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Abstract
In molecular docking, it is challenging to develop a scoring function which is accurate to conduct
high throughput screenings (HTS). Most scoring functions implemented in popular docking
software packages were developed with many approximations for computational efficiency, which
sacrifices the accuracy of prediction. With advanced technology and powerful computational
hardware nowadays, it is feasible to use rigorous scoring functions, such as Molecular Mechanics/
Poisson Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA) in molecular docking studies. Here we systematically investigated the
performance of MM/PBSA and MM/GBSA to identify the correct binding conformations and
predict the binding free energies for 98 protein/ligand complexes. Comparison studies showed that
MM/GBSA (69.4%) outperformed MM/PBSA (45.5%) and many popular scoring functions to
identify the correct binding conformations. Moreover, we found that molecular dynamics (MD)
simulations are necessary for some systems to identify the correct binding conformations. Based
on our results, we proposed the guideline for MM/GBSA to predict the binding conformations.
We then tested the performance of MM/GBSA and MM/PBSA to reproduce the binding free
energies of the 98 protein-ligand complexes. The best prediction of MM/GBSA model with
internal dielectric 2.0, produced a Spearman correlation coefficient of 0.66, which is better than
MM/PBSA (0.49) and almost all scoring functions used in molecular docking. In summary, MM/
GBSA performs well for both binding pose predictions and binding free energy estimations and is
efficient to re-score the top-hit poses produced by other less accurate scoring functions.
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Introduction
Molecular docking is one of the most important techniques for receptor-based drug design
(RBDD).1 It can be used to propose the structural hypotheses of how ligands interact with
the targets and screen compound libraries to identify potential drug candidates against the
targets prior to experimental high throughput screenings (HTS).2 Despite of the significant
successes, molecular docking still faces a lot of challenges, especially for efficiently
exploring the conformational space of target proteins and ligands and developing scoring
functions to estimate the free energies of protein-ligand binding. Scoring function is critical
for molecular docking to identify the correct binding poses as well as to rank different
ligands with respect to calculated binding free energies. However, it is not practical to utilize
the most accurate and also computationally expensive scoring functions in docking studies,
in which a great number of docking poses and molecules needs to be evaluated. In
consideration of computational efficiency, approximations were introduced in most docking
scoring functions, which often affect the accuracy of predictions.

The available scoring functions for molecular docking can be roughly divided into three
categories: force-field-based, empirical and knowledge-based approaches. Force-field-based
approach estimates the binding affinities by calculating the non-bonded interactions based
on traditional force fields, such as the scoring functions used by DOCK3 and Autodock.4
The empirical approach (e.g. Ludi,5 FlexX,6 ChemScore,7 Xscore8 and Glide9)
incoraporates some empirically weighted interaction terms such as van der Waals,
electrostatic and solvation energies with adjustable parameters for scoring. These parameters
are fitted from the experimental binding free energies of a set of crystal complexes. The
knowledge-based (mean force) scoring function (e.g. SMoG,10 PMF11 and DrugScore12)
was developed from statistical analysis of the distances between pairs of atom types found in
protein-ligand structures. In spite of the continuous efforts to improve the scoring functions,
13–15 their accuracy to rank the binding poses and to predict the binding free energies still
remains unsatisfactory.

In many molecular docking approaches, one scoring function is used for two tasks:
identifying the correct binding pose of a ligand and ranking ligands using the predicted
binding affinities. Alternatively, one can use a computationally efficient scoring function to
predict the binding poses and then use a more rigorous scoring function to recalculate the
binding energies of the top-hit poses. Such an approach may make a good balance between
computational efficiency and accuracy.

Since the end of the last century, combining molecular mechanics energy and implicit
solvation models, such as Molecular Mechanics/Poisson Boltzmann Surface Area (MM/
PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA), became
popular in free energy calculations and molecular docking studies.16–18 MM/PBSA and
MM/GBSA are more rigorous than most empirical or knowledge-based scoring functions. In
addition, molecular dynamics (MD) simulations MM/PBSA or MM/GBSA can effectively
deal with the conformational change upon ligand binding. Moreover, both of MM/PBSA
and MM/GBSA allow for rigorous free energy decomposition into contributions originating
from different groups of atoms or types of interaction.19–21

Previous studies have shown that MM/PBSA or MM/GBSA are efficient to identify the
correct binding poses and rank the inhibitors for specific targets.22–27 However, there is no
systematic and large-scale evaluation of the performance of MM/PBSA or MM/GBSA to
identify the correct docking poses and rank the affinities of ligands for a diverse set of
binding sites. Here we conducted a systematic investigation of MM/PBSA and MM/GBSA
for 98 protein/ligand complexes. Our results showed that MM/PBSA and MM/GBSA
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outperformed 11 scoring functions widely used in molecular docking. To our best
knowledge, this work represents one of the most extensive studies of MM/PBSA or MM/
GBSA for molecular docking. We found that MM/GBSA is computationally more efficient
than MM/PBSA and also achieved a comparable or even better accuracy, although MM/
PBSA is theoretically more rigorous.

