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Inducible nitric oxide synthase (nos2) 
is an inflammation responsive enzyme 

(ec 1.14.13.39) that is induced during 
acute and chronic inflammation and tis-
sue injury as part of the host defense and 
wound healing process. nos2 upregu-
lation leads to increased nitric oxide 
(no) production, the means by which 
this enzyme can initiate no-dependent 
signal transduction, influence the redox 
state of cells and induce modifications 
of proteins, lipids and dna. aberrant 
expression of nos2 has been observed 
in many types of human tumors. In 
breast cancer, increased nos2 is associ-
ated with markers of poor outcome and 
decreased survival. growth factor and 
cytokine signaling, tissue remodeling, 
nfκb activation and hypoxia are candi-
date mechanisms that induce nos2 in 
tumor epithelial and tumor-infiltrating 
cells. nos2 induction will trigger the 
release of variable amounts of no into 
the tumor microenvironment and can 
activate oncogenic pathways, including 
the akt, epidermal growth factor recep-
tor and c-myc signaling pathways, and 
stimulate tumor microvascularization. 
constitutively increased no levels may 
also select for mutant p53 cells to over-
come the tumor suppressor function 
of no-activated wild-type p53. more 
recent findings suggest that no induces 
stem cell-like tumor characteristics in 
breast cancer. In this review, we will dis-
cuss the effects of no in tumor biology 
and disease progression with an empha-
sis on breast cancer, and will examine 
the mechanisms that link increased no 
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Introduction

Stromal gene signatures predict resistance 
to therapy and clinical outcome in breast 
cancer.1,2 Other studies revealed that tran-
scriptional signatures reminiscent of the 
host wound healing response are induced 
in breast tumors and other epithelial can-
cers, and are associated with cancer pro-
gression and poor outcome.3,4 Together, 
these findings highlight the importance of 
stromal biology and the process of tumor-
associated wound healing in cancer biol-
ogy, disease aggressiveness and therapy 
response. One of the genes with a key 
function in wound healing is NOS2.5 In 
tumor biology, aberrant NOS2 induction 
may occur to facilitate tissue remodeling 
and to stimulate neovascularization.6-9 
In this function, NOS2 may synergize 
with the endothelial isoform, eNOS.10,11 
NO regulates metalloproteinase activ-
ity,9,12 crucial players in tissue remodeling 
and oncogenic pathways,13-15 and induces 
angiogenesis by mechanisms that involve 
activation of vascular endothelial growth 
factor (VEGF),7,8,16 and inhibition of 
thrombospondin-1.17 Moreover, recent 
findings indicate that NO induces stem 
cell-like tumor characteristics, including 
upregulation of c-Myc and CD44, and 
a basal-like phenotype in breast cancer15 
which are unfavorable prognostic markers 
for the disease.18-21 Together, these func-
tions of NO suggest that NOS2 expression 
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to increased NO-induced invasiveness of 
the breast cancer cells.43 Lastly, EGF was 
shown to induce NOS2 in MDA-MB-468 
human breast cancer cells. This cell line 
has basal-like breast cancer characteristics 
and EGF enhanced both NO production 
and vascular endothelial growth factor 
expression in these cells by a mechanism 
that involves the nuclear interaction of the 
EGF receptor and STAT3.44

Effects of NO in Tumor Biology

NO can influence tumor biology in various 
and sometimes dichotomous ways (fig. 1). 
Genetic ablation of NOS2 increases mam-
mary tumor latency and inhibits lung 
tumor development in mouse models of 
cancer.45,46 These genetic findings demon-
strate that NOS2 can have tumor promot-
ing activities. However, NOS2 expression 
or other forms of NO exposure are not 
always tumor promoting, and there are 
many examples where exposure to NO 
either delayed or inhibited tumor growth 
and metastasis.47-49 In some studies, tumor 
cell NO inhibited primary tumor growth 
but stimulated experimental metastasis,50 
while others found that metastasis was 
suppressed by NO.49 Because the effects of 
NO are strictly concentration-dependent 
with high concentrations causing cyto-
stasis and apoptosis, at least some of the 
observed differences are likely explained 
by a difference in levels of NO exposure. 
If a NOS2 transgene is used to experi-
mentally study the effect of NO on tumor 
growth, the use of a weak promoter, when 
compared to the CMV promoter, may 
reveal cancer promoting activities of the 
enzyme,6,8 while CMV-driven expres-
sion of the transgene may yield high 
NOS2 expression and cytotoxic effects 
of NO.48,49 Another factor that influences 
the effect of NO is the tumor microenvi-
ronment. For example, it was found that 
the ablation of NOS2 in cancer-prone 
p53 knockout mice can either suppress 
or enhance cancer development depend-
ing on the presence of chronic inflamma-
tion.51,52 This dichotomy of NO function 
is well documented, and NO can cause 
both DNA damage and protect from cyto-
toxicity, and either inhibit or stimulate cell 
proliferation and migration, and apop-
tosis.14,37,39,53-56 The NO effect will also 

