
Determination of Beta-Defensin Genomic Copy Number
in Different Populations: A Comparison of Three
Methods
Peder Fode1., Cathrine Jespersgaard2., Robert J. Hardwick3, Helen Bogle3¤, Michael Theisen2, Daniel

Dodoo4, Martin Lenicek5,6, Libor Vitek5,6, Ana Vieira7, Joao Freitas7, Paal Skytt Andersen1, Edward J.

Hollox3*

1 Department for Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark, 2 Department of Clinical Biochemistry and Immunology,

Statens Serum Institut, Copenhagen, Denmark, 3 Department of Genetics, University of Leicester, Leicester, United Kingdom, 4 Noguchi Memorial Institute for Medical

Research, University of Ghana, Legon, Ghana, 5 Department of Clinical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague,

Prague, Czech Republic, 6 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic, 7 Department of

Gastroenterology, Hospital Garcia de Orta, Almada, Portugal

Abstract

Background: There have been conflicting reports in the literature on association of gene copy number with disease,
including CCL3L1 and HIV susceptibility, and b-defensins and Crohn’s disease. Quantification of precise gene copy numbers
is important in order to define any association of gene copy number with disease. At present, real-time quantitative PCR
(QPCR) is the most commonly used method to determine gene copy number, however the Paralogue Ratio Test (PRT) is
being used in more and more laboratories.

Findings: In this study we compare a Pyrosequencing-based Paralogue Ratio Test (PPRT) for determining beta-defensin
gene copy number with two currently used methods for gene copy number determination, QPCR and triplex PRT by typing
five different cohorts (UK, Danish, Portuguese, Ghanaian and Czech) of DNA from a total of 576 healthy individuals. We
found a systematic measurement bias between DNA cohorts revealed by QPCR, but not by the PRT-based methods. Using
PRT, copy number ranged from 2 to 9 copies, with a modal copy number of 4 in all populations.

Conclusions: QPCR is very sensitive to quality of the template DNA, generating systematic biases that could produce false-
positive or negative disease associations. Both triplex PRT and PPRT do not show this systematic bias, and type copy
number within the correct range, although triplex PRT appears to be a more precise and accurate method to type beta-
defensin copy number.
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Introduction

Characterization of genetic variants is fundamental in under-

standing human heterogeneity and susceptibility to disease.

Regions where humans differ in diploid DNA dosage are known

as copy number variations (CNV) and are an important

component of genetic variation. CNVs are believed to encompass

more nucleotide content than single nucleotide polymorphisms

(SNPs) [1] and between 12% and 18% [2,3] of the euchromatic

human genome is suggested to be copy number variable [4]. The

use of array-comparative genomic hybridisation (array-CGH) and

next-generation sequencing techniques will probably reveal an

even greater proportion of structural variation among individuals

and populations [5,6]. CNVs can alone or in combination with

SNPs correlate with certain diseases, or are associated with

increased susceptibility to diseases [7–9] including psoriasis [10–

12], autism [13], cancer [14], schizophrenia [15–17], systemic

lupus erythematosus [18–20], Alzheimer’s disease [21], Charcot-

Marie-Tooth disease [22,23], Parkinson’s disease [24] and

autoimmunity [25].

One region showing extensive CNV is found in the 8p23.1

chromosome [26–28]. The region contains a cluster of defensin

genes including the DEFB4 and the DEFB103 which encode

human b-defensins 2 and 3 (hBD2, hBD3), respectively. Defensin

genes encode small cationic peptides that have antimicrobial

activity and have multi-functional activity: they function as chemo-
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attractants for T-lymphocytes, monocytes and dendritic cells

[29–32]. b-defensins induce the production of diverse chemokines

and cytokines such as MCP-1, macrophage inflammatory protein

3-a (MIP-3), RANTES, IL-6, IL-10, interferon-inducible protein

10, TNF-a and IL-1b, mainly in keratinocytes [33,34]. hBD3

mediates monocyte/macrophage migration [35], can signal

through melanocortin receptor 1 [36], and may function as an

anti-inflammatory molecule [37].