Materials and Methods
1. Preparation of protein-ligand complexes

The dataset used in this study is from Wang and coworkers.15 In the original applications,
this data set, which contains 100 protein/ligand complexes was used to compare the
performance of 11 popular scoring functions. For each complex, 100 docked conformations
were generated by the Autodock program (version 3.0). These docked conformations were
assumed to cover the entire binding pocket and its vicinity area. The total number of the
docking poses of each ligand is 101, including 100 docked conformations and the bound
conformation of the ligand defined by experiment. We found that the data for the complex
1tet reported by Wang et al. is not correct. In their study, a citric acid was taken to be the
ligand. In fact, Cholera toxin peptide 3 (CTP3) was in complex with the protein TE33, the
Fab fragment of a monoclonal antibody. The original binding data was also reported for the
CTP3/TE33 interactions. Therefore, we took out 1tet from the Wang et al.'s data set. In
addition, we also removed 1tha since the GB parameters for iodine were not available in
AMBER9.0. Finally, we have 98 protein/ligand complexes in the data set.

All ligands were optimized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
technique. We then used the semi-empirical quantum method implemented in the divcon
program28 in AMBER929 to derive AM1-BCC partial charges for all ligand atoms. We
used the same protonation states of the ligands as Wang and coworkers.15 The AM1-BCC
charges calculation is much faster than the HF/6-31G* RESP charges.30 And previous
studies showed that MM/PBSA using AM1-BCC and RESP charges gave compatible
binding free energies.31

In our calculations, all Asp and Glu residues were negatively charged, and all Lys and Arg
residues were positively charged. In the MM minimizations and MD simulations, we used
AMBER03 force field for proteins,32 and the general AMBER force field (gaff) for ligands.
33 Counter-ions of Cl- or Na+ were placed at grids with the largest positive or negative
Coulombic potentials around the receptors to neutralize the charge of the systems.

2. Optimization of protein/ligand complexes
For each complex, the conformations of the 100 docking poses and the experimentally-
determined binding pose were optimized in the active site of the target. Considering the
large number of binding poses in our study, we studied the solvent effect by using a 16 Å
water cap instead of a water box with Periodic Boundary Conditions (PBC). We placed the
water cap in the center of mass of the ligand, which encapsulated the whole ligand. The
maximum number of minimization steps was set to 4000 and the convergence criterion was
set to be 0.05 kcal/mol/Å of the root-mean-square (rms) of the Cartesian energy gradient.
The first 500 minimization steps were performed with the steepest descent algorithm and the
rest with the conjugate gradient algorithm. During the minimizations, only the ligand, the
protein residues and the water molecules within 9 Å of the ligand were allowed to move and
other atoms were fixed.
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3. Rescoring with MM/PBSA
For each minimized ligand pose/protein complex, the binding free energy of MM/PBSA was
estimated as in Equation 116,17,34:

(1)

where ΔEMM is the gas-phase interaction energy between protein and ligand, including the
electrostatic and the van der Waals energies; ΔGPB and ΔGnonplar are the polar and non-
polar components of the desolvation free energy, respectively; −TΔS is the change of
conformational entropy upon ligand binding, which was not considered here due to the
expensive computational cost. The ΔGPB term was calculated by Delphi II35 to solve the
finite-difference Possion-Boltzmann equation. In Delphi calculations, the grid spacing was
set to 0.5 Å, and the grid size was determined to have the longest linear dimension extended
20% outside the protein. The Parse radii were employed for all atoms.36 Because the radii
of F and Br were absent from the Parse set, the Pauling van der Waal radii of F and Br (1.35
and 1.95 Å)37 were adopted for Delphi calculations. The value of the exterior dielectric
constant was set to 80, and the solute dielectric constant was set to three different values: 1,
2 and 4. The non-polar contribution was determined based on solvent-accessible surface area
(SASA) with the LCPO method:38 ΔGSA=0.0072×ΔSASA.