the known differences in promoter regula-
tion of murine and human NOS2,33,34 we 
cannot be sure that estrogen would have 
similar effects on human NOS2. NOS2 is 
an inflammation responsive enzyme and 
bacterial lipopolysaccharide and cytokines 
have been shown to induce NOS2 in a 
variety of cell types through mechanisms 
that involve NFκB.33-35 Hormones may 
interact with cytokines in NOS2 induc-
tion and progesterone has been shown 
to enhance cytokine-stimulated NOS2 
expression in MCF7 human breast cancer 
cells.36 However, the level of NOS2 induc-
tion can be different between murine and 
human cell lines, with human cell lines 
commonly showing a lower expression of 
NOS2 following cytokine exposure. This 
observation is explained, at least partly, by 
promoter differences that regulate NOS2 
expression in response to inflammatory 
stimuli. These findings suggest that the 
induction of NOS2 in murine cells can 
lead to a phenotype that is somewhat dif-
ferent to that observed in their human 
counterparts because the effects of NO 
are strictly concentration-dependent with 
high concentrations causing cytostasis 
and apoptosis while lower concentrations 
may activate oncogenic signaling path-
ways, promote proliferation and inva-
sion and inhibit apoptosis.14,17,37-39 Thus, 
NOS2 effects in murine models may 
not apply to humans, and the use of the 
recently established human NOS2 trans-
genic mouse with a more human-specific 
release of NO may prove advantageous 
in experimental settings studying NOS2 
effects in mouse models of cancer.40 Other 
cancer-related signaling pathways that 
stimulate NOS2 expression include the 
Wnt adenomatous polyposis coli pathway, 
hypoxia, colony-stimulating factor-1 and 
epidermal growth factor (EGF) signal-
ing. In human colon and liver cancer cell 
lines, Wnt signaling induces NOS2 in a 
β-catenin-dependent manner.41 Hypoxia 
synergizes with interferon, resulting in a 
more than additive induction of NOS2 in 
murine macrophages.42 This mechanism 
could be important for NOS2 induction 
associated with tumor hypoxia and the 
tumor-associated wound healing response. 
Colony-stimulating factor-1 released by 
human breast carcinoma cells was found 
to induce NOS2 in macrophages, leading 

in cancer biology could be disease promot-
ing and upregulation of the enzyme in 
breast cancer and other cancer types could 
cause a poor outcome phenotype.

NOS2 in Human Tumors

Aberrant expression of NOS2 has been 
commonly observed in human tumors 
including human breast,22,23 colon,24 
stomach,25 lung,26 head and neck cancer,27 
among others. In the two breast cancer 
studies, increased NOS2 correlated with 
dedifferentiation as indicated by a high 
tumor grade22,23 and increased tumor 
angiogenesis.23 The correlation between 
increased NOS2 and a high tumor grade 
was also observed in two other studies15,28 
and one of them corroborated the find-
ing that NOS2 upregulation is associated 
with an increased tumor vascularization.15 
In most breast cancer studies, NOS2 was 
found to be expressed by the cancer cells 
themselves. Several reports examined the 
relationship between NOS2 and patient 
outcome in breast cancer.15,28,29 The two 
earlier studies detected NOS2 expression 
in a majority of the analyzed tumors (61 
and 78%) and observed borderline associ-
ations between increased NOS2 and infe-
rior breast cancer survival in two patient 
groups that consisted mainly of estrogen 
receptor (ER)-positive patients.28,29 The 
third and largest study detected a moder-
ate to strong NOS2 expression in 70% of 
the analyzed tumors.15 This study found 
a significant association of NOS2 with 
poor survival only in the ER-negative 
patients. From these results it appears that 
tumor NOS2 expression may have a lim-
ited prognostic value in ER-positive breast 
cancer but is a predictor of outcome in the 
ER-negative disease.

