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Enhancement of HIV-1 Infectivity by Simple, Self-Assembling Modular
Peptides
David Easterhoff,†6 John T. M. DiMaio,‡6 Todd M. Doran,‡ Stephen Dewhurst,†* and Bradley L. Nilsson‡*
†Department of Microbiology and Immunology and ‡Department of Chemistry, University of Rochester, Rochester, New York
ABSTRACT Semen-derived enhancer of viral infection (SEVI), an amyloid fibril formed froma cationic peptide fragment of pros-
tatic acidic phosphatase (PAP), dramatically enhances the infectivity of human immunodeficiency virus type 1 (HIV-1). Insoluble,
sedimentable fibrils contribute to SEVI-mediated enhancement of virus infection. However, the SEVI-forming PAP(248–286)
peptide is able to produce infection-enhancing structures much more quickly than it forms amyloid fibrils. This suggests
that soluble supramolecular assemblies may enhance HIV-1 infection. To address this question, non-SEVI amyloid-like fibrils
were derived fromgeneral amphipathic peptides of sequenceAc-Kn(XKXE)2-NH2. These cationic peptides efficiently self-assem-
bled to formsoluble, fibril-like structures thatwere, in somecases, able to enhanceHIV-1 infection evenmoreefficiently thanSEVI.
Experiments were also performed to determine whether agents that efficiently shield the charged surface of SEVI fibrils block
SEVI-mediated infection-enhancement. To do this, we generated self-assembling anionic peptides of sequence Ac-
En(XKXE)2-NH2. One of these peptides completely abrogated SEVI-mediated enhancement of HIV-1 infection, without altering
HIV-1 infectivity in the absence of SEVI. Collectively, these data suggest that soluble SEVI assemblies may mediate infection-
enhancement, and that anionic peptide supramolecular assemblies have the potential to act as anti-SEVI microbicides.
INTRODUCTION
Semen-derived enhancer of viral infection (SEVI) is a natu-
rally occurring amyloidogenic enhancer of human immuno-
deficiency virus type 1 (HIV-1) infection that is derived
from self-assembling cationic peptides found in semen,
the most abundant of which is PAP(248–286) (1). Filtration
of semen results in a substantial loss of infection-enhancing
activity, suggesting that insoluble fibrils contribute to SEVI-
mediated enhancement of virus infection (1). However,
addition of freshly dissolved monomeric PAP(248–286)
peptide to filtered semen restores its HIV-1 infection-
enhancing activity within minutes—a time frame that is
1–2 orders-of-magnitude faster than the kinetics of fibril
formation by the monomeric peptide, even under optimal
in vitro conditions (1,2). Thus, it seems likely that soluble
supramolecular assemblies (SSA) of PAP(248–286) may
also contribute to enhancement of HIV-1 infection.

To address the question of whether (and how) soluble
supramolecular peptide assemblies can enhanceHIV-1 infec-
tion, non-SEVI amyloid-like fibrils were derived from
general amphipathic peptides of sequence Ac-Kn(XKXE)2-
NH2. Amphipathic peptides of this kind ([XKXE]y) effi-
ciently form soluble fibril-like structures with a proposed
bilayer architecture (3–5). Forces driving self-assembly of
these peptides into b-sheet structures include a combination
of hydrogen-bonding, hydrophobic interactions, aromatic
interactions, and ionic complementarity (6–8); higher level
assembly is believed to occur by the formation of a cofacial
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bilayer of b-sheets, which then laminate at the hydrophobic
faces to form a hydrophobic core, exposing the hydrophilic
faces of the b-sheets (Fig. 1) (3,5,9).

The self-assembly of these amphipathic peptide domains
can be modulated by using amino-acid residues with
differing hydrophobicity, including the nonnatural amino
acid, cyclohexylalanine (Cha), which has enhanced hydro-
phobicity relative to phenylalanine (Phe) (Table 1) (6).
Increasing the hydrophobicity at X is also expected to
thermodynamically stabilize the final fibril structure
pushing the dynamic equilibrium between fibril and mono-
mer further toward fibrils. By changing X, we can tune this
equilibrium as a function of environment (temperature, pH,
ionic strength). We substituted Cha for Phe in the motif
Kn(XKXE)2, to derive synthetic peptides that were expected
to exhibit an increased propensity for fibril formation due to
more favorable desolvation of the hydrophobic face of the
peptide. We also synthesized peptides in which Ala was
substituted for X in the (XKXE)2 motif; these peptides
were expected to be unable to undergo self-assembly due
to their greatly reduced hydrophobicity (Table 1) (5).

The bilayer fibrils formed by XKXE-based peptides
remained soluble (i.e., did not spontaneously precipitate in
solution, and were not readily sedimented by high-speed
centrifugation), in contrast to SEVI fibrils. We then per-
formed HIV-1 infection experiments using these peptides
(and soluble supramolecular assemblies (SSA) derived
thereof). The results showed that SSA formed by some of
these cationic peptides enhanced HIV-1 infection of target
cells even more efficiently than SEVI. In contrast, anionic
peptides, neutral peptides and peptides that were unable to
undergo self-assembly failed to enhance HIV-1 infection.
doi: 10.1016/j.bpj.2011.01.037
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FIGURE 1 Proposed packing mode of the cofacial bilayer for (FKFE)2.