The beta-defensin cluster varies in copy number between 2 and

12 copies per diploid genome with most people having 2–7 copies

[28,38–41]. Because, to date, all evidence suggests this defensin

cluster varies in copy number en bloc, an assay for any point within

the defensin cluster can be assumed to measure copy number

across the whole region [42]. Though attention has moved from

CNV discovery in small cohorts to CNV typing in larger cohorts,

it is still a major challenge to determine exact copy numbers.

Although several studies have been performed to characterize

CNVs, comparing results from these studies has been hindered by

small sample sizes and different study designs and analytical

methods resulting in conflicting results [43,44] illustrating the need

for an accurate method and controls for future work. In particular,

the use of real-time QPCR methods, which appear attractive due

Figure 1. Illustration of the PPRT assay. A. Primer design and sequence of region test and reference regions. The sequence shows several
differences between chromosome 8 (test) and chromosome 21 (reference). The red arrow show the variable position used to distinguish test from
reference amplicon sequences, and quantified by PPRT. F: forward primer, R: reverse primer, and S: sequencing primer. B. Pyrograms from PPRT
testing of samples with 3 and 4 beta-defensin copies. Two variable sites are highlighted in yellow. The second variable site (corresponding to the site
highlighted with the red arrow in Figure 1a), with the percentage of each allele shown, gave reproducible values and used for quantification. For the
top pyrogram, the ratio of the C variant (representing the test amplicon) to the T variant (representing the reference amplicon) is 1.5:1, indicating a
diploid copy number of three for the test sequence. For the bottom pyrogram, the ratio is 2:1, indicating a diploid copy number of four.
doi:10.1371/journal.pone.0016768.g001
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to their universal applicability, high throughput and relative

simplicity, has come under some scrutiny [45], with the suggestion

that batch variation can generate false positive associations of copy

number and disease [46,47]. Since CNVs may play a role in

susceptibility to certain diseases, due to variation in gene

expression [48,49], it is of great importance to find approaches

to determine exact copy numbers.

PRT addresses one of the major drawbacks of QPCR, namely

the problem of bias due to different amplification kinetics of test

and reference amplicons [50]. By careful design of primers to a

repeat region within the CNV, it is possible to amplify two almost

identical regions using just one set of primer pair, the test amplicon

within the CNV, and the reference amplicon outside the CNV,

ideally on another chromosome. A small difference in length

between the amplified products distinguishes test amplicon from

reference amplicon. Using PCR and subsequent fragment analysis

by capillary electrophoresis it is possible to determine the copy

number. Here, we evaluate a simple, cost-effective, high-

throughput adaptation of the PRT method to determine gene

copy number using the pyrosequencing technique to quantify

sequence differences between the test and reference PRT

amplicons [42,51,52], and compare this pyrosequencing PRT

(PPRT) with the published triplex PRT [53] method and real-time

QPCR. We determined the gene copy numbers for 576 healthy

individuals from five different populations using these three

methods, compared the copy number distributions generated by

the different methods, and compared the copy number distribu-

tions across the different populations.

Materials and Methods

Study population
Unrelated DNA samples from normal healthy individuals from

five different demographic population groups, Denmark (n = 174),

Czech Republic (n = 21), Ghana (n = 100), Portugal (n = 91), and

the United Kingdom (the European Collection of Cell Cultures

ECACC (Cat. No.: HRC-1 and HRC-2); (n = 190) were used in

the study.

Ethics statement
All samples were gathered with full ethical consent and

appropriate documentation as stipulated by the ethical consent,

which normally involved written informed consent. For Portu-

guese samples, the local ethics committee of Hospital Garcia de

Orta, Almada, Portugal, gave its approval for a genetic study using

blood samples from local patients and normal volunteers. For

Czech samples, the study has been approved by the Ethical

commitee of the General Faculty Hospital in Prague. For

Ghanaian samples, approval of the Institutional Review Board

of Noguchi Memorial Institute for Medical Research, University

of Ghana was given. For Danish samples, they are a standard set

of anonymised DNA samples provided for standardisation

purposes and quality assurance, and were not required under

Danish law to pass the Danish Ethics Approval system. Other

samples were from immortalised lymphoblastoid cell lines, which

had been derived from B-cell lymphocytes with full ethical consent

by the suppliers (ECACC and Coriell Cell Repositories).

