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ABSTRACT Microtubules are supramolecular structures that make up the cytoskeleton and strongly affect the mechanical
properties of the cell. Within the cytoskeleton filaments, the microtubule (MT) exhibits by far the highest bending stiffness.
Bending stiffness depends on the mechanical properties and intermolecular interactions of the tubulin dimers (the MT building
blocks). Computational molecular modeling has the potential for obtaining quantitative insights into this area. However, to our
knowledge, standard molecular modeling techniques, such as molecular dynamics (MD) and normal mode analysis (NMA),
are not yet able to simulate large molecular structures like the MTs; in fact, their possibilities are normally limited to much smaller
protein complexes. In this work, we developed a multiscale approach by merging the modeling contribution from MD and NMA.
In particular, MD simulations were used to refine the molecular conformation and arrangement of the tubulin dimers inside the
MT lattice. Subsequently, NMA was used to investigate the vibrational properties of MTs modeled as an elastic network. The
coarse-grain model here developed can describe systems of hundreds of interacting tubulin monomers (corresponding to up
to 1,000,000 atoms). In particular, we were able to simulate coarse-grain models of entire MTs, with lengths up to 350 nm. A
quantitative mechanical investigation was performed; from the bending and stretching modes, we estimated MT macroscopic
properties such as bending stiffness, Young modulus, and persistence length, thus allowing a direct comparison with experi-
mental data.
INTRODUCTION
The microtubule (MT) is a long protein filament composed
of hundreds or thousands of tubulin dimers; together with
actin and intermediate filaments, MTs make up the cell
cytoskeleton, and strongly affect cell mechanical properties.
Of all the cytoskeleton filaments, MTs exhibit the largest
bending stiffness (1,2). A quantitative characterization of
the role played by MT mechanical properties could strongly
enhance the understanding of its biological functions.

At the molecular level, flexural rigidity depends on both
the mechanical properties of the MT building blocks, i.e.,
the tubulin dimers, and on the intermolecular interactions
holding dimers together in the MT lattice. While several
experimental studies with atomic resolution have been
carried out to better understand the relationship between
tubulin structure and the monomers’ organization in the
MT, there is still uncertainty over a number of issues, such
as the dependency of bending stiffness and persistence
length on the molecular structure (1,3–6).

To better understand MT mechanics and its implications
in determining MT dynamics instability or cytoskeleton
features, several approaches based on analytical or compu-
tational modeling have been applied, such as mechano-
chemical models (7,8), molecular dynamics (MD) (9–14),
finite elements approaches (3,4,11,15–17), and vibrational
analysis (10,18–25).
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In particular, MD is a powerful method which has
been successfully employed to investigate the physical
features of protein systems (10,26,27); however, at present,
the computational cost of MD simulations limit their
applicability to relatively small protein complexes (typically
comprising ~105 atoms), hence much smaller than realistic
MT fragments (comprising ~106 atoms). Fortunately, the
spatio-temporal limitations of standard MD can be
overcome by alternative simplified strategies. In particular,
the elastic network model (ENM) (28) approach, in either
the form of a Gaussian network model (29) or anisotropic
network model (ANM) (30), has proved remarkably effec-
tive. Recent studies have demonstrated that methods based
on ENM are particularly useful to: 1), explore the structural
dynamics of biomolecules and their complexes; and 2), to
extract the dominant modes of motion, thus determining
the key functional sites (31–38) and investigate the mechan-
ical properties of proteins (39–43). However, the application
of the ENM approach to large molecular systems (such as
MTs) can also become prohibitively expensive in terms of
computational cost, so that more-efficient strategies are
required. In the ENM framework, the representation of the
molecular structure by the rotation-translation of blocks
(RTB), i.e., the so-called block normal mode analysis
(44–46), makes it possible to treat large molecular systems
characterized by hundreds of thousands of residues, like
the MTs.

In this study, a coarse-grain model of entire MTs, repre-
sented by an ENM, was developed. By combining data
from MD and normal mode analysis (NMA) molecular
doi: 10.1016/j.bpj.2010.06.070
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modeling, we carried out a systematic investigation of MT
mechanical properties. In particular, MD simulations were
used to refine and optimize the conformation of tubulin
monomers and their packing into the MT lattice. Then,
NMAwas performed to investigate vibrational properties of
theMTmodeled as an elastic network. MTmechanical prop-
erties, such as bending stiffness kf (i.e., flexural rigidity),
stretching stiffness ks, torsional stiffness kt, bendingmodulus,
Yf, stretching modulus, Yx (i.e., Young’s or normal modulus),
and persistence length, lp, were estimated on the basis of the
bending and the stretching modes, and results were directly
compared with experimental data (4–6,47,48). The model
developed in this work provides:

1. A description of a significant fragment of MT (up to
1,000,000 atoms and hundreds of interacting tubulin
monomers in the MT macrostructure);

2. A realistic evaluation of MT macroscopic mechanical
properties, obtained considering the atomic structure at
the molecular level, and directly comparable with exper-
imental data.
FIGURE 1 13:3 MT B-lattice. (a) Front view of an entire MT, where

sequences of a-tubulin (dark shaded) and b-tubulin (light shaded) repeat

along each protofilament in a longitudinal direction. (b and c) Atomistic

tubulin-sheets: the standard tubulin-sheet models the standard interaction

surfaces found in the MT lattice (b), while the seam tubulin-sheet models,

specifically, the interaction in the seam region of the MT wall (c). (Note

that, for a better view of the molecular systems, water molecules are not

shown, even if present in the simulations.) Each all-atom tubulin-sheet

consists of 12 monomers and ~300,000 atoms. (d) Being representative

of the MT wall, tubulin-sheets are curved following the curvature of the

MT wall. (e) The ab-tubulin dimer together with GTP, GDP, and Mg2þ;
this atomistic structure has been used as basic unit to model the tubulin-

sheets for MD simulations.
METHODS

Preparation of the microtubule structure

Tubulin dimers associate to build the microtubule structure (1) as depicted

in Fig. 1 a. It is expected that the conformation of each dimer is influenced

by interactions with surrounding dimers in the MT lattice. One should

consider the MT (Fig. 1, a–c) as a periodic structure where

1. Sequences of ab-tubulin monomers are repeated along each protofila-

ment in longitudinal direction; and

2. Sequences of aa- or bb-tubulin monomers are repeated along the MT

circumferential direction (Fig. 1 b).

The structure is completed by the presence of the MT seam, which is

characterized by an ab-interface for a B-lattice 13:3 MT (Fig. 1 c), i.e.,

an MT with 13 protofilaments and three start helices (2,49–51).

We have taken advantage of the MT structural symmetries and have per-

formed MD simulations of MTwall cell units (Fig. 1, b and c), consisting of

a central tubulin dimer completely surrounded by adjacent monomers, in

both longitudinal and circumferential directions.

Each of these molecular systems, called the tubulin-sheet in the

following, is representative of the MT wall, and will be used to optimize

the atomic structure of the tubulin dimer.

The name ‘‘tubulin-sheet’’ recalls in some way the Zinc-sheet, a two-

dimensional crystalline structure in which tubulin monomers polymerize

in the presence of Zn2þ ions, when stabilized with a taxomere such as Taxol.

The Zinc-sheet is flat and composed of antiparallel protofilaments resulting

in a structure which is markedly different with respect to the MT arrange-

ment. For their high stability during crystallographic analyses, Zinc-sheets

were used for determining the atomic structure of the ab-tubulin (52). The

tubulin-sheets considered in this work strongly differ from the Zinc-sheet

structures in two main conformational characteristics:

1. Tubulin-sheets are curved (Fig. 1 d) following the curvature of the MT

wall (2); and

2. Tubulin monomers in tubulin-sheets are arranged in parallel protofila-

ments, thus representing a periodic cell of the MT wall.

Given that tubulin-sheets are systems of tubulin monomers, the first step

of this study has been the choice of the ab-tubulin atomic structure. The
ab-tubulin atomic structure was obtained with a resolution of 3.7 Å by No-

gales et al. (52) using electron crystallography; the structure is available on

the RCSB Protein DataBank (1TUB code). Several initial refinements of the

1TUB tubulin atomic structure were carried out. Specific details and moti-

vations for choosing 1TUB with respect to other available tubulin dimer

atomic structures and the followed refinement procedure are reported in

the Supporting Material. The refined tubulin dimer atomic structure

(Fig. 1 e) contained atomic coordinates for: a-tubulin monomer, guano-

sine-50-triphosphate (GTP), Mg2þ ion, b-tubulin monomer, and guano-

sine-50-diphosphate (GDP).
Despite containing a complete description of the tubulin dimer, the

1TUB crystallographic structure from the Protein DataBank (either plain

or refined by removing taxol and adding Mg2þ ion) is not suitable to be

docked in an MT lattice (53). In particular, when forming the MT lattice

(2), 1TUB a-monomers showed interlocking loops between adjacent mono-

mers in the lateral surface. The interlocking loops are identified as the

M-loop of one monomer and the H1-B2 loop in the adjacent monomer.

