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Cooccurrences of chronic lymphocytic thyroiditis (CLT) and thyroid cancer (DTC) have been repeatedly reported. Both CLT and
DTC, mainly papillary thyroid carcinoma (PTC), share some epidemiological and molecular features. In fact, thyroid lymphocytic
inflammatory reaction has been observed in association with PTC at variable frequency, although the precise relationship between
the two diseases is still debated. It also remains a matter of debate whether the association with a CLT or even an autoimmune
disorder could influence the prognosis of PTC. A better understanding about clinical implications of autoimmunity in concurrent
thyroid cancer could raise new insights of thyroid cancer immunotherapy. In addition, elucidating the molecular mechanisms
involved in autoimmune disease and concurrent cancer allowed us to identify new therapeutic strategies against thyroid cancer.
The objective of this article was to review recent literature on the association of these disorders and its potential significance.

1. Introduction

Thyroid cancer is the most common endocrine malignancy
and was considered responsible for 1600 deaths amongst
300,000 patients diagnosed with the disease in the USA
in 2009 [1]. The incidence of differentiated thyroid cancer
(DTC) in the United States and worldwide continues to
increase, having more than doubled over the past three
decades [2, 3]. A similar trend has been observed in other
countries across Europe, Asia, Oceania, and South America
[4]. In fact, only a few countries have reported a decline in
thyroid cancer incidence: Sweden (18% reduction for both
men and women), Norway (5.8% reduction for women),
and Spain (25.9% reduction for women) [4]. The disease
incidence is increasing in other European countries, such
as Switzerland (5.3%) and France (155.6%) [4]. A common
aspect in all epidemiological reports is that the highest
rate of increase is for small and localized thyroid cancers,
which probably contributes to the stable and relatively

low mortality observed. However, there are several lines of
evidence indicating that the increased incidence of DTC
is also related to other factors, including the increasing
amount of large tumors that would certainly be detected
without the need for more sophisticated or sensitive imaging
methods and a parallel increase of exposure to a series
of environmental factors associated with cancer, such as
exposure to radiation [5, 6]; living in volcanic areas [7];
iodine intake [8, 9]; female gender [10], which might be
related to estrogen, a subject that is being studied for our
group; obesity [11]; and genetic factors that might be related
to susceptibility to DTC [12–17].

A parallel increase has been observed in the incidence of
autoimmune thyroid diseases, such as thyroiditis. Chronic
lymphocytic thyroiditis (CLT) and DTC, mainly PTC, share
some epidemiological features, such as the relationship with
ionizing radiation exposure [6, 18] and dietary iodine [19,
20]; both also share some molecular features [21–28] and are
more likely to occur in women than in men [29–31].
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Although most tumors originate from follicular cells,
they present remarkably different features. In addition,
likewise breast, prostate, and other human neoplasias, micro-
scopic thyroid tumors are frequently found at autopsies
and in surgical specimens [32]. However, the impact of
the immune system, the presence of autoimmune thyroid
diseases, and their relationship with cancer development is a
matter of controversy [4]. Also, literature repeatedly reports
association between CLT and thyroid cancer. Geographically
widespread association and incidence of CLT with thyroid
cancers are shown on Table 1.

2. Concurrent Chronic Lymphocytic Thyroiditis
(CLT), Thyroid Autoimmune Diseases, and
Differentiated Thyroid Carcinomas (DTC)

Hashimoto’s disease and Graves’ disease are the two most
common forms of autoimmune thyroiditis (AT), the archety-
pal organ-specific autoimmune disease in humans. Both are
characterized by lymphocytic infiltrate and autoreactivity
against thyroid autoantigens [43–45].