(Left) (FKFE)2 b-strands in an antiparallel registry forming a b-sheet; the

figure is arranged to illustrate the direction of the fibril axis with the hydro-

phobic amino-acid side chains extending out of the page and the hydro-

philic amino-acid side chains descending into the page. (Right) The

cofacial assembly of two b-sheets to form the proposed bilayer architecture

that comprises the basic fibrillar unit. This cofacial assembly is facilitated

by burial of the hydrophobic side chains in a hydrophobic core, leaving the

hydrophilic side chains exposed at the fibril surface. This arrangement

accounts for the high water solubility of these peptide fibrils. (Colors:

Red corresponds to oxygen, blue to nitrogen, and gray to carbon.)
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We also tested whether anionic SSA could shield
the charged surface of SEVI fibrils and thereby block
SEVI-mediated infection-enhancement. To do this, we
generated self-assembling anionic peptides of sequence
Ac-En(XKXE)2-NH2. One of these peptides completely
abrogated SEVI-mediated enhancement of HIV-1 infection,
without altering HIV-1 infectivity in the absence of SEVI.
Collectively, these data suggest that soluble SEVI supra-
molecular assemblies may contribute to the infection-
enhancing properties of seminal fluid, and that anionic
peptide supramolecular assemblies have the potential to be
developed into anti-SEVI microbicides.
MATERIALS AND METHODS

Peptide synthesis

Fmoc amino acids and rink amide resin were purchased from AAPPTec

(Louisville, KY) and Advanced ChemTech (Louisville, KY). All peptides

were synthesized using standard Fmoc methods (HOBt and HBTU activa-
TABLE 1 Self-assembling synthetic peptides used in this study

Peptide No. Sequence n X

Cationic Kn(XKXE)2 peptides

1 Ac-K2(FKFE)2-NH2 2 Phe

2 Ac-K4(FKFE)2-NH2 4 Phe

3 Ac-K2(ChaKChaE)2-NH2 2 Cha

4 Ac-K4(ChaKChaE)2-NH2 4 Cha

5 Ac-K2(AKAE)2-NH2 2 Ala

Anionic En(XKXE)2 peptides

6 Ac-E2(FKFE)2-NH2 2 Phe

7 Ac-E4(FKFE)2-NH2 4 Phe

8 Ac-E2(ChaKChaE)2-NH2 2 Cha

9 Ac-E4(ChaKChaE)2-NH2 4 Cha

SEVI-forming peptide

10 PAP(248–286) NA NA

*Hydrophobicities based upon the water-octanol partition coefficient relative to
yMarvinSketch was used to determine charge at pH by calculating the pI of the
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tion) on a microwave-equipped Liberty Peptide Synthesizer (CEM,

Matthews, NC). Peptides were cleaved from the resin by treatment with

trifluoroacetic acid (TFA), triisopropylsilane, and deionized water

(95:2.5:2.5) for 2 h at room temperature. The solution was concentrated

in vacuo to roughly 0.5 mL and then the peptide was precipitated with

cold ether and centrifuged (repeated twice). The resulting peptide pellet

was dissolved in dimethylsulfoxide. The crude samples were then purified

by reverse-phase preparatory high-pressure liquid chromatography (HPLC)

with purity analyzed by analytical HPLC. Product verification was per-

formed by matrix-assisted laser desorption ionization time-of-flight mass

spectroscopy. Matrix-assisted laser desorption ionization mass spectra for

test peptides are provided in Fig. S12, Fig. S13, Fig. S14, Fig. S15,

Fig. S16, Fig. S17, Fig. S18, Fig. S19, and Fig. S20 in the Supporting

Material.
Purification

HPLC purification was performed on a LC-AD HPLC utilizing a variable

wavelength absorbance detector (Shimadzu Scientific Instruments,

Columbia, MD) with a reverse phase C18 column (model No. BEH300

10 mM, 19 � 250 mm; Waters, Milford, MA). A gradient of water (0.1%

TFA) and acetonitrile (0.1% TFA) at 10 mL min�1 was used for separation

while monitoring UVabsorbance at 215 and 254 nm. The purity of collected

fractions was verified by analytical HPLC using an RP-C18 column

(BEH300 10 mM, 4.6 � 250 mm; Waters). The pure solutions were frozen

and lyophilized. Analytical HPLC traces for test peptides are provided

in Fig. S3, Fig. S4, Fig. S5, Fig. S6, Fig. S7, Fig. S8, Fig. S9, Fig. S10,

and Fig. S11; analytical HPLC conditions are provided in Table S1 in the

Supporting Material.
Self-assembly

Lyophilized peptide was dissolved in a mixture of acetonitrile and water

(4:6) to prevent assembly, further diluted into dimethylsulfoxide, and

concentrations were determined by HPLC correlation to standard concen-

tration curves that were calibrated by amino-acid analysis of peptide stocks

(amino-acid analysis done by AIBiotech, Richmond, VA). Peptides were

aliquoted, frozen, and lyophilized. The lyophilized powder was then dis-

solved in deionized water followed by vortex treatment (1 min). When

studying the ionic strength necessary to induce self-assembly, NaCl solu-

tions were prepared (0 mM, 100 mM, 200 mM, etc.) and added directly

to the lyophilized powder, followed by vortex treatment (1 min). Peptides

were immediately analyzed by circular dichroism (CD) or Fourier trans-

form infrared spectroscopy (FTIR) to assess secondary structure, which is
P* Mass (Da) Charge (at pH 7)y Charge/mass

