Cloning, sequencing, and expression of cDNA for human β -glucuronidase

(lysosomal enzymes/mucopolysaccharidosis type VII/COS cells/simian virus 40/alternate splicing)

Akihiro Oshima*, John W. Kyle*, Raymond D. Miller*, Joseph W. Hoffmann*, Penelope P. Powell*, Jeffrey H. Grubb*, William S. Sly* † , Michael Tropak ‡ , Kevin S. Guise ‡ , and Roy A. Gravel $^{\ddagger\$$

*E. A. Doisy Department of Biochemistry, St. Louis University School of Medicine, St. Louis, MO 63104; [‡]Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and [§]Department of Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8

Communicated by Stuart Kornfeld, October 6, 1986 (received for review August 1, 1986)

ABSTRACT We report here the cDNA sequence for human placental β -glucuronidase (β -D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. We also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH₂-terminal amino acid sequence determined for human spleen β -glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained Nlinked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human β -glucuronidase activity. These studies provide the sequence for the full-length cDNA for human β -glucuronidase, demonstrate the existence of two populations of mRNA for β glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.

The acid hydrolase β -glucuronidase (β -D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) is a tetrameric glycoprotein composed of identical subunits ($M_r = 75,000$). It acts as an exoglycosidase in lysosomes, cleaving β -glucuronosyl residues at the nonreducing end of oligosaccharides from glycosaminoglycans. Genetic deficiency of this enzyme leads to accumulation of undegraded glycosaminoglycans in lysosomes and produces the clinical disorder mucopolysaccharidosis type VII (1).

Studies of human β -glucuronidase were important in the discovery of the mannose 6-phosphate recognition marker, which targets acid hydrolases to lysosomes (2, 3), in the delineation of the mannose 6-phosphate receptor-dependent pathways for segregation of acid hydrolases to lysosomes (4, 5) and in animal model studies of enzyme replacement therapy for lysosomal storage diseases (6–8). In this communication we report the nucleotide sequence for a full-length cDNA clone for human β -glucuronidase from human placenta and present data demonstrating expression of human β -glucuronidase in transfected COS-7 cells.

MATERIALS AND METHODS

Materials. Human spleen β -glucuronidase (3) and goat antibody raised to this enzyme (9) were prepared as reported. ³²P-labeled nucleotides and [³⁵S]methionine (1127 Ci/mmol; 1 Ci = 37 GBq) were from New England Nuclear, Amersham, and ICN. Restriction enzymes and enzymes used in cloning, nuclease S1 protection studies, and DNA sequencing were from New England Biolabs and Bethesda Research Laboratories. Endoglycosidase F (Endo F) (grade II) was from Boehringer Mannheim. COS-7 cells were the gift of M. Green (Institute for Molecular Virology, St. Louis University Medical School, St. Louis, MO). pJC119 was provided by R. A. Lazzarini (Laboratory of Molecular Genetics, National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health). IgGsorb was from The Enzyme Center (Malden, MA). EN³HANCE was from New England Nuclear.

Methods. A phage λ gt11 cDNA library made from human placental mRNA was provided by J. Evan Sadler (Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO). The cDNA library was screened by plaque hybridization (10). Probes (as described in *Results*) were labeled with ³²P by nick-translation. Positive clones were plaque-purified and subcloned into a plasmid derived from pBR325. pHUGP13 and pHUGP15 were sequenced by the dideoxy chain-termination method of Sanger et al. (11) with the phage M13 universal sequencing primer or with synthetic oligonucleotide primers (12) after they had been subcloned into phage M13 vectors (13). pHUGF was sequenced by a modification of the Sanger dideoxy chaintermination method (14) that involved sequencing doublestranded deletion fragments that had been generated by exonuclease III (15) or BAL-31 (10) and subcloned into vectors SP64 or SP65 (16). Nuclease S1 mapping was performed as outlined by Maniatis et al. (10).

Transfection of COS-7 Cells. The cDNA inserts were isolated by agarose gel electrophoresis after a partial *Sal* I digestion and were ligated into the *Sal* I-compatible, unique *Xho* I site of pJC119, which expresses cloned inserts using the simian virus 40 (SV40) late promoter (17). A DEAE-dextran procedure (18) followed by treatment with 100 μ M chloroquine (19) was used to transfect COS-7 cells (20). β -Glucuronidase activity in cell extracts and media was determined fluorometrically with 4-methylumbelliferyl- β -glucuronide (21).

Labeling and Immunoprecipitation. At 48 hr posttransfection COS-7 cells were washed, incubated for 2 hr in methionine-free Dulbecco's modified Eagle's medium (DMEM), and labeled for 1 hr with 125 μ Ci of [³⁵S]methionine (1127

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

Abbreviations: Endo F, endoglycosidase F; SV40, simian virus 40. [†]To whom reprint requests should be addressed.