Chronic lymphocytic thyroiditis (CLT) is an autoim-
mune disease characterized by widespread lymphocyte infil-
tration, fibrosis, and parenchymal atrophy of thyroid tissue.
Hashimoto’s thyroiditis (HT) is characterized by infiltration
of the thyroid gland by inflammatory cells, often followed
by hypothyroidism due to destruction and eventual fibrous
replacement of the parenchymal tissue. In HT, the body
also produces autoantibodies to thyroid-specific antigens
(Figure 1), considering that thyroglobulin (Tg) and thy-
roperoxidase (TPO) are the two primary antigens in AT
[46–48]. HT is characterized by a gradual loss of thyroid
function, goiter, and T-cell infiltration in histology, affecting
women more often than men, with a sex ratio of 7 : 1,
and occurring in genetically susceptible populations, but
lacking a strong association with HLA. The overriding
feature of HT is the progressive depletion of thyroid epithelial
cells, which are gradually replaced by mononuclear cell
infiltration and fibrosis [47, 49, 50]. In thyroiditis, especially
HT, parenchyma of thyroid gland is progressively lost
and replaced by cells of the inflammatory infiltrate that
produce chemokines, cytokines, and growth factors, most of
which are under NF-β transcriptional control. The persistent
stimulation of residual thyrocytes with such molecules could
induce the activation of NF-β in follicular cells, thereby
creating a functional network between thyroid epithelial cells
and inflammatory cells [49].

In a number of human malignancies, the presence of
lymphocytic infiltration in or around a tumor is commonly
viewed as representing a host immune response [52].
Although the presence of tumor-associated lymphocytic
infiltration is widely regarded as representing a host immune
response, the impact of this inflammatory response on
tumor behavior may be variable [28, 53–55]. In addition
to the common occurrence of CLT and papillary thyroid
carcinomas (PTC), it has been suggested that the relatively
high prevalence of apparently indolent PTC in an autopsy
series may represent host immune control [56].

The relationship between CLT and PTC was first pro-
posed by Dailey et al. in 1955 [21]. Since this initial
description, the association between the diseases has been
repeatedly reported and highly debated in the literature,
remaining controversial.

A thyroid lymphocytic inflammatory reaction has been
observed in association with PTC at variable frequency,
ranging from 0.5% to 58% [21–28, 34, 37, 39, 40, 57, 58].
This wide distribution of coexisting CLT and PTC reported
in a number of studies may be due, at least in part, to
differences in the level of histological examination and
criteria of autoimmunity characterization, patient selection
or indications for thyroidectomy, environmental factors
(history of radiation exposure) [59], genetic or population
background [57], and geographic factors (e.g., the amount
of iodine intake) [59–61].

Thyroid autoimmunity is a broad spectrum disease also
manifested as the presence of antithyroid antibody (ATA).
A series of reports indicate a close association between ATA
and malignancy [50, 62], while others are not able to confirm
this association [63–66]. Boi et al. assessed ultrasound- (US-)
guided fine-needle aspiration cytology obtained from 590
unselected consecutive patients with single thyroid nodules
and positive or negative serum antithyroid antibody. Cyto-
logical results were divided into three classes of increased risk
of malignancy: low risk or benign, indeterminate risk, and
suspect or malignant. They suggested that the presence of
antithyroid antibodies confers an increased risk of suspicious
or malignant cytology in unselected thyroid nodules [62];
even this result is not confirmed in other reports [67, 68].

There are reports in the literature on the relationship
between other thyroid autoimmune diseases, such as Graves’s
disease and thyroid cancer. Some studies have suggested
a high incidence of malignant thyroid nodules in patients
with Graves’ disease and hyperthyroidism, and that thyroid
cancer behaves more aggressively when associated with
Graves’ disease, although still controversial [69–72]. As
TSH stimulates growth of metastatic differentiated thyroid
cancer expressing the TSH receptor (TSHR), it is possible
to hypothesize that high levels of anti-TSHR antibodies
of Graves’ patients might stimulate thyroid cancer growth
and early metastatic spread, thus negatively affecting patient
outcome, as reviewed by Belfiore et al. [73]. However, other
studies do not support the suggestions that thyroid cancer
in patients with Graves’ disease is more aggressive than
in either patients with toxic nodular goiter or euthyroid
subjects, suggesting that concurrent Graves disease is not a
good prognosticator [74, 75].

Even in reduced frequency, CLT is also presented in
association with follicular thyroid carcinoma (FTC). Loh
et al. [37] studied subjects with lymphocytic thyroiditis
(LT), including Hashimoto’s thyroiditis and cell lympho-
cytic infiltrates around thyroid neoplasms. Lymphocytic
thyroiditis (LT) was recorded in 125 of 564 patients (22%)
with PTC histology, when comparing with three of 67
patients (4.5%) with follicular or Hürthle cell histology.
They found that patients with LT almost uniformly had
PTC, consistent with the observation by other investigators
[33, 34, 76, 77]. In fact, Souza et al. [38] reported that TPO
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Figure 1: Activation of a self-specific T-cell initiates a cascade of events that amplifies the immune response and involves both CD4 and CD8
T cells, inducing an antibody-mediated response. B: B cells; IFN-γ: interferon-γ; IL-2: interleukin-2; MHCII: major histocompatibility class
II; T: T cells; Tc: cytotoxic T-cell; Th: T helper cell (adapted from [51]).