Given that the interaction between the M-loop and the H1-B2 loop repre-

sents the most important interaction surface for the lateral contacts between

a-monomers, the entire a-tubulin H1-B2 loop was remodeled using the

software MODELLER (54) combined with a simulated annealing proce-

dure. A detailed description of the H1-B2 loop remodeling is reported in

the Supporting Material.
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FIGURE 2 (a) Elastic network model of the MT. A whole MT is shown

(left); MT geometry corresponds to the 13:3 MT B-lattice structure (2). The

detail highlighted (circle, and zoomed on the right), shows two interacting

tubulin dimers belonging to adjacent protofilaments. (Spheres) Ca-atoms.

(Sticks) Bonds among the atoms, which are closer than the cutoff distance
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To obtain a correct positioning of tubulin monomers in the MT lattice

structure, and thus a proper curved conformation of the tubulin-sheets,

the remodeled (see the Supporting Material) tubulin dimer has been docked

onto a 13:3 MT model (2). From this starting MT structure, composed of

dimer structures, we were able to extract all the tubulin-sheet conforma-

tions.

In particular, two different configurations of the tubulin-sheet were built:

1. The standard tubulin-sheet (Fig. 1 b), i.e., the periodic unit of tubulin

monomers taken from a generic part of the MT lattice, far from the

seam area; and

2. The seam tubulin-sheet (Fig. 1 c), which models the seam area. Given

that the tubulin-sheets represent part of the MT wall, they are curved

following the MT curvature (Fig. 1 d) (2).

The tubulin-sheets consisting of 12 tubulin monomers each were then

assembled and surrounded by water molecules and counterions; the final

sheet models comprise ~300,000 atoms each.

Given that the tubulin dimer is a compact ellipsoid of ~4.6� 40� 65 nm

(width, height, and depth, respectively) (51) and assuming a cutoff distance

for the nonbonded interactions of 1.2 nm, the central dimer of the tubulin-

sheet models will experience the same interactions as inside the MT lattice

(Fig. 1, b and c) while the surrounding monomers will be affected by direct

interaction with the solvent.

Equilibrium MD simulations on both standard and seam tubulin-sheets

were run for 10 ns at 300K in the NVT ensemble. During the MD equilibra-

tion, a constraint was applied to the center-of-mass of each of the monomers

surrounding the central dimer. Details on the MD scheme carried out are

reported in the Supporting Material.

The output structures of the central dimer from the atomistic MD simu-

lations of the standard and the seam tubulin-sheet have been used to create

the whole atomic structure of the 13:3 MT (Fig. 1 a and Fig. 2 a), subse-

quently employed in the NMA.
set equal to 1.2 nm. (b) Three main functional domains in the tubulin mono-

mers: the Rossmann fold, the intermediate domain, and the C-terminal

domain (52). Each domain is considered as a rigid block in the RTB

approach.
Normal mode analysis of entire microtubules

For NMA to be carried out, the whole MT has been modeled as an aniso-

tropic ENM (29). Each tubulin residue is represented by a node located

at the position of each Ca-atom. Nodes closer than the cutoff distance

(1.2 nm) were connected by springs (Fig. 2 a). Standard anisotropic

ENM cutoff distances reported in literature, determined by comparison

with experimental data (55), vary between 1.2 and 1.5 nm.

The total potential energy VMT of the MT structure was expressed using

the anisotropic network model (ANM) formulation (55),

VMT ¼ 1

2
DrTH Dr; (1)

where Dr is the 3N-dimensional vector describing the fluctuationsDri of the

position vector ri for the node i (1 % i % N), and H is the Hessian matrix,

the 3N � 3N matrix of the second derivatives of VMT with respect to the

mass-weighted coordinates. N is the number of particles (Ca-atoms) in

the molecular system.

In standard methods, the normal modes of a system are obtained by diag-

onalizing the Hessian matrix H. The large number of Ca-atoms (>50,000)

in the ENM of theMT requires the use of the RTB approach for a cost-effec-

tive treatment ofH (44–46). In this method, the system is divided in nb rigid

blocks; each block is made of a certain number of residues (each repre-

sented by Ca-atoms) considered as a rigid body. The deformation of the

whole system is given by rotation-translation movements of the rigid blocks

(45). A more detailed explanation of the RTBmethod is reported in the Sup-

porting Material.

To reduce the number of blocks in the whole MT structure, three rigid

domains were identified in each tubulin monomer, representing the three

functional domains of the protein as determined by Nogales and co-workers

(52) (Fig. 2 b): the Rossmann fold, from the N-terminal (residue 1) to
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residue 205; the intermediate domain, from residue 206 to 381; and the

C-terminal domain, from residue 382 to the C-terminal (residue 440 for

a-tubulin and residue 427 for b-tubulin). A correspondence between the

functionally defined domains and their dynamics has been also confirmed

by a further computational study (10).