4. Rescoring with MM/GBSA
In MM/GBSA calculations, the gas-phase interaction energy (ΔEMM) and the non-polar
(ΔGSA) part of the solvation energy were calculated in the same way as MM/PBSA
calculations. The electrostatic solvation energy (ΔGGB) was calculated by using the GB
models. Again we use 80 for the exterior dielectric constant, and three different values of 1,
2 and 4 for the solute dielectric constant. We used three GB models implemented in
AMBER9.0, namely, the pairwise GB model developed by Hawkins and coworkers (termed
as GBHCT),39,40 with parameters developed by Tsui and Case,41 and two modified GB
models developed by Onufriev and coworkers (referred as GBOBC1 and GBOBC2).42 It
should be noted that in AMBER, the GBOBC1 and GBOBC2 model were parameterized for
Bondi radii.42

5. Molecular Dynamics (MD) Simulations and rescoring with MM/GBSA
We carried out MD simulations to further optimize the protein-ligand interaction for the top
3 poses of 13 protein/ligand complexes, where the correct binding conformations were not
ranked as the best conformations according to the MM/GBSA free energies. The binding
free energies were then recalculated using the MD trajectories. The PDB entries for the 13
complexes were 1apw, 1bhf, 1cbx, 1d3d, 1dr1, 1exw, 1mnc, 1pph, 1rgl, 1tmn, 2csc, 2pk4,
and 7tln.

To perform MD simulations, each protein/ligand complex was immersed in a rectangular
box of TIP3P water molecules. The water box was extended 10 Å away from any solute
atom. The particle mesh Ewald (PME) was employed to calculate the long-range
electrostatic interactions.43 The complexes were first relaxed using 2,000 cycles of
minimization procedure (500 cycles of steepest descent and 1500 cycles of conjugate
gradient minimization). The system was then gradually heated in the NVT ensemble from
10 K to 300 K over 20 ps.44 Initial velocities were assigned from Maxwellian distribution at
the starting temperature. Then 300 ps MD simulations were preformed in the NPT ensemble
with target temperature at 300 K and target pressure at 1 atm. The SHAKE procedure was
employed to constrain all hydrogen atoms, and the time step was set to 2.0 fs. MD snapshots
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were saved every 4 ps after the systems were well equilibrated. The MM optimization and
MD simulations were accomplished with the sander program in AMBER9.0.29 Finally, the
binding free energies were calculated using the MM/GBSA method averaged over 60
snapshots that were evenly extracted from the single trajectory of complex between 60 to
300 ps MD simulations.

Results and Discussion
1. The predictions of binding poses of MM/GBSA or MM/PBSA rescoring

(a). The prediction accuracy of the MM/GBSA rescoring—We first applied the
MM/GBSA technique to rescore the docking decoys of 98 protein–ligand complexes
compiled by Wang et al.15 The rescoring was only based on the single minimized
structures. In the GB calculations, the modified GB model developed by Onufriev and Case
(igb=2 in AMBER9.0 and termed as GBOBC1) was used and the solute dielectric constant
was 1.42 We used the RMSD as the criterion for the success of the prediction. If RMSD
(root-mean-square deviation) of the best scored pose was less than or equal to 2.0 Å from
the experimentally observed conformation, we considered it was a successful prediction. As
shown in Table 1, we observed that MM/GBSA successfully recognizes the native-like
poses for 61 of the entire 98 complexes, i.e. the success rate was 62.2%. Then we calculated
the success rate considering the best two to five best scored poses of each ligand (Table 1),
in which the success rate was improved significantly. For example, if the top three and five
conformations were considered, the success rate was improved from 62.2% to 84.7% and
88.8%, respectively. For some target proteins, the experimentally determined pose was in
the very top scored conformations even though it was not recognized as the best by MM/
GBSA.

In MM/GBSA or MM/PBSA, the solute dielectric constant (εin) is a key parameter. For each
system, another two solute dielectric constants, 2.0 and 4.0, were also tested for calculating
the solvation free energies (Table 1). If we considered only the best scored conformation,
the success rate of εin=1 (62.2%) was apparently worse than that of εin=2 (69.4%), but better
than that of εin=4 (58.2%). However, when top three scored conformations were considered,
the success rate of εin=1 (84.7%) was the best, which was slightly better than that of εin=2
(82.7%) and much better than that of εin=4 (73.5%). Therefore, for most cases, 1 or 2 was a
good choice for the solute dielectric constant.