Ci/mmol) in 1 ml of methionine-free DMEM containing 5% dialyzed fetal bovine serum. After the pulse the cells were washed twice, and normal medium supplemented with 2 mM methionine was added for 3 hr. The cells were harvested, pelleted, and solubilized in 0.2 ml of solubilization buffer (10 mM Tris·HCl, pH 8.5/1 mM MgCl₂/0.5% sodium deoxycholate/1% Nonidet P-40/10 μ g of aprotinin per ml/0.1% Na-DodSO₄). The [³⁵S]methionine-labeled extracts were precleared by addition of 5 μ l of preimmune goat serum, followed by addition of 100 μ l of 20% IgGsorb, incubation at 4°C for 1 hr, and centrifugation. Goat anti-human β -glucuronidase (10 μ l) was added to each supernatant, and the samples were incubated for 6 hr at 4°C. The immunoprecipitates were collected after the addition of 100 μ l of 20% IgGsorb, incubation at 4°C for 1 hr, and centrifugation for 1 min in a Fisher microcentrifuge. The pellets were washed five times with a buffer containing 1% sodium deoxycholate, 0.4% Nonidet P-40, 0.5 M NaCl, and 150 mM Tris HCl (pH 7.4), washed once with 10 mM Tris-HCl (pH 7.4), and then analyzed by NaDodSO₄/polyacrylamide gel electrophoresis (22). After electrophoresis, the gels were fixed and stained with Coomassie blue, destained, and treated with EN-³HANCE. The gels were then dried on a gel dryer, and the radioactivity was detected on Kodak X-Omat R film.

Amino Acid Sequence of β -Glucuronidase. The NH₂-terminal amino acid sequence was determined by Edman degradation using polyacrylamide gel-purified human spleen β glucuronidase (23). The sequence analysis was performed by the Protein Chemistry Facility of Washington University School of Medicine (St. Louis, MO), using an Applied Biosystems vapor-phase sequenator.

RESULTS

Isolation of Placental cDNA Clones Encoding β -Glucuronidase. Of 8 × 10⁶ plaques, 40 hybridized to a 0.4-kilobase (kb)

FIG. 1. Restriction map and sequencing strategy for human β -glucuronidase cDNA clones. The composite restriction map is shown at the top of the figure. The large bar represents the entire coding region of the gene; the stippled portion, the region coding for the signal sequence; the hatched portion, the 153-bp sequence found in pHUGP13 but not in pHUGP15 or pHUGF. The three cDNA inserts are aligned, and their linker and poly(A) tail regions are not shown. Arrows below each cDNA insert show the relative position, extent, and direction of DNA sequence determinations.

probe from the 5' end of pHUGF (Fig. 1; referred to as pHUG87 in ref. 24). Eight contained inserts that were >2 kb in length. Restriction maps placed these into two different

