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Abstract
Physicians perform percutaneous therapies in many diagnostic and therapeutic procedures. Image
guidance promises to improve targeting accuracy and broaden the scope of needle interventions. In
this paper, we consider the possibility of automating the guidance of a flexible bevel-tip needle as
it is inserted into human tissue. We build upon a previously proposed nonholonomic kinematic
model to develop a nonlinear observer-based controller. As a first step for control, we show that
flexible needles can be automatically controlled to remain within a planar slice of tissue as they
are inserted by a physician; our approach keeps the physician in the loop to control insertion
speed. In the proposed controller, the distance of the needle tip position from the plane of interest
is used as a feedback signal. Numerical simulations demonstrate the stability and robustness of the
controller in the face of parametric uncertainty. We also present results from pilot physical
experiments with phantom tissue under stereo image guidance.

I. INTRODUCTION
Many diagnostic and therapeutic procedures require accurate needle targeting. In
interventional brachytherapy for cancer treatment, a physician inserts a long thin needle into
human tissue, guides it to the target where the seeds are to be placed, and then delivers the
treatment. In fine needle aspiration biopsy and needle core biopsy, needles are used to
access a designated area to remove a small amount of tissue from a lesion to test whether the
tumor is malignant or benign. These techniques are based on medical images, relying on
online fluoroscopy, ultrasound scanning, or prior MRI/CT scans of the targeted region. In
many cases, a physician’s performance is limited by the amount of “steering” she can obtain
once the needle is inserted. Studies have shown that needle divergence from a desired path
decreases effectiveness in both brachytherapy [11] and biopsy [2]. Efforts to overcome this
have focused on improving imaging modalities for building pre- and intraoperative models,
better path planning, and new needle placement devices.

Another approach to improving accuracy, and expanding the applicability of needle
interventions in general, involves actively steering a needle as it is inserted into tissue. For a
human operator, navigation in 3D under image guidance by manipulating the needle at the
base would require profound spatial reasoning skills and extensive training even for the most
skilled surgeon.

We propose the use of automatic control to enable real-time image-based following of pre-
planned needle trajectories. Recent studies have presented and experimentally validated
“plant models” for manipulating a needle from outside the patient. DiMaio and Salcudean
[4] showed that symmetric tip needles that are stiff relative to the surrounding tissue can be
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steered by moving the base of the needle so as to deflect the tissue as the needle is inserted.
They show that this effect can be modeled as a kinematic control system with a numerically
determined Jacobian matrix that relates base motions to needle-tip motions. Glozman and
Shoham [9] approximate the tissue using springs to compute local deformations for planning
needle steering. Webster et al. consider flexible bevel-tip needles that do not significantly
deflect surrounding tissue as they are inserted [13]. They model such needle insertion as a
nonholonomic, kinematic control system. In both the rigid and flexible cases described
above, the inputs at the base of needle can be treated as the input to a kinematic control
system. While we know of no prior work on automatic image-guided needle steering
control, path planning and obstacle avoidance have been investigated for both rigid [3], [5]
and flexible needles [1], [12].

In the current paper, we design and demonstrate a non-linear image-based observer-
controller pair to stabilize a flexible bevel-tip needle to a desired 2D plane. We base our
plant model on the nonholonomic kinematic model presented in [13]. We assume that the
position of the needle tip can be measured by an imaging modality such as fluoroscopy or
3D ultrasound. This controller can serve as a low-level controller while implementing the
2D path planning algorithms developed in [1]. We believe that this step will also help us
gain significant understanding of the control issues in a more generic path-following case.

II. SYSTEM OVERVIEW AND NEEDLE STEERING MODEL
A flexible bevel-tip needle [7], [8], [13] is one which can be steered by rotation and
insertion at the base of the needle (outside the patient). The asymmetry of the bevel creates a
moment at the needle tip, deflecting the needle and causing it to follow a circular arc. As the
needle is rotated, the bevel tip is reoriented in space, so that subsequent insertion follows an
arc in a new plane. Figure 1 shows a fluoroscope image of a needle being inserted into
bovine muscle. It is clear that the flexible bevel-tip needle curves when inserted into tissue.