antibody was present in 14 of 123 patients (11.3%) with PTC
histology, when comparing with one of 50 patients (2%) with
follicular or Hürthle cell histology. In addition, thyroglobulin
antibody (TgAb) was present in 12 of 123 patients (9.76%)
with PTC, while none of FTC patients presented TgAb at
diagnosis, confirming the correlation between concurrent
autoimmunity and PTC histology.

3. Molecular Link between Thyroid Cancer and
Chronic Lymphocytic Thyroiditis

A functional relationship between chronic inflammation and
cancer was first proposed by Virchow, in 1863, and has been
sustained by clinical [41, 78] and epidemiological evidence
[79–82]. Both a causal association and a noncausal associ-
ation have been proposed, and the molecular mechanism
that links inflammation and cancer is not completely clear
so far. A link between thyroid cancer, in particular the PTC
histotype, and AT has long been recognized, although the
precise relationship between the two diseases remains subject
of debate.

Hashimoto’s thyroiditis is characterized by proliferating
nodules as well as by cytological alterations and nuclear
modifications similar to those of papillary carcinomas,
suggesting that both neoplastic and autoimmune diseases
could share the same molecular pathogenesis [83].

The mitogen-activated protein kinase (MAPK) signaling
pathway is a foremost event in the carcinogenesis of the
most common endocrine malignancy, the papillary thyroid
carcinoma (PTC). Affected elements include RET/PTC rear-
rangements and point mutations of the RAS and BRAF

genes. Mutations in these genes are found in over 70% of
PTC, as previously reviewed [84]. Chromosomal RET rear-
rangements, called RET/PTC, result in constitutive ligand-
independent activation of RET kinase, which was the first
genetic anomaly detected in PTC and is found in 5–70%
of tumor samples. Although less frequently, the activation
of other tyrosine kinase receptors, including NTRK1, c-Met,
or EGFR, has also been reported in PTC [85]. The BRAF
mutation represents the most common genetic alteration
found in PTC [86]. More than 90% of BRAF mutations
lead to a change of valine to glutamic acid at position 600
(V600E) [85]. Finally, RAS is the least affected molecule
in the pathway [85]. All of these multisteps of thyroid
carcinogenesis are shown in Figure 2.

Several authors have found RET/PTC rearrangements
in non-neoplastic thyroid lesions, such as CLT [88–90].
In addition, Muzza et al. found RET/PTC1 being more
represented in PTCs associated with autoimmunity than in
PTC without autoimmunity, suggesting that the association
between RET/PTC1 and thyroiditis points to a critical role
of this oncoprotein in the modulation of the autoimmune
response [41]. Rhoden et al. showed that low-level RET/PTC
recombination occurs in nonneoplastic follicular cells of HT
and in a subset of papillary thyroid carcinomas, indicating
that overlapping molecular mechanisms may govern early
stages of tumor development and inflammation in the
thyroid [91]. Kang et al. studied the RET/PTC-RAS-BRAF in
oxyphil cells in the vicinity of large lymphoid HT infiltrates
and in malignant PTC cells. The expression of RET, nuclear
RAS, and ERK proteins is greatly enhanced in PTC cells and
HT oxyphil cells. Thus, the RET/PTC-RAS-BRAF cascade
may be involved in the development of PTC and oxyphil
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Figure 2: Multistep carcinogenesis model of thyroid cancer formation. Formation of benign thyroid tumors occurs as a result of alteration
of various growth factors. Follicular neoplasms are formed from thyrocytes by mutations of RAS and other factors, as shown in the figure.
Papillary cancers are formed by alterations in RET/PTC and other oncogenes. Undifferentiated tumors are formed from differentiated tumors
by mutations of tumor suppressor genes (adapted from [87]).

cell metaplasia in HT. These results show the possibility of
a molecular link between oxyphil cell metaplasia in HT and
the progression of PTC [92].