2191

									Met	Ala	Arg	Gly	Ser	Ala	Vał	Ala	Trp	Ala	Ala	Leu	Gly	Pro	Leu	Leu	Trp	Gly	Cys	Ala	Leu	Gly 🕈	Leu	Gin	Gly	Gly	Met	Leu	Tyr	29
GG	TGG	CCG	AGC	GGG	GGA	CCG	GGA	AGC	ATG	GCC	CGG	GGG	TCG	GCG	GTT	GCC	TGG	GCG	GCG	CTC	GGG	CCG	ΠG	ΠG	TGG	GGC	TGC	GCG	CTG	GGG	CTG	CAG	GGC	GGG	ATG	CTG	TAC	113
Pro	Gin	Glu	Ser	Pro	Ser	Arg	Glu	Cys	Lys	Glu	Leu	Asp	Gly	Leu	Trp	Ser	Phe	Arg	Ala	Asp	Phe	Ser	Asp	Asn	Arg	Arg	Arg	Gly	Phe	Glu	Glu	Gin	Trp	Tyr	Arg	Arg	Pro	67
CCC	CAG	GAG	AGC	CCG	TCG	CGG	GAG	TGC	AAG	GAG	CTG	GAC	GGC	CTC	TGG	AGC	TTC	CGC	GCC	GAC	∏C	TCT	GAC	AAC	CGA	CGC	CGG	GGC	TTC	GAG	GAG	CAG	TGG	TAC	CGG	CGG	CCG	227
Leu	Trp	Glu	Ser	Gly	Pro	Thr	Val	Asp	Met	Pro	Val	Pro	Ser	Ser	Phe	Asn	Asp	lle	Ser	Gin	Asp	Trp	Arg	Leu	Arg	His	Phe	Val	Gly	Trp	Val	Trp	Tyr	Glu	Arg	Glu	Vai	105
CTG	TGG	GAG	TCA	GGC	CCC	ACC	GTG	GAC	ATG	CCA	GTT	CCC	TCC	AGC	TTC	AAT	GAC	ATC	AGC	CAG	GAC	TGG	CGT	CTG	CGG	Cat	TTT	GTC	GGC	TGG	GTG	TGG	TAC	GAA	CGG	GAG	GTG	341
lie	Leu	Pro	Glu	Arg	Trp	Thr	GIn	Asp	Leu	Arg	Thr	Arg	Val	Val	Leu	Arg	lle	Giy	Ser	Ala	His	Ser	Tyr	Ala	lle	Val	Trp	Val	Asn	Giy	Val	Asp	Thr	Leu	Glu	His	Glu	143
ATC	CTG	CCG	GAG	CGA	TGG	ACC	CAG	GAC	CTG	CGC	ACA	AGA	GTG	GTG	CTG	AGG	Att	GGC	AGT	GCC	CAT	TCC	TAT	GCC	ATC	GTG	TGG	GTG	AAT	GGG	GTC	GAC	ACG	CTA	GAG	Cat	GAG	455
Gly	Gly	Tyr	Leu	Pro	Phe	Glu	Ala	Asp	lle	Ser	Asn	Leu	Val	Gin	Val	Gly	Pro	Leu	Pro	Ser	Arg	Leu	Arg	lle	Thr	lle	Ala	lle	Asn	Asn	Thr	Leu	Thr	Pro	Thr	Thr	Leu	181
GGG	GGC	TAC	CTC	CCC	TTC	GAG	GCC	GAC	ATC	AGC	AAC	CTG	GTC	CAG	GTG	GGG	CCC	CTG	CCC	TCC	CGG	CTC	CGA	ATC	ACT	ATC	GCC	ATC	AAC	AAC	ACA	CTC	ACC	CCC	ACC	ACC	CTG	569
Pro	Pro	Gly	Thr	ile	Gin	Tyr	Leu	Thr	Asp	Thr	Ser	Lys	Tyr	Pro	Lys	Gly	Tyr	Phe	Val	Gin	Asn	Thr	Tyr	Phe	Asp	Phe	Phe	Asn	Tyr	Ala	Gly	Leu	Gin	Arg	Ser	Vai	Leu	219
CCA	CCA	GGG	ACC	ATC	CAA	TAC	CTG	ACT	GAC	ACC	TCC	AAG	TAT	CCC	AAG	GGT	TAC	TTT	GTC	CAG	AAC	ACA	TAT	TTT	GAC	TTT	TTC	AAC	TAC	GCT	GGA	CTG	CAG	CGG	TCT	GTA	C∏	683
Leu	Tyr	Thr	Thr	Pro	Thr	Thr	Tyr	lle	Asp	Asp	lle	Thr	Val	Thr	Thr	Ser	Vai	Glu	Gin	Asp	Ser	Gly	Leu	Val	Asn	Tyr	Gin	lle	Ser	Val	Lys	Gly	Ser	Asn	Leu	Phe	Lys	257
CTG	TAC	ACG	ACA	CCC	ACC	ACC	TAC	ATC	Gat	GAC	ATC	ACC	GTC	ACC	ACC	AGC	GTG	GAG	CAA	GAC	AGT	GGG	CT G	GTG	AAT	TAC	CAG	ATC	TCT	GTC	AAG	GGC	AGT	AAC	CTG	TTC	AAG	797
Leu	Glu	Val	Arg	Leu	Leu	Asp	Ala	Glu	Asn	Lys	Val	Vai	Ala	Asn	Giy	Thr	Gly	Thr	Gin	Gly	Gin	Leu	Lys	Val	Pro	Gly	Val	Ser	Leu	Trp	Trp	Pro	Tyr	Leu	Met	His	Glu	295
TTG	GAA	GTG	CGT	CTT	TTG	Gat	GCA	GAA	AAC	AAA	GTC	GTG	GCG	AAT	GGG	ACT	GGG	ACC	CAG	GGC	CAA	CTT	AAG	GTG	CCA	GGT	GTC	AGC	CTC	TGG	TGG	CCG	TAC	CTG	ATG	CAC	G A A	911
Arg	Pro	Ala	Tyr	Leu	Tyr	Ser	Leu	Glu	Val	Gin	Leu	Thr	Ala	Gin	Thr	Ser	Leu	Gly	Pro	Val	Ser	Asp	Phe	Tyr	Thr	Leu	Pro	Val	Gly	lle	Arg	Thr	Val	Ala	Val	Thr	Lys	333
CGC	CCT	GCC	TAT	CTG	Tat	TCA	TTG	GAG	GTG	CAG	CTG	ACT	GCA	CAG	ACG	TCA	CTG	GGG	CCT	GTG	TCT	GAC	TTC	TAC	ACA	CTC	CCT	GTG	GGG	ATC	CGC	ACT	GTG	GCT	GTC	ACC	AAG	1025