1.79 1419 þ2.00 1.41 � 10�3

1.79 1675 þ4.00 2.39 � 10�3

2.72 1443 þ2.00 1.39 � 10�3

2.72 1658 þ4.00 2.41 � 10�3

0.31 1114 þ2.00 1.80 � 10�3

1.79 1421 �2.00 1.41 � 10�3

1.79 1679 �4.00 2.38 � 10�3

2.72 1445 �2.00 1.38 � 10�3

2.72 1703 �4.00 2.35 � 10�3

NA 4549 þ6.46 1.42 � 10�3

glycine (14).

peptide (33).
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an indicative measure for self-assembly of these peptides. SEVI amyloid

fibrils were generated as described, using the PAP(248–286) peptide (10).
Circular dichroism spectroscopy

CD spectra were obtained on an AVIV 202 circular dichroism spectrometer

(AVIV Biomedical, Lakewood, NJ). Wavelength scans were performed

from 260 to 190 nm with a 1.0-nm step, 1.0-nm bandwidth, and a 3 s aver-

aging collection time per step at 25�C in a 0.1-mm pathlength quartz

cuvette (Hellma, Plainview, NY). The AVIV software (AVIV Biomedical)

was used to perform background subtraction, conversion of raw data to

molar ellipticity, and data smoothing with a least-squares fit. Additional

CD spectra for test peptides in PBS are provided in Fig. S1 and Fig. S2.
Fourier transform infrared spectroscopy

FTIR was performed with a 8400 FT-IR spectrophotometer (Shimadzu).

A quantity of 200 mL of peptide was placed in an IR cell with calcium

fluoride plates (International Crystal Labs, Garfield, NY) and spectra

were obtained from that solution. Scans were taken from 1400 to

1800 cm�1 at a resolution of 2.00 cm�1. IRSolution software (Shimadzu)

was used to smooth the data, and perform a multipoint baseline correction.
Transmission electron microscopy

A quantity of 10 mL of the various peptide assemblies were placed onto

a 200-mesh carbon-coated copper grid. K4(FKFE)2 and K4(ChaKChaE)2,

however, were spotted onto a graphene-enhanced Lacey carbon film on

200-mesh nickel grids (Electron Microscopy Sciences, Hatfield, PA).

Samples were allowed to stand on the grid for 1 min, and then aqueous

solvent was removed by capillary action and the grids were subsequently

stained with uranyl acetate for 2 min. The stain was removed by capillary

action and the grid was allowed to dry for 5 min. The images were obtained

on a model No. 7650 transmission electron microscope (Hitachi, Santa

Clara, CA) at an accelerating voltage of 80 kV. The program ImageJ

(National Institutes of Health, Bethesda, MD) was used to determine fibril

diameter, reported as the average of 100 measurements on unique fibrils for

each measurement.
HIV infectivity assays

These assays were performed using CEMx M7 cells, which contain a luci-

ferase reporter gene under the transcriptional control of the HIV-1 LTR (10).

Self-assembled cationic peptides were preincubated with HIV-1IIIB virus

(21 ng/mL p24; ZeptoMetrix, Buffalo, NY) for 10 min at room temperature

before being added to 5 � 104 CEMx M7 cells in a final volume of 150 mL

(including tissue culture media). After incubation for 2 h at 37�C, cells were
pelleted by centrifuging at 800� g for 5 min, and the supernatant removed.

This step was included to eliminate the possibility that the test peptides/

aggregates might exert a late (post-entry) effect on virus infection. The cells

were then washed 1� in phosphate-buffered saline, resuspended in culture

medium, and incubated for 48 h at 37�C, after which luciferase activity was
measured in cell lysates (10).
Inhibition of SEVI-mediated enhancement of HIV
infection by self-assembled anionic peptides

SEVI fibrils were first incubated for 10 min with HIV-1IIIB virus at room

temperature and then the self-assembled anionic peptides were added for

an additional 10 min. Peptide-virus complexes were then added to CEMx

M7 cells and HIV-1 infection was analyzed by measuring luciferase expres-

sion (see above).
Cytotoxicity assay

Viability was measured by resazurin cytotoxicity assay (alamarBlue assay;

Invitrogen, Carlsbad, CA) (10).
Inhibition of cationic peptide-mediated
enhancement of HIV-1 infection

CEMx M7 cells were pretreated for 30 min at room temperature with either

Surfen or self-assembled Ac-K4-(FKFE)2-NH2. The cells were then washed

once with RPMI-1640 and resuspended in culture medium. Cationic

peptides and virus were combined with the cells as outlined above (HIV-

1 infectivity assays). Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)

was obtained from the Open Chemical Repository in the Developmental

Therapeutic Program at the National Cancer Institute (NSC 12155),

National Institutes of Health.
RESULTS

To test whether soluble, supramolecular peptide assemblies
can enhance HIV-1 infection, cationic peptides were de-
signed using the general sequence Ac-Kn(XKXE)2-NH2