Induction of NOS2

Constitutive expression of NOS2 is rarely 
observed and most cells do not express 
the enzyme without a stimulus. NOS2 
expression occurs in normal breast tis-
sue where weaning induces this enzyme 
in the lactating gland.30 Estrogen has 
been found to alter NOS2 expression in 
murine macrophages, splenocytes and 
vascular smooth muscle cells by mecha-
nisms involving ER,31,32 but because of 
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ER-positive and ER-negative tumors.13 
However, NOS2 expression was a predic-
tor of survival only in the ER-negative 
disease.15 It is likely that both the differ-
ence in ER expression and also intrin-
sic differences between ER-negative and 
ER-positive breast tumors independent 
of the tumor ER status contribute to 
the increased responsiveness to NO in 
ER-negative breast cancer. We observed 
that interleukin-8 (IL-8) is significantly 
upregulated in ER-negative breast tumors, 
but not ER-positive tumors, with high 
NOS2. IL-8 is induced by NO.15,71-73 This 
chemokine is preferentially expressed 
by ER-negative breast tumors and can-
cer cell lines and its expression is low or 
absent in most ER-positive breast cancer 
cells.74 IL-8 is of particular importance in 
human breast cancer biology and is asso-
ciated with increased cancer cell invasion 
and microvessel density.75 IL-8 mediates 
metastasis in breast cancer and other can-
cers and its secretion correlates with early 
disease dissemination and poor survival.76 
We hypothesize that NOS2 may lead to 
poor survival among ER-negative patients 
partly because it induces IL-8 selectively 
in tumors of these patients, leading to 
increased angiogenesis and early metas-
tasis. ER-negative tumors also tend to 

the activation of the cyclooxygenase-2 
(COX2) pathway by NO and the induc-
tion of the chemokine receptor, CXCR4, 
which has a critical function in the hom-
ing of cancer cells to specific metastatic 
sites.67-69 NOS2 and COX2 are both 
inflammation responsive enzymes that are 
commonly expressed in breast tumors and 
their co-expression could have more del-
eterious effects than the expression of only 
one of these two markers. The activation 
of COX2 by NO may also enhance the 
anti-apoptotic and pro-angiogenic effects 
of NO that are observed when local NO 
concentrations remain below a 300 to 500 
nmol/l threshold. Here, NO can suppress 
apoptosis through the inhibition of cas-
pases by S-nitrosylation.39

Other studies discovered that NOS2 
expression correlates with increased Akt 
phosphorylation in breast tumors, and 
that NO induces Akt phosphorylation 
and activation of the oncogenic Akt path-
way in breast cancer cells in culture.13,14 
Akt activation is a pro-survival signal that 
suppresses the activation of key factors 
like BAD and caspase-9 in the apoptosis 
pathway, but also activates eNOS and 
eNOS-mediated tumor maintenance.11,70 
We found that NOS2 expression was 
associated with Akt activation in both 

dependent on tissue oxygen tension and 
local superoxide concentrations,55 and are 
therefore difficult to predict in human 
tumors. Thus, NO effects in human can-
cer are perhaps best estimated from the 
expression analysis of nitric oxide syn-
thases in the tumors, adjacent non-tumor 
tissues, and in the involved lymph nodes, 
and examining their association with 
tumor markers and survival.

Cancer cell lines can adapt to high 
NO concentrations and thereby change 
their phenotype.57 NO targets DNA 
repair processes and can induce genetic 
instability and cell transformation.58-61 
DNA damage can trigger activation of 
the tumor suppressor p53. We and oth-
ers have reported the existence of a nega-
tive feedback loop in which NO-induced 
p53 activation results in p53-mediated 
growth arrest and apoptosis, and in the 
trans-repression of NOS2.8,62-64 NO may 
promote carcinogenesis through the inac-
tivation of wild-type p53 function, either 
by causing loss of DNA-binding activity65 
and/or selecting for mutant p53. The lat-
ter hypothesis is supported by our obser-
vations that the p53 mutation frequency 
in colon and breast tumors is increased in 
tumors with high NOS2.15,66 Other candi-
date oncogenic functions of NO include 