However, different mechanisms could also explain the
association between CLT and RET/PTC rearrangement
(Figure 3). Chronic inflammation might facilitate the rear-
rangement or, conversely, RET/PTC rearrangement might
promote chronic inflammation. The production of free
radicals, cytokine secretion, cellular proliferation, and other
phenomena correlated with inflammation might predispose
to the rearrangement in follicular cells [93]. It is well known
that leukocytes recruited under an inflammation context
physiologically secrete reactive oxygen species and reactive
nitrogen species. However, these highly reactive metabolites
induce the production of peroxynitrite and other mutagenic
agents, leading to “DNA damage”, for example, mutations in
proliferating cells [94]. Thus, in the case of persistent tissue
damage, O2 and N highly reactive metabolites secreted by
inflammatory cells induce point-mutations, DNA rearrange-
ments, and double-strand breaks [93, 95].

Guarino et al. proposed that cytokines and chemokines
released by inflammatory tumor stroma could sustain the
survival of thyroid cells in which RET/PTC rearrangements
randomly occur, thereby allowing the selection of clones
that acquire additional genetic lesions and thus become
resistant to oncogene-induced apoptosis [93]. In fact, some
reports indicate that RET/PTC might induce apoptosis
[96, 97]. This hypothesis of interaction between RET/PTC
rearrangement and thyroid inflammation is reinforced by
some studies that suggest that thyroid cancer cells, like other
epithelial cancer cells, can produce inflammatory factors
that may facilitate cell survival, preventing apoptosis. Stassi
et al. found that autocrine production of IL-4 and IL-10
promotes thyroid tumor cell progression and resistance to

chemotherapy by the upregulation of antiapoptotic proteins,
such as Bcl-2 and Bcl-xL [98]. Conticello et al. found that
IL-4 protects tumor cells (primary prostate, breast, and
bladder cancer) from CD95- and chemotherapy-induced
apoptosis by the upregulation of antiapoptotic proteins,
such as cFLIP/FLAME-1 and Bcl-x(L) [99]. Todaro et al.
identified that primary epithelial cancer cells from colon,
breast, and lung carcinomas produced interleukin-4 (IL-4),
which amplified the expression levels of these antiapoptotic
proteins and prevented cell death induced upon exposure
to drug agents via downregulation of the antiapoptotic
factors PED, cFLIP, Bcl-xL, and Bcl-2, providing evidence
that exogenous IL-4 was able to upregulate the expression
levels of these antiapoptotic proteins and potently stabilized
the growth of normal epithelial cells making them apoptosis
resistant [100].

On the contrary, RET/PTC rearrangement might induce
chronic inflammation. Russell et al. found that RET/PTC3
alone increases nuclear NF-kappaB activity and secretion
of MCP-1 and GM-CSF. Finally, transfer of RP3-expressing
thyrocytes into mice in vivo attracted dense macrophage
infiltrates, leading to rapid thyroid cell death [101]. In
addition, the same group found that IL1-alpha, IL1-beta,
IL6, TNF-alpha, and the Cox2 enzyme are produced by
RET/PTC3-transgenic thyroid tissue, but absent from non-
transgenic thyroids, providing support for the notion that
oncogene-induced cytokine secretion is important for the
development and progression of thyroid carcinomas in
genetically permissive hosts [102]. Prostaglandin E2, micro-
somal prostaglandin E2, cyclooxygenase 2 (Cox2), IL24, and
other genes coding for proteins involved in the immune
response and in intracellular signal transduction pathways
activated by cytokines and chemokines have been suggested
to be induced by RET/PTC, indicating that the expression
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Figure 3: Putative links between RET/PTC rearrangement and concurrent thyroid inflammation. (a) RET/PTC could drive expression of
several proinflammatory molecules that may elicit concurrent inflammation. Another possibility (b) is inflammation propitiating RET/PTC
rearrangement. Inflammation produces reactive oxygen species and free radicals that may facilitate DNA damage and chromosomal
abnormities, like RET/PTC rearrangement. (c) Molecules released by inflammation could sustain the survival of thyroid cells in which
RET/PTC rearrangements randomly occur, thereby allowing the selection of clones that acquire additional genetic lesions and thus become
resistant to oncogene-induced apoptosis.

of the oncogenic fusion protein RET/PTC is critical not only
to thyroid cancer pathogenesis but also in the elicitation of
inflammatory response [103–105].