The eigenvectors, evi, obtained by using the RTB approach, describe the

modes of free vibration accessible to the structure in its own native conforma-

tion, while the eigenvalues, ln, determine the frequency of the mode.

To investigate the dependency of the MT mechanical properties on MT

length, we assembled MTs with lengths ranging from 100 nm (ENM

composed by roughly 150,000 Ca-atoms) to 350 nm (ENM composed by

roughly 450,000 Ca-atoms). The trajectory for each mode was generated

starting from ln and evi by means of an in-house FORTRAN77 code. For

each mode n, a sinusoidal oscillation around the equilibrium position, ri,min,

was generated to obtain the new positions ri of every i
th Ca-atom. The oscil-

lation was modulated by eviwith a selected amplitude (B) using the equation

riðtÞ ¼ ri;min þ BevisinðuntÞ; (2)

where un is the angular frequency, directly related to the eigenvalue ln of

a specific mode as

un ¼
ffiffiffiffiffiffiffi
gln

p
; (3)

where g is the elastic constant of the springs connecting the Ca-atoms in the

ENM, equal to 1 kcal/(mol Å2) (55). The calculated vibration normal modes

and the related frequencies can be related to the filament mechanical prop-

erties by applying the linear elastic beam theory (40,41,43).
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FIGURE 3 (a) RMSD of the Ca-atoms of the central tubulin dimer for the

standard tubulin-sheet (dark shaded) and the seam tubulin-sheet (dashed).

An equilibrium value of ~0.25 nm is reached after 4000 ps in both cases.

(b) RMSF of Ca-atoms of the central tubulin dimer in the case of standard

sheet (dark shaded curve) and seam sheet (dashed shaded curve). The main

differences are noticeable in specific regions involving lateral interactions

(which are different in standard and seam sheet) for both a- and b-tubulin.
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Details and main formulas used to derive the mechanical properties from

the normal modes have been reported in the Supporting Material.
RESULTS

Molecular dynamics on curved standard
and seam tubulin-sheets

A measure of the conformational changes of a structure is
given by the root-mean-square deviation (RMSD). Fig. 3
a displays the RMSD time history of the central tubulin
dimer in both standard and seam tubulin-sheets; equilibra-
tion of the tubulin dimer is achieved at ~4000 ps, when
the value of the RMSD reaches an approximately constant
value of ~0.25 nm for both the tubulin-sheets.

Root-mean-square fluctuation (RMSF) plots show differ-
ences mainly in peripheral areas of the central tubulin dimer
of both tubulin-sheets (Fig. 3 b). In particular, considering
the a-tubulin monomer, the H1-B2 loop (residues 35–45
and 50–60) and H4-H5 loop (residues 150–170), which
are involved in lateral contacts, show marked peaks for
both standard and seam tubulin-sheets. The first part of helix
H3 (residues 110–120), involved in longitudinal contacts,
shows RMSF values in the standard sheet (at ~0.2 nm)
higher than those obtained in the seam sheet (at ~0.1 nm).
Again, helix H10 (residues 330–340), which is involved in
longitudinal and lateral contacts, shows a peak at ~0.3 nm
only in the case of the standard tubulin-sheet. No differences
between standard and seam tubulin-sheets are detected for
the M-loop. Concerning the b-monomer, the same behavior
is detected for H1-B2 loop, while helix H3 and the H4-H5
loop results more stable, showing lower RMSF values,
with respect to the a-monomer. Moreover, the M-loop
shows a higher stability in the b-monomer rather than the
a-monomer. A peak in the region around residues
300–310 is detected in both the a- and b-monomer of the
central dimer of the seam tubulin-sheet, which is not present
in the standard tubulin-sheet (Fig. 3 b).
Normal mode analysis of entire microtubules

From the generated trajectories, four main modes are
identified (Fig. 4, a–d): stretching (Fig. 4 a), longitudinal
bending (Fig. 4 b), torsion (Fig. 4 c), and circumferential
bending (Fig. 4 d). All the other observed trajectories can
be considered as a composition of these four main modes.

It is noticeable that in the case of the bending, stretching,
and torsion modes, the mode frequencies decrease as a func-
tion of the length, while in the case of circumferential
bending, the mode frequency shows to be almost constant,
just slightly increasing (Fig. 4 e). Mode frequencies are
calculated in the order of 1010–1011 GHz (<10 cm�1), in
accordance with previous computational studies on MT
vibrations (18–20,56).

The mode number is assigned according to its frequency
(Fig. 4 f). Note that the seventh mode is the first nonrigid
mode. Our results obtained from NMA simulations show
that the longitudinal bending oscillation mode corresponds
to the first nonrigid mode (seventh mode) for each simulated
MT length, LMT. Torsion modes are found at the ninth mode,
independent of the LMT value. In turn, in the case of the
stretching and the circumferential bending oscillations, the
mode number shows marked dependency on the ratio
rm/LMT and consequently on the MT length. In the case of
circumferential bending, the mode number decreases as
the ratio rm/LMT increases.