Figure 1. Concentration-dependent effects of NO in tumor biology.
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independent predictor of poor survival in 
women with ER-negative breast tumors.15 
NOS2 remained a predictor of poor sur-
vival when the analysis was restricted to 
only those patients with basal-like breast 
tumors. This result suggests that in addi-
tion to inducing a basal-like signature 
in ER-negative tumors, NOS2 may fur-
ther enhance disease aggressiveness in 
the presence of this signature. Increased 
NOS2 in breast tumors also correlated 
with other poor outcome markers, such 
as an increased tumor vascularization and 
p53 mutation frequency, and activated 
EGFR. Both p53 mutations and EGFR 
overexpression occur more commonly 
in basal-like breast tumors than other 
breast cancer subtypes.21,79 Additional 
work showed that NO activates EGFR, 
consistent with previous findings in lung 
cancer,83 and induces proteins, such as 
CD44 and c-Myc, in ER-negative human 
breast cancer cells. These markers have 
been linked to an embryonic stem cell-
like phenotype in breast cancer and dis-
ease outcome.19,84,85 Recently, an increased 
expression of stem cell markers in basal-
like tumors has been reported.86,87 Among 

the ER-positive tumors and basal-like, 
HER2-positive and normal-like subtypes 
among the ER-negative tumors. Among all 
subtypes, basal-like and HER2-positive, 
ER-negative tumors have been recognized 
as the most aggressive subtypes.21,80 They 
are not treatable by endocrine-targeted 
therapy such as tamoxifen and aromatase 
inhibitors and have a worse prognosis than 
ER-positive breast tumors independent of 
therapy, particularly in the first five years 
following diagnosis.81,82 There is an urgent 
need to identify novel targets for the treat-
ment of ER-negative breast cancer in 
general, and even more for the basal-like 
subtype and the so called triple-negative 
tumors (ER/PR/HER2-negative) which 
mostly represent basal-like tumors but 
also some other ones.

We think that NOS2 and down-
stream targets of NOS2 are candidate 
new targets for therapeutic intervention 
in both the basal-like and triple-negative 
disease (fig. 2). Recent research by our 
laboratory led to the novel and clini-
cally significant observation that NOS2 
expression is associated with a prognostic 
basal-like transcription pattern and is an 

have more tumor-associated macrophages 
than ER-positive tumors,77 and many 
pro-inflammatory cytokines are more 
highly expressed in ER-negative tumors 
than ER-positive tumors.78 Both macro-
phages and cytokines will alter the tumor 
microenvironment and may lead to a pro-
inflammatory state and increased oxygen 
radical formation. As already mentioned 
at beginning of this section, the presence 
of chronic inflammation can lead to an 
opposite effect of NO in a mouse model 
of cancer.51,52 Thus, NO biochemistry and 
signaling, which is greatly influenced by 
reactive oxygen species availability, may be 
different in ER-negative and ER-positive 
breast cancer.

NOS2 and Basal-Like  
Breast Cancer

Recent results from large-scale gene 
expression profiling studies showed that 
that ER-negative and ER-positive breast 
tumors should be further subdivided 
based on their gene expression profiles.79 
Distinct molecular signatures charac-
terize three luminal subtypes among 

Figure 2. Candidate pro-tumorigenic properties of NOs2 in er-negative breast tumors. eMt = epithelial to mesenchymal transition.
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them was CD44, which is a receptor for 
hyaluronan and osteopontin.88 CD44 
is a poor outcome marker in breast can-
cer18 and CD44-positive breast cancer 
cells have an increased invasive activity,89 
increased resistance to radiation therapy 
and chemotherapeutics.90,91 Together, 
these novel observations link NOS2 to 
the development of a poorly differentiated 
breast cancer phenotype with stem cell-
like characteristics. NO may induce this 
phenotype by activation of c-Myc or by 
inducing the release of stem cell renewal 
factors like IL-8, a property that NO has, 
as we have shown.

Concluding Remarks

In conclusion, NOS2 was found to be a 
predictor of survival and determinant of 
disease aggressiveness associated with 
ER-negative breast cancer. The underlying 
mechanisms that lead to an NO-induced 
poor outcome phenotype in breast cancer 
may include a combination of events, such 
as the induction of a basal-like phenotype, 
activation of the EGFR pathway, increased 
IL-8 and tumor angiogenesis and selec-
tion for mutant p53 cells. We propose that 
NOS2 and downstream targets of NOS2 
signaling are novel therapeutic targets for 
ER-negative breast cancer in general and 
more specifically for basal-like breast can-
cer and the triple-negative disease.
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