(Table 1). First, CD spectroscopy and FTIR spectroscopy
were used to evaluate the secondary structure of the
synthetic cationic peptides in water containing increasing
concentrations of NaCl. All peptides readily dissolved in
water and presented clear aqueous solutions with no visibly
insoluble material. CD spectra revealed that all of the
peptides formed b-sheet assemblies, with the exception of
the K2(AKAE)2 peptide (Fig. 2). The classical b-sheet CD
signature is a minimum at 218 nm and a maximum between
190 and 200 nm. CD spectra for (XKXE)2 peptides display
a minimum at 215–218 nm correlating to b-sheet, but also
have an additional minimum at 205–210 nm which has
been attributed to either p-p effects or twisting of the
b-sheet (6,9,11,12). The CD spectrum of the K2(AKAE)2
peptide is consistent with an unordered structure orientation,
with a strong minimum between 190 and 200 nm, indicating
that this peptide fails to undergo self-assembly (11). Unlike
(FKFE)2 (4–6), the K2(FKFE)2 and K4(FKFE)2 peptides did
not immediately assemble upon dissolution in water due to
the installation of positive charges at the N-terminus (Fig. 2,
A and B), which provide an element of molecular frustration
that inhibits self-assembly (13). However, the charge
repulsion resulting from the additional lysine (Lys) residues
that prevents b-sheet assembly could be overcome by
increasing the ionic strength of the medium by inclusion
of NaCl. In the presence of NaCl, the characteristic b-sheet
signature indicates self-assembly was observed at 100 mM
NaCl for the K2(FKFE)2 peptide and at 300 mM NaCl for
the K4(FKFE)2 peptide (Fig. 2, A and C). The [NaCl]
required to promote fibril formation was proportional to
the degree of positive charge in the peptide sequence.

K2(ChaKChaE)2 and K4(ChaKChaE)2 behaved similarly
to their Phe-containing counterparts (Fig. 2, E and G).
Because Cha has an increased hydrophobicity compared
to Phe (Table 1) (6,14), less salt was required to induce
Biophysical Journal 100(5) 1325–1334



FIGURE 2 Spectral characterization of self-assembled structures formed by synthetic cationic peptides. (A, C, E, G, and I) CD spectra of cationic peptides

in unbuffered water. Peptides were dissolved in unbuffered water at a peptide concentration of 0.9 mM, in the presence of increasing concentrations of sodium

chloride. Spectra are labeled as follows: (A) K2(FKFE)2; (C) K4(FKFE)2; (E) K2(ChaKChaE)2; (G) K4(ChaKChaE)2; (I) K2(AKAE)2. (B, D, F, H, and J)

FTIR spectra of cationic peptides in unbuffered water. The TFA counterions that are present with each peptide as a function of HPLC purification were

exchanged by lyophilization from HCl: peptides were then lyophilized from D2O. Peptides were then dissolved in D2O (1.5 mM) containing the appropriate

amount of NaCl necessary to induce the formation of b-sheet assemblies. IR spectra are labeled as follows: (B) K2(FKFE)2 [NaCl ¼ 100 mM];

(D) K4(FKFE)2 [NaCl ¼ 300 mM]; (F) K2(ChaKChaE)2 [NaCl ¼ 0 mM]; (H) K4(ChaKChaE)2 [NaCl ¼ 100 mM]; (J) K2(AKAE)2 [NaCl ¼ 1 M].
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assembly of these peptides. Indeed, K2(ChaKChaE)2
formed b-sheet assemblies in the complete absence of
NaCl, and K4(ChaKChaE)2 formed b-sheet assembles at
just 100 mMNaCl. The CD signatures of these Cha-contain-
ing peptides exhibited a more classical b-sheet trace, with
a strong minimum at 218 nm and a maximum from 190–
200 nm; an additional minimum at 209 nm, similar to that
observed with (FKFE)2, was also resolvable (attributed to
twisting of the b-sheet) (Fig. 2, E and G). The last cationic
peptide examined was K2(AKAE)2. As expected, due to the
relative hydrophilicity of Ala (Table 1), this peptide failed to
form b-sheets, even at high NaCl concentrations (Fig. 2 I).

FTIR analysis of the cationic series of peptides was also
performed to confirm b-sheet assembly. K2(FKFE)2 showed
a distinct amide I stretch at 1615 cm�1 and K4(FKFE)2
showed a similar stretch at 1613 cm�1 (Fig. 2, B and D);
these peaks are slightly lower than the expected amide I
stretch for b-sheets from 1620 and 1640 cm�1; this is likely
due to an antiparallel strand registry and subtle sheet
twisting that may be induced by the Phe residues in the
Biophysical Journal 100(5) 1325–1334
bilayer interface (6,8,15–18). These peptides also showed
peaks between 1674 and 1676 cm�1 (Fig. 2, B andD), which
may be due to hydrogen bonding (17) or vibrational
coupling of the peptides (8,17). K2(ChaKChaE)2 and
K4(ChaKChaE)2 both exhibited peaks at 1625 cm�1 which
correlates to classical amide I stretch attributed to b-sheet
architectures (Fig. 2, F and H).

In addition to the cationic peptides, four additional
anionic peptides utilizing the general Ac-En(XKXE)2-NH2

sequence were synthesized and examined (Table 1). To
determine the self-assembly conditions of these peptides,
CD spectroscopy was performed in unbuffered water (pH
3–4 due to residual TFA), and water adjusted to pH 7 with
NaOH. In acidic solutions, the peptides were not fully
soluble as evidenced by slight cloudiness in the solutions;
when the pH was adjusted to 7, the solutions clarified.
The CD spectra for the E2(FKFE)2 and E4(FKFE)2 peptides
showed evidence of b-sheet assembly at pH 3–4 (Fig. 3, A
and C), although the assemblies were not completely
soluble as indicated by slightly cloudy solutions. The CD