The mode number for stretching modes (the one at high-
est frequency among the four main modes under investiga-
tion) decreases with the increase of LMT (Fig. 4 f).

From longitudinal bending, stretching, and torsion
modes, mechanical parameters such as bending stiffness
kf, bending modulus Yf, persistence length lp, stretching
stiffness ks, stretching modulus Yx, shear modulus G, and
torsion stiffness kt, are estimated.

The kf value estimated from NMA analyses ranges
between 4� 10�24 and 9� 10�24 Nm2 (Fig. 5 a) increasing
Biophysical Journal 99(7) 2190–2199
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FIGURE 4 Major modes detected by means of NMA simulations for the

MT. Stretching (a), longitudinal bending (b), torsion (c), and circumferen-

tial bending (d). (e) Frequency as a function of the ratio between the mean

radius with respect to the length of the MT, rm/LMT, for longitudinal bending

(shaded diamonds), stretching (solid circles), torsion (solid triangles), and

circumferential bending (crosses) modes. In each case the mode frequency

is found in the range 1 � 1010–2� 1011 Hz. The circumferential bending is

characterized by a roughly constant value with respect to LMT. (f) Mode

number (i.e., frequency rank) with respect to rm/LMT. For each length the

longitudinal bending mode is the seventh mode; the torsion mode is

the ninth mode independently of the MT length. The mode number changes

for the stretching modes, increasing as the ratio rm/LMT increases (i.e., MT

length decreasing), while the mode number for the circumferential bending

shows an opposite trend. At approximately a rm/LMT value of 0.5 the mode

number curve of stretching modes crosses that of circumferential modes,

indicating that as the MT length increases, the circumferential bending

frequency becomes higher, and, thus, its amplitude reduces. Conversely,

as rm/LMT approaches zero, amplitude for stretching modes becomes

more important.
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with LMT (Fig. 5 a).The lp values are calculated in the range
from 0.8 to 2 mm, showing a strong dependence on LMT

(Fig. 5 b).
The ks values show an opposite behavior with respect to

kf, decreasing with LMT from 1.5 N/m to 0.5 N/m, while kt
versus LMT showed a constant value of ~1 � 10�24 Nm2

(Fig. 5 a).
The behavior of Yf, Yx, and G, as a function of LMT, are

shown in Fig. 5 c. While Yx and G values show a clearly
constant behavior at ~1 GPa and 0.05 GPa, respectively,
the Yf values depend markedly on the LMT values ranging
Biophysical Journal 99(7) 2190–2199
from 0.3 to 1 GPa, approaching the Young’s modulus value
for MTs longer than 250 nm. The Yf behavior follows the
same trend shown for kf (Fig. 5, a and c).
DISCUSSION

Molecular dynamics on curved standard
and seam tubulin-sheets

The results of the MD simulations show similar RMSD
curves for tubulin dimer inserted in standard or seam
tubulin-sheet. However, it should be remembered that the
RMSD of a protein (throughout the MD simulation) gives
information about the changes of the overall protein fold. If
nomajor fold changes happen, theRMSDvalue is quite stable
and converges quickly to an equilibrium value. This behavior
does not exclude local changes during the simulation.

In particular, tubulin monomers are proteins with a very
stable central core, while external surfaces are mainly
composed by high flexible loops (as H1-B2 loop) and
a-helices (9,12). While the tubulin structure is just slightly
modified in its overall conformation, the greatest fluctua-
tions concern the outer surfaces, which are composed of
only a few amino acids. These outer-surface regions are
known to be associated with monomer-to-monomer interac-
tions that affect the overall MT mechanical properties and
play a role in MT dynamic instability (4,9,20,21,57–60).

Indeed, results from RMSF analysis show differences
between standard and seam tubulin-sheet. In particular,
large fluctuations are detected in regions involved in lateral
contacts (e.g., H1-B2 loop and M-loop). These findings
are in agreement with experimental evidences (53) and
previous computational investigations (9,36). Concerning
the M-loop, we found a RMSF value lower than that
reported by Keskin et al. (36). This difference is reasonably
due to the boundary conditions applied for analyzing the
tubulin dimer, which in the Keskin work (36) is not sur-
rounded by neighbor monomers. In our case, where the
tubulin monomer is constrained by the presence of other
monomers, the fluctuations of the M-loop are limited and
also driven by the movements of other interacting regions,
such as the H1-B2 loop. Finally, fluctuation results highlight
a remarkable peak in RMSF only in a well-defined region of
the tubulin dimer in the seam sheet, between the M-loop and
helix H10, which is located on the external lateral surfaces
of the monomer. Interestingly, this region is stable in the
standard tubulin-sheet in agreement with previous works
(9,36). These previous studies were focused on standard
lateral interactions (aa, and bb), so the marked peak
detected in our MD simulations for the seam tubulin-sheet
could not have been highlighted before. The position of
this loop suggests a possible mechanism caused by the
change of the lateral interface at the seam, which could
have a role in determining the greater instability of the
seam with respect to the other regions of the MT wall.
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FIGURE 5 (a) Data showing the relationship