Ser	Gin	Phe	Leu	lle	Asn	Giy	Lys	Pro	Phe	Tyr	Phe	His	Gly	Vai	Asn	Lys	His	Glu	Asp	Ala	Asp	lle	Arg	Gly	Lys	Gly	Phe	Asp	Trp	Pro	Leu	Leu	Val	Lys	Asp	Phe	Asn	371
AGC	CAG	TTC	CTC	ATC	AAT	GGG	AAA	CCT	TTC	TAT	TTC	CAC	GGT	GTC	AAC	AAG	Cat	GAG	GAT	GCG	GAC	ATC	CGA	GGG	AAG	GGC	TTC	GAC	TGG	CCG	CTG	CTG	GTG	AAG	GAC	TTC	AAC	1139
Leu	Leu	Arg	Trp	Leu	Gly	Ala	Asn	Ala	Phe	Arg	Thr	Ser	His	Tyr	Pro	Tyr	Ala	Glu	Glu	Val	Met	Gin	Met	Cys	Asp	Arg	Tyr	Gly	lle	Val	Val	lie	Asp	Glu	Cys	Pro	Gly	409
CTG	CTT	CGC	TGG	CTT	GGT	GCC	AAC	GCT	TTC	CGT	ACC	AGC	CAC	TAC	CCC	TAT	GCA	GAG	GAA	GTG	ATG	CAG	ATG	TGT	GAC	CGC	TAT	GGG	ATT	GTG	GTC	ATC	Gat	GAG	TGT	CCC	GGC	1253
Val	Gly	Leu	Ala	Leu	Pro	Gin	Phe	Phe	Asn	Asn	Val	Ser	Leu	His	His	His	Met	Gin	Val	Met	Glu	Glu	Val	Val	Arg	Arg	Asp	Lys	Asn	His	Pro	Ala	Val	Val	Met	Trp	Ser	447
GTG	GGC	CTG	GCG	CTG	CCG	CAG	TTC	TTC	AAC	AAC	GTT	TCT	CTG	CAT	CAC	CAC	ATG	CAG	GTG	Atg	GAA	GAA	GTG	GTG	CGT	AGC	GAC	AAG	AAC	CAC	CCC	GCG	GTC	GTG	Atg	TGG	TCT	1367
Val	Ala	Asn	Glu	Pro	Ala	Ser	His	Leu	Glu	Ser	Ala	Giy	Tyr	Tyr	Leu	Lys	Met	Val	lie	Ala	His	Thr	Lys	Ser	Leu	Asp	Pro	Ser	Arg	Pro	Val	Thr	Phe	Val	Ser	Asn	Ser	485
GTG	GCC	AAC	GAG	CCT	GCG	TCC	CAC	CTA	GAA	TCT	GCT	GGC	TAC	TAC	∏G	AAG	ATG	GTG	ATC	GCT	CAC	ACC	AAA	TCC	∶TTG	GAC	CCC	TCC	CGG	CCT	GTG	ACC	TTT	GTG	AGC	AAC	TCT	1481
Asn	Tyr	Ala	Ala	Asp	Lys	Gly	Ala	Pro	Tyr	Val	Asp	Val	lle	Cys	Leu	Asn	Ser	Tyr	Tyr	Ser	Trp	Tyr	His	Asp	Tyr	Gly	His	Leu	Glu	Leu	lle	Gin	Leu	Gin	Leu	Ala	Thr	523
AAC	TAT	GCA	GCA	GAC	AAG	GGG	GCT	CCG	TAT	GTG	Gat	GTG	ATC	TGT	TTG	AAC	AGC	TAC	TAC	TCT	TGG	TAT	CAC	GAC	TAC	GGC	G CAC	CTG	GAG	TTG	ATT	CAG	CTG	CAG	CTG	GCC	ACC	1595
Gin	Phe	Glu	Asn	Trp	Tyr	Lys	Lys	Tyr	Gin	Lys	Pro	lle	lle	Gin	Ser	Giu	Tyr	Gly	Ala	Giu	Thr	lle	Ala	Gly	Phe	His	Gin	Asp	Pro	Pro	Leu	Met	Phe	Thr	Glu	Glu	Tyr	561
CAG	TTT	GAG	AAC	TGG	TAT	AAG	AAG	TAT	CAG	AAG	CCC	Att	ATT	CAG	AGC	GAG	Tat	Gga	GCA	GAA	ACG	A∏	GCA	GGG	TTT	Ca(CAG	GAT	CCA	CCT	CTG	ATG	TTC	ACT	GAA	GAG	TAC	1709
Gin	Lys	Ser	Leu	Leu	Glu	Gin	Tyr	His	Leu	Giy	Leu	Asp	Gin	Lys	Arg	Arg	Lys	Tyr	Val	Val	Giy	Glu	Leu	lle	Trp	Asn	Phe	Ala	Asp	Phe	Met	Thr	Glu	Gin	Ser	Pro	Thr	599
CAG	AAA	AGT	CTG	Cta	GAG	CAG	TAC	CAT	CTG	GGT	CTG	Gat	CAA	AAA	CGC	AGA	AAA	Tat	GTG	GTT	Gga	GAG	CTC	Att	TGC	i AAT	TTT	GCC	Gat	TTC	ATG	ACT	GAA	CAG	TCA	CCG	ACG	1823
Arg	Val	Leu	Giy	Asn	Lys	Lys	Gly	lle	Phe	Thr	Arg	Gin	Arg	Gin	Pro	Lys	Ser	Ala	Ala	Phe	Leu	Leu	Arg	Glu	Arg	Tyr	Trp	Lys	lle	Ala	Asn	Glu	Thr	Arg	Tyr	Pro	His	637
AGA	GTG	CTG	GGG	AAT	AAA	AAG	GGG	ATC	TTC	ACT	CGG	CAG	AGA	CAA	CCA	AAA	AGT	GCA	GCG	TTC	CTT	TTG	CGA	GAG	G AGA	TAC	TGG	AAG	ATT	GCC	AAT	GAA	ACC	AGG	TAT	CCC	CAC	1937
Ser TCA	Val GTA	Ala GCC	Lys AAG	Ser TCA	Gin C AA	Cys TGT	Leu TTG	Glu GAA	Asn AAC	Ser AGC	Pro CCG	Phe TTT	Thr ACT	* Tga	GC/	AGAC	TGAT	ACCA	CTGC	GTGT	ссстт	сстсо	CCGA	GTCA	GGGC	GACTI	CCAC	AGCA	GCAGA	ACAA	GTGCC	тсста	GACT	GTTCA	CGGC#	GACC	AG	651 2080