FIGURE 3 Spectral characterization of self-assembled structures formed

by synthetic anionic peptides. (A, C, E, and G) CD spectra of anionic

peptides in unbuffered water. Peptides were dissolved in unbuffered water

(0.3 mM), and spectra were then obtained at acidic pH (pH was 3–4 as

a function of residual TFA from HPLC purification); additional spectra

were obtained by increasing the pH 7 by addition of NaOH. In the case

of peptide E4(FKFE)2, an additional spectrum was obtained at neutral pH

in the presence of NaCl, because this was required for formation of b-sheet

assemblies. (A) E2(FKFE)2; (C) E4(FKFE)2; (E) E2(ChaKChaE)2; (G)

E4(ChaKChaE)2. (B, D, F, and H) FTIR spectra of anionic peptides in

unbuffered water. This analysis was performed as described in the legend

to Fig. 2. (B) E2(FKFE)2 [NaCl ¼ 0 mM]; (D) E4(FKFE)2 [NaCl ¼
1 M]; (F) E2(ChaKChaE)2 [NaCl ¼ 0 mM]; (H) E4(ChaKChaE)2
[NaCl ¼ 0 mM].
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spectrum for E4(FKFE)2 transitioned from b-sheet to unor-
dered structure when solutions were adjusted to pH 7, indi-
cating disassembly of the fibrils as a function of pH; b-sheet
structure was restored by addition of high concentrations of
NaCl which served to mask the negative charges of the glu-
tamic acid (Glu) residues at pH 7 (Fig. 3 C).

The Cha-containing anionic peptides exhibited similar
properties to their Phe-containing counterparts. In unbuf-
fered water at pH 3-4, both E2(ChaKChaE)2 and E4(ChaK-
ChaE)2 exhibited a clear b-sheet structure (as reflected by
the minimum at ~218 nm, and a slightly larger minimum
at 210 nm) and incomplete solubility (Fig. 3, E and G).
When the pH was increased to 7, the peptides became
more soluble, and retained a b-sheet conformation (Fig. 3,
E and G). In contrast to the Phe-containing peptides, no
NaCl was required to promote self-assembly of the more
hydrophobic Cha peptides at pH 7.

FTIR studies yielded data that were consistent with the
CD analysis, confirming the formation of b-sheet assem-
blies by the anionic peptides. Similar to CD analysis, the
E4(FKFE)2 was unassembled at neutral pH without the addi-
tion of NaCl; however, at 1 M NaCl, b-sheet assembly was
observed, indicated by the amide I stretch at 1613 cm�1

(Fig. 3 D). As with the cationic peptides, the Phe peptides
had peaks at lower frequencies than their Cha counterparts
(1615 and 1613 cm�1 for E2(FKFE)2 and E4(FKFE)2,
respectively (Fig. 3, B and D), compared to 1625 and
1622 cm�1 for E2(ChaKChaE)2 and E4(ChaKChaE)2,
respectively (Fig. 3, F and H)).

Spectral b-sheet signatures are usually an indication of
fibril self-assembly in these systems, but transmission elec-
tron microscopy (TEM) imaging is necessary to confirm the
presence of fibrils. We therefore performed TEM analysis
on each peptide under conditions that resulted in b-sheet
formation by spectral analysis. All the peptides, with the
exception of K2(AKAE)2, showed positive confirmation of
fibrillar assemblies in TEM images (Fig. 4). The observed
fibrils were uniformly long (micrometers) and unbranched.
The fibrils showed some morphological variability in dia-
meter. K2(ChaKChaE)2 and K4(ChaKChaE)2 had the largest
diameters of the assemblies studied, with fibril diameters
of 5.9 5 0.9 and 5.0 5 0.8 nm, respectively. E4(FKFE)2
had a comparable fibril diameter to K2(ChaKChaE)2 with
a diameter of 4.5 5 0.6 nm. E2(FKFE)2, E2(ChaKChaE)2,
E4(ChaKChaE)2, K2(FKFE)2, and K4(FKFE)2 all had simi-
larly sized fibril diameters of 3.2 5 0.6, 2.8 5 0.5, 3.2 5
0.4, 2.9 5 0.5, and 3.4 5 0.6 nm, respectively.
The bilayer fibrils formed by XKXE-based peptides

remained soluble, unlike SEVI fibrils. Fig. S21 shows that
SEVI fibrils precipitated spontaneously, as indicated by
the appearance of flocculent material suspended in these
solutions. Conversely, XKXE-derived fibrils did not precip-
itate spontaneously but remained soluble (Fig. S21). TEM
confirmed that the XKXE-based peptides formed amyloid
fibrils, and that these fibrils remained soluble even after
high-speed centrifugation (Fig. S22). In contrast, the SEVI
fibrils efficiently sedimented upon high-speed centrifuga-
tion—confirming their insolubility (Fig. S22).