Three GB models, namely, the pairwise GB model developed by Hawkins and coworkers
(GBHCT, referred as igb=1)39,40 and two modified GB models developed by Onufriev and
coworkers (GBOBC1 and GBOBC2, referred as igb=2 and 5, respectively),42 were
implemented in AMBER9.0. The 101 decoys of each of the 98 protein-ligand complexes
were rescored again by the MM/GBSA method using the three GB models. For each model,
three different solute dielectric constants (εin =1, 2 and 4) were tested. According to the
success rates listed in Table 1, for all of three solute dielectric constants, the performance of
GBOBC2 was worse than that of GBHCT and GBOBC1, while the performance of GBHCT and
GBOBC1 was quite similar. It is not clear what is the reason behind the different performance
of GBOBC1 and GBOBC2, since they have the same theoretic framework. Interestingly, our
previous studies of the MM/PBSA or MM/GBSA calculations on six protein/ligand systems
also showed that GBOBC1 performed much better than GBOBC2 for predicting the binding
free energies.45

(b) The prediction accuracy of the MM/PBSA rescoring—Numerical solution of the
Poisson–Boltzmann (PB) equation is more theoretically rigorous than the GB model and is
believed to be more accurate but more computationally demanding. The performance of the
MM/PBSA method on the docking pose rescoring was also evaluated. The success rates for
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the MM/PBSA calculations are listed in Table 1. If we only consider the best scored
conformations, the success rates of MM/PBSA were 31.3% for εin=1, 45.5% for εin=2 and
42.4 % for εin=4. The success rates were increased to 41.4%, 53.5% and 60.6%,
respectively, when the best three conformations were considered. In comparison to the three
GB models, the performance of MM/PBSA was only marginally better than that of GBOBC2,
but much worse than that of the MM/GBSA schemes based on GBHCT and GBOBC1. This
result is consistent with our previous observations,45 in which the MM/GBSA based on
GBOBC1 scheme performed better than MM/PBSA to rank the binding affinities of ligands
for protein systems without metals in the binding sites. Recently, Thompson and coworkers
applied MM/PBSA to discriminate correct and incorrect docking poses. They found that the
solvation energy calculated by PB cannot improve the prediction accuracy significantly in
the absence of X-ray structures of complexes.46 Our analysis indicates that the solvation
free energy is very important and it is critical to choose an appropriate solvation model and
solute dielectric constant.

(c) Comparison with other scoring functions—Wang et al. compared the
performance of 11 popular scoring functions for molecular docking on the 98 complexes.15
The success rates of these scoring functions vary from 26% (DSCORE) to 76% (PLP). Our
results showed that the MM/GBSA based on the GBOBC1 model achieved a success rate of
69.4% using a solute dielectric constant of 2.0 if we only considered the best scored
conformation. This success rate was higher than those of seven scoring functions (D-Score,
G-Score, AutoDock, ChemScore, X-Score, LUDI and PMF), but lower than those of four
other scoring functions (PLP, F-Score, LigScore and DrugScore).15 If the three best
conformations were considered, the success rate given by MM/GBSA was higher than those
of nine scoring functions, but lower than those of PLP and F-Score. When the top five
conformations were considered, the performance of MM/GBSA was only worse than F-
Score, but better than the other ten scoring functions (See Table S1 in the Supporting
Materials).

In general, for the 11 scoring functions studied by Wang et al, the force field-based scoring
functions (Autodock, GScore and DScore), without explicit desolvation energy, achieved
lower success rates than the other types of scoring functions. The higher success rate of
MM/GBSA implies that the desovlation term is critical to identify the correct binding poses.
For the other eight empirical and knowledge-based scoring functions, a caveat is that they
were developed by fitting the experimentally determined structural and binding data for a
large training set with various sets of protein-ligand complexes. Indeed, many proteins in
Wang et al.'s data set were used in the training sets to parameterize these scoring functions.
For example, all 100 experimentally determined complexes in the dataset used by Wang et
al. were also used as the training set for training the X-Score scoring function. Therefore, the
success rate of such scoring functions may only reflect how well the parameterization is
done. In contrary, the parameterization of MM/GBSA does not include any information of
the interaction between the ligands and the proteins in the studied complexes.

(d) The energy landscape for protein-ligand binding—The protein-ligand
complexation is speculated to have a funnel-shaped energy surface,15 originally used in
protein folding studies. Similar to the work reported by Wang and coworkers,15 we studied
the energy landscape of ligand binding by using RMSD as the reaction coordinate. It is
expected that a lower RMSD is associated with a stronger binding value and vice versa. We
analyzed the correlations between the RMSD and the binding free energies calculated using
MM/PBSA or MM/GBSA models listed in Table 1. The Spearman correlation coefficients
(rs) are listed in Table 2. We also provided cumulative occurrences of rs values for
comparison. As shown in Table 2, MM/GBSA gave better correlations than MM/PBSA
while the GBOBC1 and GBHCT models performed better than GBOBC2. More specifically, the
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GBOBC1 model using a solute dielectric constant of 2 gave the best correlation, and its rs
values were better than or equal to 0.60 for 60% of the 98 proteins. Six examples with the
best and worst correlations are shown in Figure 1.