DNA extraction
Genomic DNA was isolated from samples of venous blood, anti-

coagulated with EDTA and purified using the QIAamp DNA

Blood Mini Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s protocol and eluted in water. The UK samples

were purified using an in-house magnetic bead affinity method

Table 1. Copy number estimates using different methods on a panel of DNA samples.

Sample
PRT
(reference 50)

PPRT
(this paper)

PPRT
(reference 42)

Triplex PRT
(this paper)

MLPA
(reference 42)

Q-PCR
(this paper)

C0088 4 4 3 4 4 4

C0096 5 5 3 5 5 4

C0187 4 4 4 4 4 3

C0195 4 4 4 4 4 4

C0748 4 3 4 4 4 4

C0766 3 2 2 3 3 3

C0863 5 5 4 5 5 5

C0877 3 3 3 3 3 3

C0888 5 5 4 5 5 5

C0909 5 4 4 5 5 6

C0913 3 3 3 3 3 3

C0917 4 4 3 4 4 4

C0937 4 4 4 4 4 4

C0960 3 3 2 3 3 3

This table summarises published data and data from this paper where a panel of DNA samples from the UK population have been typed for beta-defensin copy number
by different laboratories using different methods.
doi:10.1371/journal.pone.0016768.t001

Table 2. Percentage of discordant results between the three
different methods.

PPRT Triplex PRT QPCR

PPRT - - -

Triplex PRT 47.3% - -

QPCR 67.7% 60.2% -

Pairwise discordance rates are shown, for a first-pass test of all 576 samples.
doi:10.1371/journal.pone.0016768.t002
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Figure 2. Histograms of raw unrounded copy number estimates. The raw unrounded copy number estimates for all 576 samples analysed. Unrounded
copy number estimates are in bins of 0.1, with the count of each bin displayed on the y-axis: a) from QPCR assay, b) from PPRT assay, and c) from triplex PRT assay.
doi:10.1371/journal.pone.0016768.g002
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and was obtained from ECACC (Porton Down, Salisbury, UK).

Czech DNA samples were extracted using a routine ‘‘salting out’’

and ethanol precipitation procedure.

Quantitative real-time PCR for copy number
determination

A duplex TaqMan real-time quantitative PCR-based assay was

developed for the detection of beta-defensin genomic copy number

using RNaseP as reference gene. Primers and probes for

amplification of a region near the DEFB103 gene were designed

using the Primer Express software, version 2.0 (Applied Biosys-

tems, Foster City, CA). The sequences of the primers and probes

were as follows: DEFB103 forward primer (59 CAT AGG GAG

CTC TGC CTT ACC A 39); DEFB103 reverse primer (59TGC

AGA ACA CAC CCA CTC ACT C 39) and DEFB103 probe (59

FAM - TGG GTT CCT AAT TAA C – MGB 39). The sequence

for RNaseP is not known since it is a commercial available kit

(VIC labelled, Cat. no. 4316844, Applied Biosystems). The

amplification efficiencies of the target genes and the reference

genes were tested to be approximately equal not varying more

than 5% from each other. Optimizing runs were performed to

define limiting primer concentrations for the duplex assay. The

PCR reactions (20 ml) were carried out in triplicate with 10–75 ng

of template DNA, 1 x Brilliant II QPCR master mix (Stratagene,

La Jolla, CA), 400 nM of DEFB103 probe, 600 nM DEFB103

primers and 1 x RNaseP primer mix. Each plate included

triplicate wells of ‘‘no template control’’ and 4 control samples.

QPCR was performed using a Stratagene MX3000P machine

(Stratagene) using the following conditions 95uC for 10 min

followed by 40 cycles of 95uC for 15 sec, and 60uC for 1 min. In

all runs samples from Coriell Institute for Medical Research

(Camden, NJ) with known copy number were included[50]: 3

copies per genome (Coriell cat no.: NA10861), 4 copies per

genome (Coriell cat no.: NA07048), 5 copies per genome (Coriell

cat no.: NA10846), and 7 copies per genome (Coriell cat no.:

NA10847). These were used to generate a correction curve by

linear regression, and corrected copy number estimates calculated

for each sample calculated using this run-specific regression

equation.

