeutically could not only enhance direct antimicrobial
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functions, but also augment the acquired immune response. In this regard, it was shown that
mice with DC-conditional deletion in Atg5, a key autophagy gene, have impaired CD4+ T
cell priming by DCs as a result of inefficient MHC class II antigen presentation [55]. In
accordance with these studies, induction of autophagy through NOD2 signalling facilitated
the intracellular trafficking of antigen-MHC class II complexes to augment antigen
presentation to T cells required for anti-bacterial host defence [16,17].

Early HIV infection of DCs was recently shown to inhibit initiation of autophagy by HIV
envelope-mediated mTOR activation [56]. Inhibition of autophagy resulted in increased
viral content in DCs, enhanced viral transfer from DCs to CD4+ T cells, and diminished
MHC class II-dependent presentation of HIV antigens. In contrast, enhancement of
autophagy by rapamycin-mediated mTOR inhibition lead to a reduction of HIV content in
DCs and decreased viral cell-to-cell transfer. These studies suggest that inhibiting mTOR
pharmacologically could be a therapeutic strategy to restrict early HIV infection and at the
same time increase MHC class II-dependent immune responses against the virus.

Furthermore, HSV-1 infection in macrophages involves an alternative MHC class I antigen
presentation pathway linked to autophagy. A vacuolar pathway with autophagic components
was identified in late phase HSV-1 infection, a process which increased presentation of
HSV-1 antigen via MHC class I as well as CD8+ T cell stimulation in accordance with the
induction of autophagy in the infected cell [57]. In addition, autophagy was shown to
enhance cross-priming in pre-apoptotic viral infected DCs by prolonging MHC I/peptide
complex presentation, resulting in increased virus specific IFN-γ producing CD8+ T cells
[58].

Evidence that demonstrates the potential of inducing autophagy as a therapeutic approach
has been shown in mouse model experiments, which involved vaccination with the
attenuated mycobacterial strain Bacille Calmette Guerin (BCG) [59]. In this study, mice
were vaccinated with BCG-infected DC that were treated with rapamycin or left untreated,
then challenged via the aerosol route with virulent M. tuberculosis. Mice vaccinated with
rapamycin treated DCs showed greater expansion of mycobacterial antigen specific T cells
as well as a greater reduction in lung bacterial counts compared to mice vaccinated with
untreated DCs. Thus, the induction of autophagy in conjunction with attenuated vaccines
could help facilitate antigen presentation in order to elicit a more effective T cell response.

Conclusions
Recent advances in our understanding of the mechanisms that regulate autophagy and the
biologic function of autophagy in disease provide an opportunity to target autophagy as a
therapeutic strategy to combat microbial infections. It is not known whether the in vitro or
animal trials of autophagy activators can be translated into useful therapeutics against
microbial infections in humans. Nevertheless, such approaches would not only augment
direct antimicrobial activity against the invading pathogen, but could also enhance natural
acquired immune responses and vaccination strategies. Therefore, there is an urgent need to
assess whether autophagic enhancers can be applied to human clinical trials.
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Figure 1.
Potential strategies to induce autophagy as an antimicrobial therapy (Bold: Drugs with
known antimicrobial activity; Italic: Drugs shown to induce autophagy, but antimicrobial
effect unknown).
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