The good performance of MM/GBSA seems more impressive if we compare it with the
results of 11 scoring functions compared by Wang and coworkers.15 In the data reported by
Wang and coworkers, the cumulative occurrences of rs ≥ 0.6 for 11 scoring functions vary
from 16% to 53% for the 100 proteins, which is obviously worse than that of MM/GBSA. In
summary, the MM/GBSA scoring gives a better funnel-shaped energy landscape than all
scoring functions compared by Wang et al.

2. The importance of MD sampling for recognizing the correct binding poses
In the practice of virtual screening, we usually keep the best conformation predicted by
molecular docking for further analysis. As shown in Table 1, the best MM/GBSA model,
GBOBC1 using a solute dielectric constant of 2, ranked the correct binding conformation as
the best scored conformation from the 101 docking decoys for 68 complexes. For the other
30 protein complexes, 13 had their correct binding conformations ranked in the top three,
and 3 in top five but not in top three, and 14 beyond top five. Because only a single
minimized conformation was used for MM/GBSA calculations, it is possible that
insufficient sampling of conformational space may harm the performance of MM/GBSA.
Here we studied whether conformational sampling could improve the prediction accuracy.

For the 13 complexes whose binding conformations were ranked in the top three but not the
best one, we conducted MD simulations for the best three scored docking poses The PDB
entries for these 13 complexes are 1apw, 1bhf, 1cbx, 1d3d, 1dr1, 1exw, 1mnc, 1pph, 1rgl,
1tmn, 2csc, 2pk4, and 7tln. The binding free energy for each docking pose was calculated by
averaging 60 snapshots evenly taken from 60 to 300 ps MD simulations (Table 3 and Table
S1 in the Supporting Materials). As shown in Table 3, with solute dielectric constant 2, the
conformations in 9 complexes with the most favorable binding free energies were very close
to the experimentally observed binding poses (RMSD less or equal to 2.0 Å). For 2csc, the
best conformation was not far from the correct binding pose either (RMSD = 2.49 Å). The
correct binding poses could not be identified as the best scored conformations in three
complexes, 1mnc, 1pph and 1rgl. In summary, MD simulation improved the prediction
accuracy by conformational sampling.

Next, we investigated the effect of conformational entropy. We first predicted the binding
poses only using enthalpy (ΔHcal). For eight systems, the correct binding poses can be
successfully identified by using ΔHcal. The inclusion of entropy can only improve the
prediction for one system, i.e. 7tln. For 7tln, the binding enthalpies for three poses are quite
similar. After considering entropy, the binding free energy of the correct pose is marginally
better than those of the other two poses. Therefore, the inclusion of the entropies did not
significantly improve the results for the protein systems studied here.

Interestingly, for most of the 13 protein systems, the van der Waals energies of the best three
binding conformations did not differ significantly, which means the ligand has similar van
der Waals or hydrophobic contacts with the receptor although the orientations of the three
docking poses are different. However, with regard to the electrostatic energies (ΔEele and
ΔGGB), the three docking poses are significantly different. Therefore, for most cases the
accurate predictions of the electrostatic terms are essential for the successful predictions of
the binding poses.

We then tested another solute dielectric constant (εin=1) for the MM/GBSA calculations
(Table S2 in the Supporting Materials). The comparison between Table 3 and Table S2
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shows that the absolute binding free energies calculated by using two different solute
dielectric constants are quite different but the performance of ranking binding poses is
similar. MM/GBSA based on εin=1 also give correct predictions for nine systems. For two
systems, 1rgl and 2csc, the MM/GBSA cannot give the correct answers for both dielectric
constants. For 1pph, the correct docking pose is correctly predicted by using MM/GBSA
with εin=1, but not with εin=2. For 7tln, MM/GBSA with εin=2 gives the correct answer but
not for εin=1. Therefore, the performance of εin=1 and 2 is not different for predicting the
binding poses.

For the 13 complexes listed in Table 3, the correct binding poses for 1rgl and 2csc, cannot
be successfully identified as the best scored conformations with MM/GBSA based on either
εin=2 or εin=1. For 2csc, the prediction is not bad because the best scored conformation is
not far from the correct binding pose (RMSD = 2.49 Å). Compared with 2csc, 1rgl is
obviously a more difficult system. For 1rgl, the binding free energy (−2.47 kcal/mol) of the
best scored pose (conformation 13) is much more favorable than that (10.33 kcal/mol) of the
experimentally determined pose (conformation 30). According to the analysis of the binding
interface of 1rgl (Figure 2a), three charged residues can be found in the binding site of 1rgl,
including Glu58, Arg77, and His92. More importantly, the ligand in 1rgl has a highly
negatively charged phosphate group (net charge is −2), which can form strong ion-ion
interactions with Arg77 and His92. While for conformation 13, as shown in Figure 2b, the
phosphate group is exposed to the solvent and no longer forms ion-ion interactions with the
charged residues in the binding pocket. Therefore, conformations 13 and 30 form different
binding interfaces, and it is possible that we need to apply different solute dielectric constant
to characterize the different electrostatic properties of the binding interfaces. Another
possible reason is that the PB or GB models usually cannot give good predictions for the
solvation of ions,47 probably because the errors of force fields and reaction field calculation
cannot be effectively cancelled out when ion-ion interactions dominate the binding free
energies.