AACGTTTCTGGCCTGGGTTTTGTGGTCATCTATTCTAGCAGGGAACACTAAAGGTGGAAATAAAAGATTTTCTATTATGGAAATAAAGAGTTGGCATGAAAGTCGCTACTG

FIG. 2. Nucleotide and deduced amino acid sequence of human β -glucuronidase. The nucleotides are numbered in the 5'-to-3' direction, starting with the first nucleotide of the insert in pHUGP13. The amino acids are numbered beginning with the first residue of the signal sequence. The proposed signal sequence cleavage site is indicated by an arrow. The 10 amino acids that correspond to the NH₂-terminal amino acids of human spleen β -glucuronidase are indicated by the overline. The four potential N-linked glycosylation sites are boxed. The 153 nucleotides not present in pHUGP15 and pHUGF are bracketed and underlined. The potential polyadenylylation signals (AATAAA) in the 3' untranslated region are underlined.

groups typified by pHUGP13 and pHUGP15 (Fig. 1), which were both 0.25 kb longer at the 5' end than pHUGF. The pHUGP13-type clones contain an additional 0.15-kb internal segment not present in pHUGP15 or pHUGF (Fig. 1).

Nucleotide Sequence Analysis. Fig. 2 shows the 2191nucleotide sequence obtained by sequencing pHUGF, the partial cDNA clone from human fibroblasts, and the two placental cDNA clones; the strategy used is shown in Fig. 1. The 5' end of pHUGP13 was numbered 1; pHUGP15 began at base pair 8 and pHUGF at base pair 267. The additional internal segment in pHUGP13 contained 153 base pairs (bp) (base pairs 939–1091). The poly(A) tract in pHUGP13 begins at base pair 2180. All other regions sequenced were identical. There were two potential poly(A) addition sites (AATAAA) 25 and 48 bp upstream from the poly(A) tract (Fig. 2).

Nuclease S1 Mapping Studies of Human Placental mRNA. Nuclease S1 mapping studies were carried out to determine whether there are two distinct mRNAs for β -glucuronidase in placenta (Fig. 3). Probes used for the nuclease S1 protection analysis were the 527-nucleotide *Cla* I–*Cla* I fragment from pHUGP13 (nucleotides 710–1237) and the 374-nucleotide *Cla* I–*Cla* I fragment from pHUGF (Fig. 1). Lane A in Fig. 3 shows the protection of bands of approximately 527 and 146 nucleotides by the *Cla* I–*Cla* I fragment from pHUGP13. The band near 527 nucleotides would represent a mRNA that is completely homologous with the probe. The band near 146

A B C D

FIG. 3. Autoradiography of protected bands from nuclease S1 mapping of human placental RNA. Approximately 0.1 μ g of Cla I-Cla I cDNA probe labeled at the 5' end with [γ^{-32} P]ATP was hybridized in a total volume of 30 μ l for 3 hr at 58°C to either 200 μ g of total human placental RNA (lanes A and C) or yeast tRNA (lanes B and D) (13). After hybridization, nuclease S1 was added to 2000 units per ml, and the 300- μ l mixtures were incubated at 40°C for 1 hr. The samples were then precipitated with ethanol after the addition of 20 μ g of carrier yeast tRNA and analyzed by gel electrophoresis on a 5% polyacrylamide gel containing 7 M urea. The probe for lanes A and B was the 527-nucleotide Cla I-Cla I fragment from pHUGP13. The probe for lanes C and D was the 374-nucleotide Cla I-Cla I fragment from pHUGF.

nucleotides would represent a mRNA that had diverged at a distance of 146 nucleotides from the 3' end of the probe. This position would correspond with the 3' border of the 153-bp segment and would be expected for the pHUGP15 mRNA. Lane C in Fig. 3 shows the results when the 374-nucleotide *Cla I-Cla I* fragment from pHUGF was used as a probe. Two S1 nuclease-resistant bands can be seen (approximately 146 and 374 nucleotides). The sizes are those predicted for the probe missing the 153-bp segment. Lanes B and D in Fig. 3 show controls, where each of the probes were hybridized to yeast tRNA. These results provide evidence for two types of cDNA isolated (pHUGP13 and pHUGF).

Predicted Amino Acid Sequence. The nucleotide sequence for the longer pHUGP13 clone codes for a protein of 651 residues, with a calculated M_r of 74,715 (Fig. 2). The initiation methionine codon begins at base pair 27. The first in-frame stop codon (TGA) begins at base pair 1980. The first 10 NH₂-terminal amino acids determined by Edman degradation of human spleen β -glucuronidase corresponded exactly with the deduced amino acid sequence of the human placental cDNA beginning at residue 23 (Fig. 2). After cleavage of the 22-residue signal sequence, the unglycosylated protein encoded by pHUGP13 would contain 629 amino acids and have a M_r of 72,562. The 153-bp deletion in pHUGP15 does not disrupt the open reading frame. Thus, pHUGP15 codes for a protein missing an internal stretch of 51 amino acids that would have M_r values of 69,107 and 66,954 before and after cleavage of the signal sequence.

Several previous studies incorrectly concluded that there were no cysteine residues in β -glucuronidase (9, 25–28). There are actually six cysteine residues in the inferred amino acid sequence (Fig. 2). The amino acid sequences surrounding three of these agree with cysteine-containing tryptic peptides from rat preputial β -glucuronidase (29). The predicted amino acid sequence contains four potential sites for asparagine-linked glycosylation (Fig. 2).

β-Glucuronidase sequence was compared with the 3800 sequences found in the protein database of the National Biomedical Research Foundation as described (30, ¶). The only significant homology (16%) was with the first 668 amino acids of *Escherichia coli* β-galactosidase. The region from amino acid 324 to amino acid 479 of β-glucuronidase had the highest homology (32%). No significant protein homology was detected with the same program when comparing βglucuronidase with other sequenced lysosomal enzymes, including β-hexosaminidase (31, 32), glucocerebrosidase (33), α-fucosidase (34), cathepsin D (35), and α-galactosidase A (36) or with the microsomal enzyme UDP-glucuronosyltransferase (37).