Paralogue Ratio Test for copy number determination
PRT was performed as described previously [53]. Briefly, the

assay used comprises two PRT assays and a multiallelic ratio test

[52] to gain three independent measurements of beta-defensin

repeat copy number. This test, performed in duplicate, produces

six estimates of beta-defensin copy number in a single fluorescent

capillary run, and each test is independently normalised against six

samples of known copy number to control for variation between

experimental runs. The six values are combined using a

maximum-likelihood method [53,54] to give the best estimate of

the integer copy number for each sample, together with an

associated significance value reflecting the confidence we have in

that typed copy number compared to all other copy numbers

between 1 and 10. For analyses involving raw non-integer copy

number estimates, we calculated means of the six copy number

estimates, each estimate weighted according to the inherent

variability of each individual assay.

Figure 3. Bland-Altman plots showing differences in copy
number estimation between methods. a) Triplex PRT minus QPCR,
b) Triplex PRT minus PPRT, c) Triplex PRT minus QPCR, good quality
DNA only.
doi:10.1371/journal.pone.0016768.g003
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Pyrosequencing-based Paralogue Ratio Test for Copy
number determination

PRT was carried out essentially as described previously [50]. The

beta-defensin cluster region on chromosome 8 and an identified

paralogue gene (HSPD21 on chromosome 21) 3 kb distal to the

DEFB4 gene with only two copies per genome were PCR amplified.

The resulting PCR amplicons differed at 10 positions with an 8 bp

(BLAST) difference in length. One of the positions where the

amplicons differed was used to quantify the two chromosome regions

against each other by pyrosequencing across it. Primers for the

pyrosequencing assay were designed using the PSQ assay design

software version 1.0.6 (Qiagen, Hilden, Germany). The following

sequence was analysed with the position that varied between

chromosome 8 and 21 marked with red: KATGCYAT (Figure 1).

For the PCR, 20 ng of genomic DNA in a total volume of 50 ml

using a forward primer (59-GAGGTCACTGTGATCAAAGAT-39)

and a reverse primer (59-Biotin- AACCTTCAGCACAGC-

TACTC-39) was used was used together with Q-solution (Qiagen),

10 mM dNTP and Tempase polymerase. PCR was performed on a

thermocycler using the following conditions: 15 min at 95uC
followed by 35 cycles of 95uC for 30 s, 53uC for 30 s and 72uC
for 45 s and one extension step at 72uC for 10 min. The biotin-

labeled PCR products were immobilized on streptavidin Sepharose

(GE Healthcare, Uppsala, Sweden) by mixing 40 ml of the PCR

product with 3 ml streptavidin Sepharose suspension, 40 ml water,

and 37 ml 1 x binding buffer (Qiagen). The suspension was shaken at

room temperature for 10 minutes. To remove unbiotinylated DNA

the samples were sequentially washed in 70% ethanol for 5 seconds,

denaturated in 0.5 M NaOH for 5 seconds and additional washing

in 1x washing buffer (Qiagen) for 5 seconds. This was done using the

PyroMark Vacuum Prep Tool (Qiagen). After the last wash the

ssDNA biotinylated DNA was transferred to 39 ml 1 x annealing

buffer (Qiagen) and 1 ml sequencing primer (59-AGGTCACTGT-

GATCAAAGAT-39). The suspension was heated to 80uC for 2

minutes and was equilibrated to room temperature for 5 minutes in

order to let the sequencing primer anneal. The sequencing reaction

was performed using the Pyro Gold Reagent Kit (Qiagen) in the

PSQ 96 MA Pyrosequencer (Qiagen) according to the manufactur-

er’s instructions. The relative percentages of the two variants were

calculated by the accompanying software and were used for the gene

copy number determination. Positive controls with known copy

number in each run were used to generate a correction curve by

linear regression, and corrected copy number estimates calculated

for each sample calculated using this run-specific regression

equation. A ‘‘no template control’’ was included in each run.