among the bending stiffness kf (diamonds), stretch-

ing stiffness ks (circles), torsion stiffness kt (trian-

gles), and the MT length, LMT. The values kt
remain constant with respect to LMT, while kf
increases and ks decreases when MT length rises.

(b) Relation between the persistence length lp
(triangles) and LMT. A strong dependence of lp on

the MT length is noticeable. (c) Bending modulus

Yf (diamonds), stretching modulus Yx (circles),

and shear modulus G (triangles), directly obtained

by torsion stiffness versus LMT. The Yf values mark-

edly increase with the MT length, approaching the

value of Yx (~1 GPa) for LMT at ~300 nm. The

G-value is constant and roughly equal to 0.05

GPa, i.e., two-orders-of-magnitude less than the

Young’s modulus Yx. (d) Inverse of the bending

modulus 1/Yf, with respect to the constant a/LMT
2,

where a is equal to 12f(I/A) and f is a geometric

factor equal to 1.38 in case of a hollow cylinder.

The linear regression gives directly the value of Yx
as the inverse of the y intercept of the fitting curve

(Yx ¼ 1.1 GPa), while G is the inverse of the slope

of the curve (G ¼ 0.05 GPa). A graphical descrip-

tion of the MT bending test is also reported; the

MT is supported at the free ends and deflected, d,

by a concentrated force, F, acting in the middle.
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Further investigations are needed to better elucidate the
reasons for this instability mechanism.

Based on the above observations, it is clear that equilib-
rium MD simulations of tubulin-sheets (periodic regions
of the MT wall) resulted in local changes of the topology
that affect the definition of the elastic network used to model
the entire MT.
Normal mode analysis of entire microtubules

The vibrational frequencies predicted for bending, stretch-
ing, torsion, and circumferential bending are in agreement
with previous studies (17–19,21,56) investigating the vibra-
tional properties of MTs. In particular, in all cases, a depen-
dence of the vibrational modes on the MT length has been
noted (Fig. 4 e). In particular, the frequency for longitudinal
bending, stretching, and torsion linearly decreases as the
ratio rm/LMT decrease. This means that as the MT becomes
longer, the longitudinal bending, stretching, and torsion
modes present larger amplitudes and become dominant in
the MT dynamics. This behavior is particularly noticeable
for the frequency of the stretching modes, which show the
greatest slope.

Conversely, the frequency for circumferential bending
slightly increases (Fig. 4 e) as the rm/LMT decreases. In
Fig. 4 f, the same information is given by plotting the
mode number (the rank of vibrational mode in order of
frequency) as function of rm/LMT. The opposite frequency
tendency for stretching and circumferential bending modes
makes the two curves intersect for a ratio rm/LMT of ~0.5,
which corresponds to an MT length of ~250 nm.
Circumferential bending is controlled by the circumferen-
tial bending stiffness that is directly dependent on the weak
lateral interactions (4,9,20,21,24,57–60). Previously,
circumferential vibration has been extensively studied by
Wang and co-workers (23,24), who developed an ortho-
tropic elastic shell model for studying MT buckling. Our
results are in close agreement with their findings, showing
that the frequency of circumferential modes specifically
depends on the MT radius; the frequency increases as the
MT radius decreases.

Moreover, our results are in line with findings of de Pablo
et al. (15) and Schaap et al. (16). By means of radial inden-
tation AFM experiments (supported also by computational
modeling investigations), it was demonstrated how MT
mechanics, and in particular the response to deformations
given by longitudinal bending and radial indentation, is
dominated by different parts of the MT structure. Response
to bending is dominated by protofilaments, while response
to radial indentation is dominated by localized connection
between protofilaments. Our results suggest that when
MTs are very short, longitudinal bending can be strongly
influenced by circumferential bending (large amplitude
modes are detected for high rm/LMT ratios), which causes
localized or uncontrolled buckling.