We next evaluated whether the SSA formed by our
peptides were able to enhance HIV-1 infection of target cells.
To do this, we infected CEMx M7 reporter cells in the pres-
ence of increasing concentrations of both cationic and
anionic SSA. The cationic but nonfibrillar peptide
Biophysical Journal 100(5) 1325–1334



FIGURE 4 TEM images of cationic and anionic peptides. TEM images were obtained from solutions in which spectral evidence indicated the formation of

b-sheet assemblies. (A) SEVI: [peptide] ¼ 1.33 mM, [NaCl] ¼ 150 mM (in phosphate-buffered saline); (B) K2(FKFE)2: [peptide] ¼ 0.9 mM, [NaCl] ¼
100 mM, fibril diameter ¼ 2.9 5 0.5 nm; (C) K4(FKFE)2: [peptide] ¼ 0.9 mM, [NaCl] ¼ 200 mM, spotted onto a nickel grid, fibril diameter ¼ 3.4 5

0.6 nm. (D) K2(ChaKChaE)2: [peptide] ¼ 0.3 mM, [NaCl] ¼ 0 mM, fibril diameter ¼ 5.9 5 0.9 nm; (E) K4(ChaKChaE)2: [peptide] ¼ 0.3 mM,

[NaCl]¼ 100 mM, spotted onto a nickel grid, fibril diameter¼ 5.05 0.8 nm; (F) E2(FKFE)2: [peptide]¼ 0.3 mM, [NaCl]¼ 0 mM, at pH 7, fibril diameter¼
3.2 5 0.6 nm; (G) E4(FKFE)2: [peptide] ¼ 0.3 mM, [NaCl] ¼ 1 M, at pH 7, fibril diameter ¼ 4.5 5 0.6 nm; (H) E2(ChaKChaE)2: [peptide] ¼ 0.3 mM,

[NaCl] ¼ 0 mM, at pH 7, 2.8 5 0.5 nm; (I) E4(ChaKChaE)2: [peptide] ¼ 0.3 mM, [NaCl] ¼ 0 mM, at pH 7, fibril diameter ¼ 3.2 5 0.4 nm.
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[K2(AKAE)2] and the anionic amyloidlike fibrils
[E4(FKFE)2, E2(ChaKChaE)2] had no effect on HIV-1 infec-
tion, while all of the cationic amyloidlike fibrils [K4(FKFE)2,
K2(FKFE)2, K4(ChaKChaE)2, K2(ChaKChaE)2] signifi-
cantly enhanced viral infection (Fig. 5). The cationic Phe-
containing peptides were more efficient at enhancing
HIV-1 infection than their Cha-containing counterparts,
FIGURE 5 Fibril structure and charge are critical for cationic peptide

enhancement of HIV-1 infection. CEMx M7 cells were infected with

HIV-1 in the presence of increasing concentrations of self-assembled

peptides with 1), net positive charges (shown in red): SEVI, K4(FKFE)2,

K2(FKFE)2, K4(ChaKChaE)2, K2(ChaKChaE)2; 2), net negative charges

(shown in blue): E4(FKFE)2, E2(ChaKChaE)2; and 3), unassembled

positively charged peptide (shown in orange): K2(AKAE)2. At 48 h post-

infection, cells were harvested and luciferase measured as a readout of

HIV-1 infection. Results represent mean values from three experimental

replicates; error bars denote the standard deviation of these values. The

results shown are representative of three independent experiments per-

formed with a range of peptide concentrations all yielding similar results.

Notes: 1), All peptide concentrations refer to final concentrations in cell

culture (and not to concentrations during virion preincubation, which

were higher); and 2), we have plotted the data on a semilog scale, to facil-

itate comparison of values obtained at low concentrations. Because the log

of zero is not defined, we were obliged to use a discontinuous x axis to do

this. The far left portion of the x axis is thus plotted with a linear (ordinary)

axis to accommodate the value x ¼ zero.
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even though the former peptides were able to self-assemble
more efficiently, especially under low salt conditions. The
reason for this remains unclear, although it could be due to
slightly decreased solubility of the Cha peptides at high ionic
strength. This was sometimes observed as a slight cloudiness
of the solutions, as noted above.

Several of the self-assembled cationic peptides tested
were considerably more efficient than SEVI in enhancing
HIV-1 infection at very low peptide concentrations. This
effect was most pronounced for the K4(FKFE)2 and
K4(ChaKChaE)2 peptides (Fig. 5), which have a consider-
ably greater charge/mass ratio at pH 7 than the PAP(248–
286) peptide from which SEVI is derived (Table 1). Not
only was virus infection enhanced at much lower concentra-
tions of the self-assembled K4(FKFE)2 peptide than SEVI,
but the peak magnitude of infection enhancement by the
self-assembled K4(FKFE)2 peptide was also greater. At
high concentrations, however, infection-enhancement by
the K4(FKFE)2 peptide was reduced (Fig. 5).

Similar results were obtained when infection experiments
were repeated using a 10-fold lower concentration of virus
(Fig. S23). Consistent with data that have been reported
for SEVI, the infection enhancing effects of the cationic
SSA were more pronounced at low virus concentrations.
This is evident by the fact that the peak level of HIV infec-
tion in the presence of the cationic SSAwas reduced by only
approximately twofold when using this low virus concentra-
tion, even though the virus inoculum had been reduced by
10-fold, when compared to our standard experimental
conditions.

One possible explanation for this concentration-depen-
dent reduction in infection enhancement by K4(FKFE)2
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might be cellular toxicity at high concentrations. To address
this concern, we treated CEMx M7 cells with varying
concentrations of our self-assembled peptides for 24 h,
and then examined their viability using a resazurin-based
cell viability assay (alamarBlue assay; Invitrogen). None
of the fibrils demonstrated toxicity to the target cells
in vitro at the concentrations used, when assayed over
a 24 h incubation period (Fig. S24 A). Prolonged (72 h)
incubation of cells with high concentrations of the
K4(FKFE)2 and K4(ChaKCheE)2 peptides did, however,
result in a modest decline in cell viability (Fig. S24 B).