Statistical analysis
Statistical analysis was performed using GraphPad InStat 3

(GraphPad Software, La Jolla, USA) and Microsoft Excel.

Results and Discussion

We have developed a version of the PRT method that uses

pyrosequencing and quantification of different sequence variants

to distinguish test and reference amplicons (pyrosequencing PRT,

PPRT). A pyrosequencing approach to determining beta-defensin

copy number has been described previously [42], using different

primers and an alternative paralogue on chromosome 5, giving

results that differed considerably from MLPA and previously

published estimates of the same samples [50]. Nevertheless, given

the potential of PPRT to automated copy number typing, and the

previously published examples of pyrosequencing to quantify

alleles, a reliable PPRT method would be a very useful tool to

investigate the role of beta-defensin copy number and disease. We

designed an assay that would allow PCR amplification across a

‘‘test’’ region distal to DEFB4 co-amplifies a ‘‘reference’’ region on

chromosome 21. Pyrosequencing of the product allows quantifi-

cation of a particular sequence variant that reports copy number

by distinguishing test from reference amplicons.

We determined beta-defensin gene copy number using PPRT

and two other independent methods on DNA samples from 576

individuals from five populations. Comparison of copy number

estimates for 14 samples measured using several different methods

shows that triplex PRT and MLPA give exactly the same copy

numbers as the previously published PRT method (Table 1).

PPRT performs better than a previous pyrosequencing-based

assay, but showed three discrepancies with PRT/triplex PRT/

MLPA. Extending this analysis, we examined the proportion

discordant copy number calls between the three methods (Table 2).

There is a very high frequency of discordant calls, although PPRT

and triplex PRT are the least discordant (47.3%). Such variation

in copy number calling between methods is problematic and is

likely to reflect error in the methods used. We decided to

investigate the sources of error by examining the raw data in more

detail. The raw unrounded data are shown as histograms in

Figure 2. If our underlying biological assumption is that copy

number varies discretely as complete integers (2, 3, 4 etc) then we

would expect our data to reflect that underlying biological reality

by clustering of unrounded data about those integer values. Both

QPCR and PPRT show no evidence of clustering (Figure 2a, 2b),

compared to triplex PRT (Figure 2c), which shows evidence of

clustering, revealed by peaks in the histogram corresponding to

integer copy numbers. This is due, at least in part, to repeat

testing, because each triplex PRT copy number estimate is from

duplicate testing of three different assays, compared to triplicate

testing of one assay for the QPCR, and one test for the PPRT.

Indeed, on repeat testing of a selection of UK samples, the

coefficient of variation of PPRT is 0.05 compared to 0.08 for

triplex PRT, suggesting that PPRT is as precise as triplex PRT,

although PPRT assays a single locus, while the triplex PRT assays

three different loci within the beta-defensin CNV.

Both PPRT and triplex PRT give a copy number distribution of

between 2 and 6 copies, with a few samples showing a higher copy

number. However, the QPCR assay gives a considerably broader

distribution, with more samples showing apparently higher copy

number, and a significant number of samples showing copy

number higher than 10. This is reflected in the Bland-Altman plots

comparing the raw copy number estimates between the different

methods (Figure 3), and the observation that QPCR can

overestimate copy number values agrees with other reported

studies [55].

We took the raw copy number data and divided, according to

cohort, by separating the Ghanaian and Portuguese cohorts from

the UK, Danish and Czech cohorts. Plotting this raw data as a

histogram shows that DNA cohort origin is clearly responsible for

systematic copy number calling bias in QPCR between ‘‘poor

Figure 4. Histograms of raw unrounded copy number estimates comparing results from poor and good quality DNA. The raw
unrounded copy number estimates for all 576 samples analysed. Unrounded copy number estimates are in bins of 0.1, with the count of each bin
displayed on the y-axis. Results from the good quality DNA cohorts (UK, Danish, Czech) are shown in grey, results from the poor quality DNA cohorts
(Portuguese, Ghanaian) are shown in black. a) From QPCR assay, b) from PPRT assay, c) from triplex PRT assay.
doi:10.1371/journal.pone.0016768.g004
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quality’’ DNA from the Portuguese and Ghanaian cohorts and