Concerning stretching modes, it is interesting to note that
stretching stiffness is length-dependent, as expected,
decreasing as the MT length increases. If we think of the
MT as a structure composed of rings of tubulin dimers ar-
ranged in a head-to-tail fashion to form the whole MT
lattice, we can understand this behavior. Each tubulin ring
can be modeled as a spring showing a certain stretching
Biophysical Journal 99(7) 2190–2199
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stiffness. By modeling the entire MT as a harmonic oscil-
lator (a single spring), its elastic constant, k, will be given
by the series of the springs representing each ring
(11–13). The same example can also be used to justify our
findings regarding the stretching vibration mode, which
changes rank as the MT length increases (Fig. 4 f). When
the MT length increases, the MT mass, m, increases.
Considering the MT as a harmonic oscillator, its vibration
frequency will be related to the square-root of k/m value.

Concerning the bending modes, the results obtained
in terms of kf (4 � 10�24 and 9 � 10�24 Nm2) and
lp (0.8–2 mm) are consistent with previous experimental
data (4–6,47,48) describing MTs as very stiff rods with an
lp of approximately millimeters (0.5–8 mm obtained for
taxol-stabilized MTs). For nonstabilized MTs, kf ranges
from 4.7 10�24 (61) to 3.4 10�23 Nm2 (62), while kf of
taxol-stabilized MTs is between 1.9 � 10�24 (61) and
2.15 � 10�23 Nm2 (6).

Owing to the ability of NMA to separate vibration modes,
values of Yx and G are directly obtained by stretching and
torsion modes. Calculated values for Yx z 1 GPa and
G z 0.05 GPa corroborate the experimental evidence that
MTs are highly anisotropic structures. Given their cylin-
drical shape and their structural organization in protofila-
ments, MTs might be better modeled as transversely
isotropic structures (5), thus implying that the transverse
Young’s moduli (in the cross-section plane) are equal, and
are different from the longitudinal Young’s modulus, Yx.
The bent structure of the MT as obtained by the trajectory
of the first bending mode can be considered as a beam sup-
ported at the free ends and deflected (bent in a plane) by
a concentrated load acting in the middle (Fig. 5 d).

Following the Timoshenko beam theory, the bending
deflection, d, is given by the sum of the contribution due
to the pure bending, determined by Yx, and the pure shear,
governed by G (4,5). Thus, the inverse of the longitudinal
bending modulus, Yf, calculated from the bending modes is

1

Yf

¼
�
12f I

A

�

LMT

1

G
þ 1

Yx

: (4)

Fig. 5 d displays 1/Yf as a function of a/LMT
2, where a is the

constant factor depending on the MT geometry equal to the
term in brackets in Eq. 4, and f is equal to 1.38 in the case
of a hollow cylinder. I is the moment of inertia of the cross-
sectional area with respect to the corresponding axis of
deflection, which is ~1 � 10�32 m4 for a 13:3 MT; A is the
cross-sectional area of the filament (which in the case of
13:3MT is ~1.8� 10�16 m2), and LMT is the filament length.

By using the approximation of a transversely isotropic
structure for the MT, a value of Yx of ~1.1 GPa, and a value
of G of 0.05 GPa are obtained.

The dependency of Yf, ks, and hence lp on the MT length,
and our results about Yx and G characterized by a difference
of two orders of magnitude, are findings in agreement with
Biophysical Journal 99(7) 2190–2199
previous investigations of MT mechanical properties
(3,4,17). The results indicating a length-dependent kf and
consequently a length-dependent lp are interesting, although
this is certainly a still-controversial issue in the literature. In
particular, the low G-value has been attributed to the weak
lateral interaction among protofilaments. For short MTs
(hundreds of nm), the sliding between adjacent protofila-
ments is relevant during MT bending (4). Conversely, very
long MTs (several mm) are more rigid and Yx completely
dominates the mechanical behavior because only a slight
sliding occurs between adjacent protofilaments during
bending (6). This mechanism has been used to explain
results coming from the numerous experimental and compu-
tational investigations, where a ratio between Yx and G
between 102 (4) and 106 (5) was found. In particular, in
the study of Kis et al. (4), the elastic deformation of MTs
bound to a surface with holes of different sizes was directly
measured with AFM. The results, obtained using the Timo-
shenko approach and measuring the deflection of an in-
dented MT simply supported at its ends, showed
a significant difference between Yx (100 MPa) and G (1.4
MPa), as a consequence of the MT anisotropy. Even if the
Timoshenko approach has been adopted, the effective Yx
value seems to be far from the values widely associated to
the MT in literature (Yx z 1–2 GPa (5,6,23)). On the basis
of our results we can infer that for MTs with a very short
contour length (as for the ones investigated by Kis et al.
(4)), circumferential bending should not be neglected given
that, at this MT length, it strongly affects the overall
mechanics of the MT.