BRAFV600E mutation is another common genetic alter-
ation in PTC. Muzza et al. found BRAFV600E being more
represented in PTC without concurrent autoimmunity [41].
Furthermore, Kim et al. found that, in Korean patients
with PTC, BRAFV600E mutation is associated with a lower
frequency of background HT [39]. Studies on melanoma
cells have given clues about mechanisms linking BRAF
mutation and immune response. Molecules like interleukin
(IL)-10, VEGF, IL-6, and IL-8 are thought to be induced by
BRAFV600E mutation [106, 107].

The association between solid cell nest (SCN) of the
thyroid and both neoplastic and autoimmune thyroid dis-
eases is the most recent and debated issue. It is currently
accepted that solid cell nests and the so-called mixed
follicles are branchial body remnants [108–116], whose
biological significance remains disputable [108, 109, 117–
119]. Previous studies have described the histological and
immunohistochemical features of SCN [108, 109, 114, 117,
120–124]. Cameselle-Teijeiro et al. suggested that main
cells of solid cell nests (SCNs) might be multipotential
cells that could contribute to histogenesis of C cells and
follicular cells, as well as to some thyroid tumors [119].
Recently, Preto et al. and Reis-Filho et al. reported that
such main cells harbor the minimal properties of a stem
cell phenotype (capacity for both self-renewal, conferred
by telomerase activity, and differentiation to one or more
types of specialized cells, given by the high expression of
p63 and bcl-2) and may thus represent a pool of stem cells
of the adult thyroid [123, 125]. Burstein et al. hypothesized
that SCN p63-positive cells are pluripotent and may stay

undifferentiated or undergo benign squamoid or glandu-
lar maturation, thyroid follicular epithelial differentiation,
and oncogenic change leading to papillary carcinoma or
may trigger an immune reaction, resulting in lymphoid
infiltration and Hashimoto’s thyroiditis. Hence, Hashimoto’s
thyroiditis and papillary carcinoma would be etiologically
linked because both disorders might be initiated by the
same population of pluripotent p63-positive embryonal
stem cell remnants [122]. SCN could represent incompletely
developed thyroid tissue predisposed to autoimmune thyroid
diseases, such as Hashimoto’s thyroiditis, since the epithelia
from the third and the fourth pouches have the ability
to attract lymphocytes [126, 127]. Cameselle-Teijeiro et al.
described an unusual case of SCN hyperplasia coexisting
with two papillary microcarcinomas, a follicular adenoma,
hyperplastic nodules, and a few lymphoid aggregates [128].
A morphologic continuity between SCN and one papillary
thyroid microcarcinoma was reported and the authors found
the same BRAFV600E mutation in both the SCN and the
contiguous papillary thyroid microcarcinoma, suggesting a
histogenetic link between the main cells of SCN and PTC,
raising the possibility that SCN hyperplasia could be a
precursor lesion of PTC [128]. These findings suggest that
SCN may be a key point in the pathogenesis of both CLT and
PTC.

Pathways of immune activation could exert a role in
thyroid cancer and CLT link. Toll-like receptor (TLR)
comprises a family of cell surface receptors involved in the
recognition of pathogen-associated signature molecules that
signal the activation of innate and adaptive immunity [129–
133]. Although the TLR family consists of more than ten
members [133], in humans, TLR3 had been reported to be
restricted primarily to dendritic cells of the immune system
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[134]. Harii et al. showed that TLR3 can be functionally
overexpressed in cultured human thyrocytes by stimuli.
Immunohistochemical showed that TLR3 protein is overex-
pressed in human thyrocytes surrounded by immune cells in
100% of patients diagnosed with Hashimoto’s thyroiditis, but
not in normal or Graves’ thyrocytes, suggesting that TLR3
overexpression can induce an innate immune response in
thyrocytes, which may be important in the pathogenesis of
Hashimoto’s thyroiditis and in immune cell infiltrates [129].
McCall et al. showed that PTC cells basally express TLR3
RNA and that TLR3 signal systems are functional in these
cells. High basal TLR3 levels and TLR3 signals capable of
increasing cytokines and chemokines in PTC cells in vitro
are consistent with the existence of immune cell infiltrates
in vivo, based on related studies suggesting that elevated
TLR3/TLR3 signals in HT are associated with immune cell
infiltrates [129, 135].