In conclusion, in most cases, short MD simulation can help MM/GBSA to identify the
experimentally determined binding conformations. Previous results reported by Kuhn et al.
concluded that applying the MM-PBSA energy function to a single optimized complex
structure is an adequate and sometimes more accurate approach than the standard free
energy averaging over MD snapshots.24 Our calculations here clearly show that applying
MM/GBSA scoring to a single relaxed structure may not be enough to predict the binding
poses correctly. The ultimate reason why MM/GBSA based on a single structure is not
successful for some systems is that a single structure cannot characterize the conformational
fluctuations in different local minima. Therefore, for these systems, MD simulations are
necessary to improve the predictions.

3. Why some systems could not be correctly predict by MM/GBSA
There are 11 complexes in our test set for which MM/GBSA based on either εin=1 or 2
cannot pick the correct binding conformation within an RMSD threshold of 2.0 Å in the top
five conformations, which are 1cla, 1d3p, 1etr, 1rgk, 1tlp, 2sns, 3cla, 3tmn, 4cla, 4tln and
8xia (Table S3 in the Supporting Materials).

In 1tlp, the inhibitor N-phosphoryl-L-leucinamide (P-Leu-NH2) complexed to thermolysin,
and one phosphoramidate oxygen atom, one glutamin and two histidine residues interact
with the zinc to form a pentacoordinate (see Figure 3). Unfortunately, this zinc ion was
removed from the protein when generating the decoys by molecular docking. We believe
that removal of this zinc will underestimate the interactions between the correct binding
conformation and thermolysin. The failures in other three cases, 2sns, 4tln and 8xia are also

Hou et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2012 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



due to the similar reasons. It is clear that the currently available scoring functions still need
to be improved for systems with ions which form coordinate bonds with ligands.

The complexes 1cla, 3cla and 4cla are type II chloramphenicol acetyltransferases in complex
with chloramphenicol (3cla is the wild type of chloramphenicol acetyltransferase; 1cla is a
S148A mutant; and 4cla is a L160F mutant). According to our predictions, for these three
complexes the best five scored conformations are far from the correct ones. For 3cla,
according to our predictions, the binding free energies for the best five scored conformation
are −38.32, −34.30, −33.18, −32.33, and −31.91 kcal/mol, respectively, while the binding
free energy for the correct binding conformation is −24.84 kcal/mol. For these three
complexes, the experimentally determined binding poses cannot even be found in the best
ten scored conformations. Analysis of the 3cla crystal structure shows that many water
molecules mediate the protein-ligand interactions (see Figure 4). According to Wang et al.'s
report,15 when generating the decoys by Autodock, the crystal water molecules were
removed. The correct binding conformation of the ligand in 3cla is not energetically
favorable when the important bridging water molecules are not considered. Another point is
that even though the crystal structure is explicitly added to the decoys, the predictions of the
binding free energies for these three systems are still difficult. It remains challenging for
MM/GBSA or MM/PBSA to handle bridging crystal water molecules and define the
appropriate solute dielectric constant with many water molecules. Moreover, according to
Wang et al.'s study,15 none of the 11 scoring functions is able to pick the correct
conformation for these two complexes. The unsuccessful predictions for other systems may
also be explained by the neglect of the important bridging water molecules, such as in the
cases of 1d3p and 1etr. In 1etr three water molecules are important for the interactions
between the ligand and the protein, and in 1d3p there is one such important water molecule.
Correctly considering the effects of the essential bridging water molecules is thus an
important task for developing scoring functions. Explicitly including some water molecules,
especially the crystal waters, in MM/PBSA and MM/GBSA calculations may be an efficient
way to tackle the challenging problem.

The complex 1rgk, i.e. Rnase T1 mutant Glu46Gln is in complex with inhibitor 2'gmp. As
noted above, for 1rgl the correct binding pose cannot be identified even after a short MD
simulation. The protein in 1rgl is also Rnase T1 mutant Glu46Gln but the ligand is 2'amp,
which is similar to that in 1rgk. Therefore, it is straightforward to understand why the
prediction for 1rgk is not successful: the electrostatic terms cannot be accurately predicted.