‘‘good quality’’ DNA from the UK, Danish and Czech cohorts

(Figure 4a) but had no effect on copy number calling for the two

PRT-based methods (Figure 4b and 4c) but. For the UK, Danish

and Czech cohorts, QPCR gives a copy number distribution in a

range comparable with the PRT-based methods, while for the

Ghanaian and Portuguese cohorts QPCR systematically overes-

timates copy number, often by several copies. Because each cohort

was analysed as a batch, it is possible that biases in the

normalisation to known copy number controls included on every

PCR plate (see Methods) could generate this effect. We compared

the results from the known copy number controls across each

cohort-specific plate for all three methods, and found no evidence

of systematic differences (Figure 5).

We therefore reasoned that systematic difference in DNA

quality between the DNA sample cohorts may be responsible for

this effect. Cukier and colleagues recently showed that degraded

DNA could give spurious CNV findings despite the presence of

multiplexed internal samples in QPCR assays [45]. Although these

five cohorts are from different biological sources, DNA extracted

using different methods, and have different histories of transport

and storage associated with them, they do not appear to vary with

DNA ‘‘quality’’ (Table 3). We investigated whether the systematic

bias in QPCR results was due to DNA degradation by analysing

selected samples by agarose gel electrophoresis or whether it was

due to salt contamination by examining absorbance at 230 nm.

Neither measure correlated with the ‘‘quality’’ of the DNA in

giving appropriate QPCR results, so we do not yet understand the

physical basis for the different DNA qualities of these cohorts.

This raises questions about the applicability of QPCR in

measuring DNA copy number, particularly as we cannot, as yet,

identify the factor that is responsible for this effect, ruling out a

priori determination of the applicability of each sample for copy

number calling by QPCR. Furthermore, it is unclear whether

internal controls constructs would remove this effect, given that it

is a property of the genomic DNA itself rather than any effect of

aberrant normalisation.

Taking the triplex PRT data as representing the correct copy

number of the samples typed, we investigated whether there was

any significant difference between copy number distributions in

the five different populations. There was no significant difference

between the means (one-way ANOVA, p.0.05), reflecting

essentially no difference between populations within Europe or

between European and Ghanaian populations (Table 4). This is

consistent with previous studies [39]. This probably reflects the

high mutation rate at this locus, causing any population specific

signatures to be rapidly erased. This also means that real case-

control differences from robust studies are less likely to be

confounded by cryptic population stratification than similar SNP

studies, although we would recommend that population stratifi-

cation is controlled for as far as possible.

Differences in beta-defensin copy number may have important

clinical consequences in the susceptibility to, and progression of, a

variety of diseases with an inflammatory or infectious etiology.

Figure 5. Scatterplots showing reproducibility of positive
controls between different experiments. These figures plot known
copy number from control samples against actual raw copy number
values, for each experiment. Note that all five populations are not
represented: several experiments tested samples from more than one
population, which was an additional control against systematic bias.
The legend on the graphs indicates the population from which the
majority of samples in that particular experiment derived. a) QPCR
assay, b) PPRT assay, c) Triplex PRT assay.
doi:10.1371/journal.pone.0016768.g005
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Accurate and precise methods for measuring copy number are

essential when investigating subtle changes in copy number

distribution between patients and healthy controls, which may

reflect an effect of beta-defensin copy number on susceptibility to

the disease under study. In summary, we show that PPRT is a

practical high-throughput approach, although we would recom-

mend multiplicate PPRTs per sample are required for sufficient

accuracy for case-control analyses, and careful quality-control

performed for every experiment. PPRT is cost-effective, with a

single test priced around J0.75, compared with around J1.2 for a

triplex PRT. We hope that with an increasing focus on reliable

methods to type beta-defensin copy number variation we will be in

a position to investigate the role of this complex locus in disease.
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