Studies on DNA damage and repair have recently yielded
several intriguing connections between tumor biology and
immune response. There is some evidence that ATM may
exert a special role in the activation of the immune response.
ATM is an essential component of cell cycle restriction
point control. Its scope of interaction includes phospho-
rylation and activation of E2F1, p53, and Cdc25 family
members, which inhibit cell cycle progression and activate
DNA repair systems [136, 137]. Gomez et al. showed that
ATM protein expression was significantly downregulated in
immunoresistant human glioma cell clones [138], indicating
a possible immunogenic role of ATM gene. DNA damage
signaling can directly engage the immune system in a
non-cell-type-specific manner. ATM activation by genotoxic
agents or stalled DNA replication induces ligands of the
NKG2D receptor. These are expressed by natural killer cells
and activated CD8+ T cells of the innate immune system
[139]. In addition, authors indicated that polymorphisms
of DNA damage response genes, such as ATM, XRCC1,
TP53, XRCC3, and MTF1, may be potential risk modifiers
of ionizing radiation-induced or sporadic PTCs [140, 141].
Royer et al. reported that hOGG1, encoding human 8-
oxoguanine DNA glycosylase (hOGG1), a key enzyme for
repairing DNA damaged by reactive oxygen species and
loss of heterozygosity, is strongly associated with PTC and
HT but not with benign thyroid, suggesting that thyroid
follicular epithelia accumulate aberrant genetic changes in
long-standing HT, which may represent a precursor lesion of
PTC [142]. In fact, data from our group showed a significant
correlation between ATM expression and concurrent CLT in
DTC (not published data).

4. Prognostic Implication of the Association
between CLT and PTC

It remains a matter of debate whether the association with
a CLT or even an autoimmune disorder could affect the
prognosis of PTC. In fact, a worse prognosis was reported
in a few series [72, 143], whereas most of the studies showed
either a protective effect of thyroid autoimmunity [34, 37, 40,
144] or a similar behavior between cancer with and without
associated thyroiditis [41, 74], as shown in Table 1.

Our group reported a worse outcome in DTC patients
with no evidence of autoimmune activity when compared
with patients who reported an autoimmune thyroid disease
and/or presented positive circulating thyroid autoantibodies,
suggesting that autoimmune activity against the gland may
exert a protective effect on the outcome of differentiated
thyroid carcinoma patients [38].

However, it is unclear whether coexistent CLT represents
a host immune response to DTC [33, 60, 145] or just a
chance occurrence [40, 146, 147]. The favorable clinical
outcome in PTC patients with concurrent autoimmunity
strongly suggests that a thyroid autoimmune response may
enhance or even provide an antitumor attack. CLT is an
autoimmune reaction to thyroid specific antigen, and this
immune response may lead to destruction of thyroid tissue.
Kim et al. [40] postulated that, as PTC cells originating from
follicular cells expressed specific antigen of normal follicular
cells, although in a less degree, coexistent CLT might be
involved in destruction of tumor cells in much the same way
as in advanced CLT. This immune reaction against tumor
might be associated with a better prognosis for PTC patients
with CLT. Studying the glands of autopsies performed in
individuals from two different Brazilian regions (Rio Grande
do Norte versus São Paulo), we found a high incidence of
nonencapsulated nonsclerosing papillary thyroid microcar-
cinomas (PTM) in Rio Grande do Norte, an area of markedly
high incidence of PTC, in sharp contrast with the prevalence
of small sclerosing lesions in São Paulo, where clinical thyroid
cancers are much more infrequent [148]. PTMs could elicit
an inflammatory lymphocytic response, fibrosis, and the
formation of a capsule impeding its further growth [148].
We could speculate that these lesions may never evolve to
clinical cancers, in contrast with the nonencapsulated non-
sclerosing lesions that could represent early stages of clinical
PTC.

Conversely, antithyroid antibodies may be able to recog-
nize these malignant cells and destroy them in the same way
as they destroy normal follicular cells, contributing to the low
rate of clinical progression of these lesions [32, 62, 149].