The reason for the poor predictions on the system 3tmn is not obvious. For 1d3p, the
predictions are not very bad. In the best scored conformations, three of them are not far from
the correct binding poses (RMSD < 3.0 Å).

4. The prediction of MM/PBSA or MM/GBSA to rank the binding affinities for various
protein-ligand complex systems

Prediction of binding poses is the first step of molecular docking. Another important task is
to rank compounds using the predicted binding free energies. Therefore, the accuracy of the
binding free energy prediction is also critical for evaluating a scoring function.

We first examined the performance of MM/GBSA for the 98 protein-ligand complexes. The
linear correlation coefficients (r) and the Spearman rank correlation coefficients (rs)
between the predicted and the experimental binding free energies are summarized in Table
4. The Spearman correlation coefficients may be a better choice to evaluate a scoring
function for ranking the binding affinities. For each case, both of the binding free energies
for the experimentally observed conformations and those of the best scored conformations
were used for the correlation analysis. Overall, the Spearman correlation coefficients using

Hou et al. Page 9

J Comput Chem. Author manuscript; available in PMC 2012 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the experimentally observed conformations are better than those using the best scored
conformations, but the differences are not significant. For the two GB models compared
here, the MM/GBSA scores with εin=2 perform better than those with εin=1. Using εin=1,
GBOBC1 and GBHCT perform comparatively to predict the binding free energies, while using
εin=2 GBOBC1 performs significantly better than GBHCT. Among all these models, the MM/
GBSA scores based on GBOBC1 with εin=2 give the best ranks for all complexes studied
here, which has a Spearman coefficient of 0.66 using the experimentally observed
conformations and 0.63 using the best scored conformations.

As shown in Table 4 and Figure 5, the correlation between the predicted binding free
energies by MM/PBSA and the experimental values are 0.48. That means that MM/PBSA
performs much worse than MM/GBSA. This observation is also consistent with our previous
report.45 Here the Parse parameter set was used to define the dielectric boundary. However,
studies have shown that Parse parameter set cannot give good predictions of solvation free
energies for amino acid side chain analogs and some relatively complicated functional
groups for all three solute dielectric constants (εin = 1, 2, or 4).16

Finally we compared the performance of the MM/GBSA with those of the 11 scoring
functions reported by Wang et al.15 The Spearman correlation coefficients reported by
Wang and coworkers cover the range from 0.14 to 0.66 for the experimentally observed
conformations and 0.37 to 0.70 for the best scored conformations. According to the results
reported by Wang et al. and our predictions, MM/GBSA is only marginally worse than X-
Score, but better than the other ten scoring functions. It should be stressed that all 100
complexes used by Wang and coworkers have been included in the training set to train the
X-Score scoring function. It is thus expected that the X-Score performs better on this set of
complexes than the other scoring functions. For MM/GBSA, no binding affinity data are
needed for parameter training and therefore it does not rely on any particular protein data
sets for training, while most docking scoring functions do. Since MM/GBSA does not need
training for specific protein systems, it has a capacity to study a wide range of targets and
ligands. We have also demonstrated that MM/GBSA achieves a satisfactory performance in
identifying the experimentally determined conformations from docking decoys as well as in
predicting the binding free energies. One thing we need to mention is that MM/PBSA or
MM/GBSA is certainly time-consuming than most scoring functions (usually less than 5 s
for each system) used in molecular docking. For example, for 1a46, the whole running time
of MM/PBSA or MM/GBSA for each pose is ~520 (2.55 s for charge calculations, 396 s for
5000 steps of GB-based minimization and 120 s for MM/PBSA) and ~410 s (2.55 s for
charge calculations, 396 s for 5000 steps of GB-based minimization and 8 s for MM/PBSA),
respectively. If we need to perform MM minimization and MM/GBSA calculations for 1000
systems, the total running time is ~285 days one CPU-time; however, if the calculations can
be distribute to a cluster with 100 nodes, the total running time is less than 3 days.