Expression and Immunoprecipitation. Inserts from pHUGP13 and pHUGP15 were subcloned into the SV40 expression vector pJC119 (17) and were designated pSVL(JC)-HUGP13 and pSVL(JC)-HUGP15, respectively. Cells were transfected with each of these two clones or with pJC119 and labeled with [35S]methionine as described. The 35S-labeled proteins were immunoprecipitated by antibody to human β -glucuronidase and analyzed by gel electrophoresis. Transfection with plasmid containing either insert led to a large increase in immunoprecipitable protein (Fig. 4, lanes 3 and 4) compared with cells transfected with vector alone (Fig. 4, lane 2). Normal human fibroblasts labeled and immunoprecipitated under identical conditions are shown in lane 1 of Fig. 4, where faint bands at M_r 82,000 and M_r 79,000 are seen. pSVL(JC)-HUGP13 produced a protein of M_r 82,000. pSVL(JC)-HUGP15 produced a labeled immunoprecipitable

[¶]Protein Identification Resource (1986) Protein Sequence Database (Natl. Biomed. Res. Found., Washington, DC), Release 10.0.

FIG. 4. Fluorography of [35S]methionine-labeled proteins expressed after transfection of COS-7 cells. At 48 hr posttransfection, COS-7 cells and nontransfected fibroblasts were labeled with [35S]. methionine and immunoprecipitated with antiserum to human β glucuronidase as described. Proteins immunoprecipitated from lysed extracts were eluted from the IgGsorb pellets with 40 μ l of 1% NaDodSO₄ in 50 mM Tris HCl (pH 6.8) by boiling for 5 min. The eluted [35S]methionine-labeled protein was split into two aliquots, one of which was treated with 1 milliunit of Endo F in 50 mM citrate buffer (pH 5.5) for 20 hr. Both aliquots were then analyzed by NaDodSO₄/polyacrylamide gel electrophoresis. Lanes: 1, immunoprecipitated protein from normal human fibroblasts; 2, COS-7 cells transfected with vector (pJC119) alone; 3, immunoprecipitate from cells transfected with pSVL(JC)-HUGP13; 4, immunoprecipitate from cells transfected with pSVL(JC)-HUGP15; 5, Endo F-treated sample from lane 3; 6, Endo F-treated sample from lane 4. The arrowheads at the left margin correspond to the mobilities of the proteins in lanes 3 and 4. All lanes were from the same gel exposed for either 5 hr (lanes 3-6) or 12 hr (lanes 1 and 2).

protein of M_r 79,000. The antibody to human β -glucuronidase precipitates the endogenous COS cell enzyme. A faint endogenous β -glucuronidase band was observed in COS cells transfected with vector alone (Fig. 4, lane 2). The labeled immunoprecipitable products of transfection with either pSVL(JC)-HUGP13 or pSVL(JC)-HUGP15 contained Nlinked carbohydrates as evidenced by sensitivity to Endo F (Fig. 4, lanes 5 and 6). The molecular weights of the Endo F-treated proteins were approximately M_r 74,000 and M_r 71,500 after transfection with pSVL(JC)-HUGP13 and pSVL(JC)-HUGP15, respectively. Both produced a labeled immunoprecipitable protein that was secreted into the media, although the rate of secretion of the protein from transfection with pSVL(JC)-HUGP15 was significantly slower (data not shown).

Expression of \beta-Glucuronidase Activity. Results from experiments after transfection of COS-7 cells with plasmids containing either of the two types of placental cDNA inserts, or with no insert, are presented in Table 1. Human β -glucuronidase was distinguished from the endogenous COS cell enzyme by its resistance to heat inactivation (7, 8). Transfection with pSVL(JC)-HUGP13 led to an 11-fold increase in intracellular β -glucuronidase activity. However, neither the transfection with plasmid without insert nor the pSVL(JC)-HUGP15 plasmid led to any increase in β -glucuronidase activity. Heat inactivation of the endogenous COS cell enzyme made the difference even more dramatic. The large increase in β -glucuronidase activity in the medium was also due to heat-stable human enzyme (Table 1).

To verify that the lack of expression of enzymatic activity by the pHUGP15 clones was due to the absence of the 153-bp segment, the *Bgl* II–*Sst* I fragment from pHUGP15 (Fig. 1) was replaced by the *Bgl* II–*Sst* I fragment (base pairs 767–1780) from pHUGP13. Transfection of this chimeric cDNA into COS-7 cells resulted in expression of an immunoreactive protein ($M_r = 82,000$) with heat-stable human β -glucuronidase activity. Replacing the *Bgl* II–*Sst* I fragment in pHUGP13 with that from pHUGF, which lacks the 153-bp segment, produced a chimeric cDNA that expressed a protein ($M_r = 79,000$) that lacked enzymatic activity. These exper-

Table 1. Expression of human β -glucuronidase in transfected COS-7 cells

	Cell	extract	Medium					
Plasmid	Total units	Heat resistant	Total units	Heat resistant				
pJC119	53	1	10	1				
pSVL(JC)-HUGP13	570	484	162	130				
pSVL(JC)-HUGP15	52	1	10	2				

COS-7 cells were transfected in 60-mm dishes with 10 μ g of the indicated plasmid. Plasmid pJC119 is the expression vector with no cDNA insert. At 60 hr posttransfection, the cells and the media were collected as described. Endogenous COS-7 β -glucuronidase was inactivated by heating at 65°C for 90 min after dilution of the extract with an equal volume of 40 mM Tris·HCl, pH 7.5/0.15 M NaCl/10 mg of bovine serum albumin per ml (7, 8). For fluorometric assay of β -glucuronidase, dilutions of heat-treated or untreated extracts and medium were added to 100 μ l of assay buffer (10 mM 4-methylumbelliferyl- β -glucuronide/0.1 M acetate buffer, pH 4.8/1 mg of human serum albumin per ml) and incubated at 37°C for 2 hr (cell-lysate) or 10 hr (medium) (21). One unit of enzyme activity was defined as the activity that released 1 nmol of 4-methylumbelliferone per hr.

iments (data not shown) localized the basis for the loss of enzymatic activity to the deletion of the 153-bp segment.