We next examined whether SSA formed by the
K4(FKFE)2 peptide might competitively inhibit the attach-
ment of virus:SSA complexes to target cells. To do this,
target cells were pretreated with increasing concentrations
of self-assembled K4(FKFE)2 and then exposed to pre-
formed complexes of HIV-1 virions plus either K4(FKFE)2
or SEVI. Pretreating the target cells with soluble, self-
assembled K4(FKFE)2 resulted in a dose-dependent
decrease in the efficiency of infection by both SEVI:virus
and K4(FKFE)2:virus complexes (Fig. 6 A). These results
suggest that free cationic SSA in solution are able to
compete with fibril:virus complexes for attachment to target
cells. It also suggests that SEVI and the self-assembled
K4(FKFE)2 peptide may compete for attachment to the
same (limiting) cell surface molecules (19).

To examine this prediction further, we took advantage of
previous results, showing that the small-molecule heparan
sulfate antagonist, Surfen, can abrogate SEVI-mediated
enhancement of HIV-1 infection (19). We pretreated our
target cells with increasing concentrations of Surfen and
subsequently exposed the cells to preformed complexes of
HIV-1 virions plus either K4(FKFE)2 or SEVI. Surfen
pretreatment resulted in a dose-dependent decrease in
the efficiency of infection by both SEVI:virus and
K4(FKFE)2:virus complexes (Fig. 6 B). This finding further
supports the hypothesis that SEVI and the self-assembled
K4(FKFE)2 peptide may compete for attachment to the
same (limiting) cell surface molecules (19).

We also tested whether pretreatment of target cells with
K4(FKFE)2 or Surfen had any affect on unenhanced HIV-1
infection. K4(FKFE)2 exerted no effect on unenhanced
HIV-1 infection, and Surfen exerted only a slight inhibitory
effect on unenhanced HIV-1 infection, even at a very high
concentration (30 mM; Fig. 6 C).

Because cationic charge is essential for HIV-1 infection
enhancement both by SEVI (20) and by our self-assembling,
amphipathic peptides (Fig. 5), we reasoned that SSA formed
by our anionic peptides might be capable of effectively
shielding the charged surface of SEVI fibrils and thereby
blocking SEVI-mediated infection-enhancement. To test
this prediction, we infected target cells with preformed
SEVI:virus complexes in the presence of increasing concen-
trations of our self-assembled anionic peptides. All of the
anionic peptides demonstrated at least a modest ability to
interfere with SEVI-mediated infection enhancement
(Fig. 7 A), but the self-assembled E4(ChaKChaE)2 peptide
was the most efficient at inhibiting SEVI-mediated enhance-
ment of HIV-1 infection—completely abrogating SEVI’s
effects at high concentrations (20 mM). Importantly, the
self-assembled E4(ChaKChaE)2 peptide was nontoxic to
our CEMx M7 target cells (Fig. S24) and had no effect on
the efficiency of HIV-1 infection in the absence of SEVI
(Fig. 7 B). These data suggest the possibility that anionic
peptide supramolecular assemblies have the potential to be
developed into anti-SEVI microbicides.
FIGURE 6 Cationic supramolecular assemblies

enhance HIV-1 infection through a mechanism

similar to SEVI. (A and B) CEMx M7 cells were

pretreated with increasing concentrations of

K4(FKFE)2 (A) or Surfen (B) for 30 min before

being infected with HIV-1 in the presence of

SEVI (10 mM) or K4(FKFE)2 (2 mM). At 48 h

post-infection, cells were harvested and luciferase

expression measured as a readout of HIV-1 infec-

tion. Results represent mean values from three

experimental replicates; error bars denote the stan-

dard deviation of these values. The results shown

are representative of three independent experi-

ments performed with a range of pretreatment

concentrations, all yielding similar results. (C)

CEMx M7 cells were pretreated with a high

concentration of K4(FKFE)2 (30 mM) or Surfen

(30 mM) for 30 min being infected with HIV-1

alone, in the absence of any enhancing agent. At

48 h post-infection, cells were harvested and luci-

ferase expression measured as a readout of HIV-1

infection. Results represent mean values from three

experimental replicates; error bars denote the stan-

dard deviation of these values.
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FIGURE 7 Anionic supramolecular assemblies have a limited capacity to

inhibit SEVI-mediated enhancement of HIV-1 infection. (A) SEVI fibrils

(5 mM) were allowed to form a complex with HIV-1 virions for 10 min

at room temperature. The anionic peptide supramolecular assemblies

were then added to the SEVI:virus solution and incubated for 10 min.

This solution was then incubated on CEMx M7 cells. After 48 h, the cells

were harvested and luciferase expression measured as a readout of HIV-1

infection. (B) HIV-1 infections were performed on CEMx M7 cells in the

presence of increasing concentrations of E4(ChaKChaE)2 alone, in the

absence of SEVI. Results in both panels represent mean values from three

experimental replicates; error bars denote the standard deviation of these

values. The results shown are representative of three independent experi-

ments performed with a range of anionic peptide concentrations all yielding

similar results.
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CONCLUSIONS

SEVI is a naturally occurring insoluble amyloid fibril
derived by self-assembly of a cationic peptide (PAP(248–
286)), which has the ability to strongly enhance HIV-1
infection (1) and infection of other enveloped retroviruses
(21,22). Consistent with this, filtration of semen results in
a substantial reduction in its HIV-1 enhancing activity (1).
However, other findings suggest that soluble supramolecular
assemblies of the PAP(248–286) peptide may also
contribute to HIV-1 infection enhancement (1,2,23). We
therefore set out to examine the ability of SSA to enhance
HIV-1 infection.