A high Yx/G ratio (~106) is reported by Pampaloni et al.
(5), who adopted a single-particle tracking method to inves-
tigate thermal fluctuations of grafted MTs. The MT has been
modeled as a beam curved in a plane with constant curvature
and deflection calculated on the basis of this hypothesis.
However, this is a rude approximation given that, for an
MT filament vibrating under thermal motion, we expect
more-complex three-dimensional deformations. Even
though the MT is deflected on a plane, MT fluctuations
under thermal forces should be seen as a composition of
deformations given by bending, stretching, and torsion
modes, which altogether are responsible for the accounted
deflection. Overestimations of the deflection values could
yield an excessive Yx/G ratio.

In our study, the vibration analysis gave us the pos-
sibility to

1. Separate modes, avoiding interferences given by super-
position of vibration modes.

2. Apply the Timoshenko approach considering the MT as
a beam constrained at the free ends and bent in a plane.

In this way we were able to obtain results in terms of Yx
at ~1 GPa and G of ~0.05 GPa, with different methods
(e.g., directly from the stretching and torsion modes or by
using the Timoshenko approach). It is also important to
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notice that under the assumption of transverse isotropy, Yx
and G are not linked by the Poisson relationship G ¼ Yx/2
(1þn). Hence, a large Yx/G ratio does not imply a value of
the Poisson number n > 1/2, which would reveal a collapse
of the cross-section in bending condition, and would assume
a nonphysical meaning (5).

A last observation is related to many recent findings sug-
gesting that proteins or molecules interacting with tubulin
dimers (as tau proteins) assembled in the MT lattice, can
influence the overall MT mechanics. This was demonstrated
for Taxol generally used to stabilize MTs in the in vitro
experiments (6,9,16,53,64), which binds b-tubulin in
a region close to M-loop and strengthens the interaction
between adjacent protofilaments. In this study the effects
of Taxol has not been taken into consideration. Given that
our ANM models are very simple, just including extra inter-
action sites to capture the effect of Taxol is unlikely to make
much difference. However, the Taxol might affect the
tubulin monomers arrangement and their packing in the
MT structures. These features are captured by MD simula-
tions (9,65), and hence, they could also have an influence
on the mechanical properties at the level of the ENM of
the whole MT. Effects of Taxol have been investigated by
Sept and MacKintosh (65). In their work, a coarse-grain
method for connecting MD simulations to continuum
mechanics was developed and applied to MT mechanics.
Although a relatively small simulated molecular system
(six interacting monomers modeling a portion of two inter-
acting filaments), their coarse-grain model was able to
provide significant information on dimer-dimer spacing in
the presence of the Taxol molecule, and data on MT
mechanical properties in term of bending stiffness, Young’s
modulus, and shear modulus, in good agreement with exper-
imental observations (65). Further developments could be
addressed by considering other MT binding molecules and
by better describing the molecular aspects of these interac-
tions and their effects on MT mechanical behavior (based,
for example, on the approach applied in this article).
CONCLUSIONS

In this work, a highly coarse-grained model of the entire MT
built as an ENM has been developed. Starting from the
atomic structure of the tubulin dimer, and from information
available on the tubulin hierarchical organization in the MT
lattice wall, a whole MT with length of approximately
hundreds of nanometers has been modeled. MD simulations
were conducted to refine the molecular conformation and
the packing of the tubulin dimers (the MT building blocks)
inside the MT lattice structure. The vibrational normal
modes have been calculated by means of NMA, considering
the MT as an ENM where only Ca-atoms are considered.
Owing to the significant computational effort required, the
Hessian matrix representing the whole MT has been treated
by means of the RTB approach. In particular, each tubulin
monomer has been considered as composed of three rigid
domains, each representing one of the well-known func-
tional domains of the tubulin monomer. By analyzing the
modes of vibration, we calculated fundamental mechanical
properties, such as the flexural rigidity, the bending
modulus, the stretching stiffness, the elastic normal modulus
(i.e., the Young modulus), and the persistence length. The
close agreement with previous experimental data and
computational studies allowed us to infer some points of
discussion on the still open debate about MT anisotropy.

As a final remark, it is necessary to point out one of the
most important novelties of this work with respect to
previous investigation: contrary to other computational
studies (generally modeling at continuum level the MT)
(3,4,7,8,15–25), this MT coarse-grain approach is able to
provide a detailed description of the MT mechanics based
just on the knowledge of the atomic coordinates of the
tubulin dimers and their arrangement into the MT lattice
being able to reproduce mechanics of the MT with a very
high degree of accuracy.
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at 8 Å resolution. Structure. 10:1317–1328.

3. Kasas, S., A. Kis, ., S. Catsicas. 2004. Mechanical properties
of microtubules explored using the finite elements method.
ChemPhysChem. 5:252–257.
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