DISCUSSION

Partial cDNA clones for mouse (38–40), rat (41, 42), and human (24) β -glucuronidase have been reported. In this study we report the complete sequence of the full-length cDNA for human β -glucuronidase. The inferred 22-amino-acid signal sequence has a number of features typical of eukaryotic signal sequences (42). The sequence surrounding the inferred ATG initiator codon (AGCATGG) (Fig. 2) conforms to the consensus sequence for translation initiation sites (AC-CATGG) (43).

Two types of cDNA clones were identified in the placental cDNA library. The expression studies made it clear that, although both clones specified proteins that were precipitated by antiserum to human β -glucuronidase (Fig. 4), only the longer clone, pHUGP13, produced a catalytically active β -glucuronidase (Table 1). The molecular weight calculated for the monomeric unglycosylated proteins produced by pHUGP13 and pHUGP15 after cleavage of the signal sequence are 72,562 and 66,954, respectively. The molecular weights determined for the enzymes expressed in COS cells were 82,000 and 79,000, respectively (Fig. 4). Treatment with Endo F reduced the observed molecular weights to 74,000 and 71,500 (Fig. 4). The failure of Endo F to reduce the expressed proteins to the calculated molecular weights may mean that the removal of the carbohydrates was incomplete or may reflect the inherent inaccuracy in molecular weight determinations by NaDodSO₄/polyacrylamide gel electrophoresis (44). The labeled β -glucuronidase produced by transfection with pHUGP13 comigrates with the endogenous COS cell protein and the M_r 82,000 fibroblast β -glucuronidase band. It is not yet clear whether the protein of M_r 79,000 seen in fibroblast extracts represents the equivalent of the pHUGP15 protein or a processed form of the M_r 82,000 β -glucuronidase.

The nuclease S1 mapping studies (Fig. 3) show that mRNAs with and without the 153-bp segment are present in placenta. These may represent the products of alternate splicing. Alternate splicing of internal exons leading to "exon skipping" has been reported for a number of different genes (45). We have not yet established whether the 153-bp segment corresponds to an exon in the β -glucuronidase gene. Determination of the flanking sequences in genomic DNA should provide that answer. The shorter clones could also be

Biochemistry: Oshima et al.

products of a different gene. The gene for human β -glucuronidase has been assigned to chromosome 7 (46). Whatever the origin of the shorter clones, the 51 amino acids encoded by the deleted sequence appear to be essential for catalytic activity of human β -glucuronidase in COS cells.

Whether the shorter protein specified by the pHUGP15 sequence has a biological function is presently unclear. Nevertheless, the existence of the pHUGP15-type clone, which specifies an immunoprecipitable product that lacks catalytic activity, emphasizes the importance of expression studies to support any claim that a cloned gene is full-length. This criterion would appear essential, unless the complete amino acid sequence is already known from amino acid sequence data.

Since this paper was communicated, Nishimura *et al.* (47) reported the cloning and sequencing of the cDNA for rat preputial β -glucuronidase and the expression of an immunoprecipitable protein in a cell-free translation system.

The authors gratefully acknowledge Drs. John Chirgwin, Paul Wollenzien, Kay Nolan, Ms. Helen Cochrane, and Mr. David Bachinsky for helpful advice. This work was supported by National Institutes of Health Grants GM34182 and AI22359 and March of Dimes Grant 6-407 to W.S.S. and Medical Research Council of Canada Grant PG-4 to R.A.G.; J.W.K. was supported by National Institutes of Health Multidisciplinary Postdoctoral Training Grant HL 07050.

- Sly, W. S., Quinton, B. A., McAlister, W. H. & Rimoin, D. L. (1873) J. Pediatr. 82, 249-257.
- Kaplan, A., Achord, D. T. & Sly, W. S. (1977) Proc. Natl. Acad. Sci. USA 74, 2026-2030.
- Natowicz, M. R., Chi, M. M.-Y., Lowry, O. H. & Sly, W. S. (1979) Proc. Natl. Acad. Sci. USA 76, 4322–4326.
- Gonzalez-Noriega, A., Grubb, J. H., Talkad, V. & Sly, W. S. (1980) J. Cell Biol. 85, 839–852.
- Fischer, H. D., Gonzalez-Noriega, A. & Sly, W. S. (1980) J. Biol. Chem. 255, 5069-5074.
- Achord, D. T., Brot, F. E., Bell, C. E. & Sly, W. S. (1978) Cell 15, 269–278.
- Frankel, H. A., Glaser, J. H. & Sly, W. S. (1977) Pediatr. Res. 11, 811-816.
- Achord, D., Brot, F., Gonzalez-Noriega, A., Sly, W. S. & Stahl, P. (1977) *Pediatr. Res.* 11, 816–822.
- 9. Brot, F. E., Bell, C. E. & Sly, W. S. (1978) Biochemistry 17, 385-391.
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
- 11. Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- 12. Strauss, E. C., Kobori, J. A., Siu, G. & Hood, L. E. (1986) Anal. Biochem. 154, 353-360.
- 13. Messing, J. (1983) Methods Enzymol. 101, 20-78.
- 14. Korneluk, R. G., Quan, F. & Gravel, R. A. (1985) Gene 40, 317-323.
- 15. Guo, L., Yang, R. C. A. & Wu, R. (1983) Nucleic Acids Res. 11, 5521-5540.
- Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K. & Green, M. R. (1984) Nucleic Acids Res. 12, 7035-7056.