By generating non-SEVI, amyloidlike fibrils that do
not sediment we were able to conclude that cationic SSA
are capable of efficiently enhancing HIV-1 infection. This
is consistent with the ability of other cationic polymers
(such as polybrene) to enhance HIV-1 infection, by
reducing the electrostatic repulsion between the virion
and target cell surface (24–26)—thereby enhancing
Biophysical Journal 100(5) 1325–1334
receptor-independent adsorption (27)—and accelerating
the sedimentation velocity of virus particles by permitting
their aggregation (26). For these cationic polymers, the
net positive charge relative to the molecular weight of the
polymer (26) directly influences the degree of retroviral
infection enhancement, by determining the extent of poly-
cationic bridging and the size of virus:polymer complex
formed (thereby influencing virus sedimentation rate)
(26,28). This may explain why the charge/mass ratio of
our peptides seems to generally predict their effectiveness
at enhancing HIV-1 infection.

We also determined that the presence of additional charge
at the N-terminus of the peptides is able to frustrate the
assembly process; however, we were able to overcome
Coulombic interactions by increasing the ionic strength of
the solution. Additionally, in the case of the fibrils formed
from E4(FKFE)2, we found that the assembly process was
dynamic and upon addition of NaOH without extra NaCl,
we were able to perturb the assembly and the fibrils disas-
sembled as a function of pH.

It remains unclear how the size and charge/mass ratio of
cationic SSA or insoluble SEVI fibrils may influence the
migration and sedimentation of attached HIV-1 particles
in biological fluid such as human cervicovaginal mucus
(CVM) (29,30). It is possible that insoluble fibrils may be
better able to promote sedimentation of attached HIV-1
virions—thereby accelerating virus infection. However, it
is also possible that very large virus:fibril complexes may
become trapped by the mucin network found in CVM.
The spacing between these mucin fibers creates a mesh of
pores with a size range of 50–1800 nm (and an average
size of 3405 70 nm) (30), which may be sufficient to allow
free migration/sedimentation of complexes between HIV-1
virions and smaller SSA, but not of large complexes
between HIV-1 virions and insoluble fibrils that are several
microns in length. Future experiments will be necessary to
compare the interaction of these different types of virus:
fibril/SSA complexes with CVM.

Not only was the charge/mass ratio of our subunit
peptides critical for enhancing HIV-1 infection, but so was
their ability to form a self-assembled b-sheet structure—as
evidenced by the inability of K2(AKAE)2 to enhance HIV
infection despite its cationic charge (Fig. 4). The contribu-
tion of the b-sheet structure to HIV-1 infection enhancement
is further supported by the ability of the amyloid-binding
small molecule BTA-EG6, which intercalates into the
b-sheet structure, to inhibit both SEVI- and semen-mediated
enhancement of HIV-1 (10).

There are also interesting differences in the effect on
infectivity enhancement by the Cha- and Phe-containing
peptide sequences. The K4(FKFE)2 sequence more strongly
promoted infection than the K4(ChaKChaE)2 peptide in the
CEMx M7 cells. This may reflect the increased solubility of
the Phe peptide relative to the Cha peptide as evidenced by
slight cloudiness in solutions of the Cha peptide.
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In our HIV-1 infectivity assays, preformed peptide struc-
tures were diluted in RPMI cell culture medium, which
contains 103 mM NaCl. Direct assessment of the structure
of the peptide assemblies in RPMI medium is technically
difficult using IR or CD, due to the contents of the RPMI
medium. However, we can infer from our functional
(HIV-1 infection enhancement) data, that the previously
self-assembled cationic peptides maintained their supra-
molecular assemblies in the RPMI medium.

In contrast, the unexpected inability of the self-assembled
E4(FKFE)2 peptide to inhibit SEVI-mediated enhancement
of HIV-1 infection suggests that this SSA may disassemble
after being diluted in RPMI media. This would be consistent
with the high salt requirement for initial self-assembly of
this particular peptide (~500 mM NaCl). On the other
hand, the E4(ChaKChaE)2 peptide self-assembled effi-
ciently in the absence of salt, and presumably was able to
maintain its b-sheet content in the RPMI media—allowing
it to efficiently inhibit SEVI-mediated enhancement of
HIV-1 infection in vitro.

The ability of the self-assembled E4(ChaKChaE)2 peptide
to abrogate SEVI-mediated enhancement of HIV-1 infec-
tion, without altering HIV-1 infectivity in the absence of
SEVI, suggests that this and other anionic peptide supra-
molecular assemblies may have potential as anti-SEVI
microbicides. A future direction will be to test whether
anionic SSA can inhibit SEVI-mediated enhancement in
the presence of semen. This is important because the micro-
bicidal properties of other anionic polymers are greatly
reduced in the presence of semen (31,32).

In summary, the results reported here show that amphi-
pathic, cationic peptides of sequence Ac-Kn(XKXE)y-NH2

can efficiently self-assemble into soluble, fibril-like struc-
tures that, in some cases, were able to enhance HIV-1 infec-
tion even more efficiently than SEVI. This demonstrates that
formation of insoluble, sedimentable fibrils is not a prerequi-
site for HIV-1 infection enhancement. Finally, our data also
show that self-assembling anionic peptides can abrogate
SEVI-mediated enhancement of HIV-1 infection, and thus
have the potential to function as anti-SEVI microbicides.
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