Muzza et al. [41] found no significant differences regard-
ing either clinical and pathological features or outcomes
between two matched groups of PTC patients with and
without associated autoimmunity. The cases of PTC asso-
ciated with lymphocytic thyroiditis (LT) are much more
often multicentric than the nonassociated form of PTC [35].
Interestingly, those with multifocal tumors had a relatively
high incidence of lymphocytic thyroiditis (62%) in the
remaining thyroid parenchyma during the definitive histo-
logical examination [150, 151]. Kim et al. [42] found that in
metastatic papillary thyroid microcarcinomas, multifocality
and bilaterality were more frequent in PTC with LT than
without LT. Kim et al. [39] found that a background of
Hashimoto’s thyroiditis is more frequent in young patients,
who trend to be patients with good prognosis. However, they
found that the BRAFV600E mutation in PTC is associated
with a low frequency of background Hashimoto’s thyroiditis
and high frequency of lymph-node metastasis, suggesting
a paradoxical role of concurrent autoimmunity of PTC
outcome.
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Some investigators have reported that the presence
of CLT in PTC is associated with better prognosis, low
recurrence rate, and less aggressive disease at presentation
[33, 34, 36, 37, 40, 152, 153]. Despite some controversies,
there is an emerging literature on the protective effect of
CLT in patients with PTC. In a large retrospective study,
Kashima et al. reported a 5% cancer-specific mortality and
a 85% relapse-free 10-year survival rate in patients without
CLT compared with 0–7% mortality and 95% relapse-
free 10-year survival rate with CLT [34]; this finding was
very similar to Loh’s results [37]. It is, however, not clear
whether treatment modality, including extent of surgery, was
comparable between those with and without CLT. Kebebew
et al. reported that the presence of CLT was associated with
an improved prognosis by univariate analysis, but it was
not an independent factor [28], and this result was due
to the fact that most patients with CLT had other good
prognostic factors, such as young age and female gender.
Kim et al. found a greater female preponderance in the
patients with CLT when comparing with those without CLT.
Mean tumor size in the patients with CLT was smaller
than that in patients without CLT. One hundred and fifty-
one (12.3%) patients without CLT had recurrence, whereas
14 (7.1%) patients with CLT had recurrence during the
follow-up period [40]. Singh et al. [30] reported that the
prognostic variables at the time of a diagnosis of papillary
cancer and the approach to management are not altered
by the presence of coexistent Hashimoto’s thyroiditis. In
addition, the rate of surgical complications was not higher in
patients with coexistent Hashimoto’s disease, suggesting that
the presence of coexistent Hashimoto’s thyroiditis does not
affect the diagnostic evaluation or management of papillary
thyroid cancers. However, meta-analysis suggested a positive
correlation between Hashimoto’s disease and disease-free
survival and overall survival [30].

5. Future Perspectives and Conclusion

Cooccurrences of CLT and thyroid gland cancer have
been repeatedly reported [21–28]. A better understanding
about clinical implications of concurrent autoimmunity
to thyroid cancer could lead to new insights of thyroid
cancer immunotherapy. In addition, elucidation of the
molecular mechanisms involved in autoimmune disease
and concurrent cancer could help identify new therapeutic
strategies against thyroid cancer. In fact, within the last
decade, a multitude of different studies and clinical trials
have been performed using immune cell therapies for
different cancers. Cancer immunotherapy using dendritic
cells (DC) or adoptive cytotoxic T-lymphocytes (CTLs) is
very promising because malignant cells can be affected by
the immune system without damaging healthy tissue and
without dangerous side effects. In any case, the identification
of tumor cell-specific antigens is crucial for establishing
clinically effective tumor immunotherapy and monitoring
the induced immune response. Up to now, however, no single
tumor-associated antigen has been proven useful for primary
follicular thyroid carcinomas, although a couple of candi-
dates might have this potential [154]. Only antibody-based

therapies were performed on nonmedullary thyroid cancer,
and there is a broad spectrum to be explored on cellular
therapy against DTC, mainly for those cases with aggressive
manifestation [155–157].

Medullary thyroid cancer (MTC) can give us an example
for immunotherapy against thyroid cancer. The polypeptide
hormone calcitonin has been proposed as tumor antigen
for immunotherapy in MTC. Since then, several vaccination
trials have been performed in murine models and also in
men. In humans, several studies used full-length calcitonin
for priming DCs [158, 159]. Thereafter, a new protocol with
interferon-α generated DCs with direct tumor lysis activity
was performed [160]. After a long-term follow-up of more
than 48 months, two of five MTC patients showed stable
disease with changes in tumor size and tumor marker of
less than 25% [161]. More studies are warranted to apply all
these concepts to poorly differentiated and anaplastic thyroid
cancer.
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