Discussion
We studied MM/PBSA or MM/GBSA for identifying the correct binding conformations and
predicting the binding free energies. First, we studied 98 protein-ligand complexes with
MM/PBSA or MM/GBSA method to discriminate correct docking poses from the incorrect
ones. The MM/GBSA can successfully identify the correct binding conformations for most
systems, indicated by a success rate about 69% if only considering the best scored
conformation or a success rate about 85% if considering the top three conformations.
Comparison studies show that MM/GBSA performs much better than MM/PBSA and most
scoring functions used in molecular docking to recognize the correct binding conformations.
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We then studied 13 complexes whose correct binding conformations could not be identified
as the best scored conformation but as the second or the third best scored conformation. For
these 13 complexes, the binding free energies for the best three scored conformations were
re-evaluated by MM/GBSA based on short MD simulations. The results show that the
conformational sampling by MD can significantly improve the predictions for these 13
complexes. For the most promising candidates (less than 100) in virtual screenings, MD
simulations followed by MM/GBSA analysis is a good protocol to achieve good predictions
of protein-ligand interactions. Here, for three conformations of 1apw, 300 ps MD
simulations consumed about 48 (16×3) CPU hours. For 100 molecules, it takes roughly 6.2
days with a 32-CPU Linux cluster, which is becoming commonly available.

Finally, we evaluated the performance of MM/GBSA and MM/PBSA to rank the binding
free energies of the 98 protein-ligand complexes. The best MM/GBSA predictions yield
Spearman correlation coefficients of 0.63 for the experimentally determined conformations
and 0.66 for the best scored conformations, which are much better than MM/PBSA and also
almost all the scoring functions used in molecular docking. Compared with most scoring
functions in molecular docking, the MM/GBSA can achieve a better balance between
identifying the binding poses and predicting the binding free energies. Therefore, using a
rapid scoring scheme followed by the MM/GBSA rescoring is an efficient protocol to
improve the predictions of molecular docking. According to our predictions it is obvious
that predicting the docking poses is usually an easier task than predicting the binding free
energies for different molecules. When predicting the binding poses for a small molecule,
the systematical errors caused by the predictions may be considered as a constant. But when
we predict the binding free energies for a set of different molecules the systematic errors for
different ligands cannot be considered as a constant. This is the reason why MM/PBSA or
MM/GBSA usually cannot give good performance for dissimilar ligands.16
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The correlations between the predicted binding free energies of MM/GBSA and the RMSD
values for three complexes with the best correlations and three complexes with the worst
correlations.
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Figure 2.
The interaction between Rnase T1 Mutant Glu46Gln and (a) conformation 13 and (b)
conformation 30 of ligand 2'GMP. The charged phosphate groups are shown in red stick; the
Connolly surfaces for Glu50, Arg77 and His92 are colored in yellow, violet and blue,
respectively.
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Figure 3.
The coordinate bonds formed by the zinc ion with one phosphoramidate oxygen atom, one
glutamin and two histidine residues. The zinc ion is colored in yellow, protein residues
colored in blue, and ligand colored in violet.
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Figure 4.
The interaction between chloramphenicol and chloramphenicol acetyltransferase in complex
with 3cla. Ligand is colored in violet. The water molecules within 5 Å of ligand are shown
as the CPK model, and the water molecule which can mediate the interactions between
ligand and proteins are colored in red.
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Figure 5.
The linear correlations coefficients between the experimental binding free energies and the
predicted values given by (a) MM/GBSA using the GBHCT model and the solute dielectric
constant of 2 based on the experimentally observed conformations, (b) MM/GBSA using the
GBHCT model and the solute dielectric constant of 2 based on the best scored conformations,
(c) MM/GBSA using the GBOBC1 model and the solute dielectric constant of 2 based on the
experimentally observed conformations, (d) MM/GBSA using the GBOBC1 model and the
solute dielectric constant of 2 based on the best scored conformations, (f) MM/PBSA using
the solute dielectric constant of 2 based on the experimentally observed conformations, (g)
MM/PBSA using the solute dielectric constant of 2 based on the best scored conformations.
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Table 4

The linear correlation coefficients (r) and the Spearman correlation coefficients (rs) between the predicted
binding free energies and the experimental values based on the experimentally observed conformations and
the best scored conformations

Scoring functions r rs

Experimentally observed conformations Best scored conformations Experimentally observed conformations Best scored conformations

MM/GBSA (igb=1, εin=1) 0.497 0.484 0.548 0.526

MM/GBSA (igb=1, εin=2) 0.585 0.592 0.596 0.597

MM/GBSA (igb=1, εin=4) 0.602 0.628 0.609 0.568

MM/GBSA (igb=2, εin=1) 0.451 0.482 0.541 0.529

MM/GBSA (igb=2, εin=2) 0.615 0.624 0.655 0.625

MM/GBSA (igb=2, εin=4) 0.633 0.652 0.645 0.628

MM/PBSA (εin=1) 0.214 0.157 0.207 0.193

MM/PBSA (εin=2) 0.484 0.462 0.493 0.487

MM/PBSA (εin=4) 0.246 0.242 0.474 0.482
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