- Sprague, J., Condra, J. H., Arnheiter, H. & Lazzarini, R. A. (1983) J. Virol. 45, 773-781.
- Lopata, M. A., Cleveland, D. W. & Sollner-Webb, B. (1984) Nucleic Acids Res. 12, 5707–5717.
- Luthman, H. & Magnusson, G. (1983) Nucleic Acids Res. 11, 1295-1308.
- 20. Gluzman, Y. (1981) Cell 23, 175-182.
- Glaser, J. H. & Sly, W. S. (1973) J. Lab. Clin. Med. 82, 969-977.
- 22. Laemmli, U. K. (1970) Nature (London) 227, 680-684.
- Hunkapillar, M. W., Lujan, E., Ostrander, F. & Hood, L. E. (1983) *Methods Enzymol.* 91, 227–236.
- Guise, K. S., Korneluk, R. G., Waye, J., Lamhonwah, A.-M., Quan, F., Palmer, R., Ganschow, R. E., Sly, W. S. & Gravel, R. A. (1985) *Gene* 34, 105-110.
- 25. Himeno, M., Hashiguchi, Y. & Kato, K. (1974) J. Biochem. (Tokyo) 76, 1243-1252.
- Tomino, S., Paigen, K., Tulsiani, D. R. P. & Touster, O. (1975) J. Biol. Chem. 250, 8503–8509.
- Tulsiani, D. R. P., Six, H. & Touster, O. (1978) Proc. Natl. Acad. Sci. USA 75, 3080-3084.
- Lusis, A. J. & Paigen, K. (1978) J. Biol. Chem. 253, 7336– 7345.
- Leighton, P. H., Fisher, W. K., Moon, K. E. & Thompson, E. O. P. (1980) Aust. J. Biol. Sci. 33, 513-520.
- 30. Lipman, D. J. & Pearson, W. R. (1985) Science 227, 1435-1441.
- Myerowitz, R., Piekarz, R., Neufeld, E. F., Shows, T. B. & Suzuki, K. (1985) Proc. Natl. Acad. Sci. USA 82, 7830-7834.
- Korneluk, R. G., Mahuran, D. J., Neote, K., Klavins, M. H., O'Dowd, B. F., Tropak, M., Willard, H. F., Anderson, M. J., Lowden, J. A. & Gravel, R. A. (1986) *J. Biol. Chem.* 261, 8407-8413.
- Tsuji, S., Choudary, P. V., Martin, B. M., Winfield, S., Barranger, J. A. & Ginns, E. I. (1986) J. Biol. Chem. 261, 50-53.
- Fukushima, H., de Wet, J. R. & O'Brien, J. S. (1985) Proc. Natl. Acad. Sci. USA 82, 1262–1265.
- 35. Faust, P. L., Kornfeld, S. & Chirgwin, J. M. (1985) Proc. Natl. Acad. Sci. USA 82, 4910-4914.
- Bishop, D. F., Calhoun, D. H., Bernstein, H. S., Hantzopoulos, P., Quinn, M. & Desnick, R. J. (1986) Proc. Natl. Acad. Sci. USA 83, 4859-4863.
- 37. Mackenzie, P. I. (1986) J. Biol. Chem. 261, 6119-6125.
- 38. Catterall, J. F. & Leary, S. L. (1983) Biochemistry 22, 6049-6053.
- Palmer, R., Gallagher, P. M., Boyko, W. L. & Ganschow, R. E. (1983) Proc. Natl. Acad. Sci. USA 80, 7596-7600.
- Watson, G., Felder, M., Rabinow, L., Moore, K., Labarca, C., Tietze, C., Molen, G. V., Bracey, L., Brabant, M., Cai, J. & Paigen, K. (1985) *Gene* 36, 15-25.
- 41. Hieber, V. C. (1982) Biochem. Biophys. Res. Commun. 104, 1271-1278.
- 42. Watson, M. E. E. (1984) Nucleic Acids Res. 12, 5145-5164.
- 43. Kozak, M. (1986) Cell 44, 283-292.
- Sundelin, J., Melhus, H., Das, S., Eriksson, U., Lind, P., Tragardh, L., Peterson, P. A. & Rask, L. (1985) J. Biol. Chem. 260, 6481-6487.
- 45. Leff, S. E., Rosenfeld, M. G. & Evans, R. M. (1986) Annu. Rev. Biochem. 55, 1091-1117.
- 46. Arrendondo-Vega, F. X., Arfin, S. M. & Smith, M. (1984) Cytogenet. Cell Genet. 37, 403-404.
- Nishimura, Y., Rosenfeld, M. G., Kreibich, G., Gubler, U., Sabatini, D. D., Adesnik, M. & Andy, R. (1986) *Proc. Natl. Acad. Sci. USA* 83, 7292–7296.