We have implemented a setup similar to that described in [13] which enables image-guided
needle placement experiments (see Figure 2). We use transparent gels made from mixtures
of PVC plastics, which have similar mechanical properties to human tissue. The insertion
device has the ability to push the needle forward and to rotate the needle about its shaft and
we treat the insertion and rotation speeds as two inputs to a control system. Two overhead
cameras track the needle as it is inserted through the gel.

As the needle is pushed through tissue, there is a small amount of tissue deformation and the
needle must be steered to avoid bones and other sensitive organs through which it cannot or
should not pass. Researchers have developed simulation-based path planning algorithms that
compute an optimal path in the tissue while compensating for tissue deformations and
avoiding obstacles. Alterovitz et al. currently have planning algorithms to generate desired
needle trajectories within a 2D plane [1]. The output of these 2D planners is a path that can
be followed by alternating between forward insertion of the needle in to the tissue without
any rotation and a 180° rotation of the needle base without any insertion. This planner
assumes that during the whole process, the needle stays in a known (nominal) 2D plane.
However, our numerical tests (see Section V) indicate that small errors of only a few
degrees in needle tip orientation cause the needle to deviate rapidly from the nominal 2D
plane.

Planned trajectories have to be followed despite real world uncertainties such as noisy
sensors, imperfect actuators, and small tissue deformations. In this current work we study
the possibility of controlling the needle to stay in a desired 2D plane. We envision this
controller can work in parallel with the 2D planners previously developed [1]. Whenever
there is a 180° rotation, this controller can be employed to make the needle stay on the
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nominal plane, thus making the planning algorithm work. We believe that this work is a
crucial first step in making inroads towards fully automated needle guidance in human
tissue. Our controller will also allow us to validate the efficacy of the kinematic model
described in [13].

We use the notation and kinematic model developed by Webster et al. [13] for a bevel tip
flexible needle. It is modeled as a generalization of the nonholonomic bicycle model, and
neglects torsional compliance of the needle shaft. This model (Figure 3) is reproduced here
for reader convenience.

In the model, ℓ1, ℓ2 determine the location of bicycle wheels with respect to the needle tip.
Parameter ϕ is the fixed front wheel angle relative to the rear wheel. Frame A is the inertial
world reference frame and frames B and C are attached to the two wheels of the bicycle. In
homogeneous coordinates, the rigid body transformation between frames A and B is given
by the rigid body transformation matrix:

Let υ, ω ∈ ℝ3 denote, respectively, the linear and angular velocities of the needle tip written
relative to frame A. Webster et al. use Lie-group theory to find a “coordinate-free”
differential kinematic model:

(1)

where ˆ and ∨ are the usual isomorphism between (3) and ℝ6, u1 is the insertion speed, u2 is
the rotation speed of the needle, and the control vector fields are given by V1 = [0, 0, 1, κ, 0,
0]T (which corresponds to insertion) and V2 = [0, …, 0, 1]T (which corresponds to needle
rotation). Here, κ = tan ϕ/ℓ1 is the curvature that the needle follows. Note that insertion, u1,
causes the needle to move in the body-frame z-axis direction, but also to rotate (due to the
bevel tip) about the body-frame x-axis. Rotation of the needle shaft, u2, causes pure rotation
of the needle tip about the z-axis.

III. PLANT MODEL
We use Z-Y-X fixed angles as generalized coordinates to parameterize R, the rotation matrix
between frames A and B. Let γ be the roll of the needle, β be the pitch of the needle out of
the plane and α be the yaw of the needle in the plane. Let the position of the origin of frame
B be p = [x, y, z]T ∈ ℝ3 relative to the inertial frame A. We assume that an imaging system
measures the location of the origin of frame B. Note that by driving the origin of frame B to
the y-z plane the needle tip will also be stabilized to the y-z plane.

Using this notation, q = [x, y, z, α, β, γ]T ∈ ⊂ ℝ6 forms a (local) set of generalized
coordinates for the configuration of the needle tip. The coordinates are well defined on

(2)

It is easy to show that the body frame velocity may be expressed as
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and the kinematic model (1) of the bevel tip flexible needle reduces to

(3)

Due to the introduction of generalized coordinates, there are singularities at β = ±π/2 that
cause det J = cos β = 0.

To stabilize the needle to the y-z plane, the states y, z, and α need not be controlled. Also,
these states do not affect the dynamics of the remaining states, x, β, and γ. Let x = [x1, x2,
x3]T = [x, β, γ]T denote the state vector of the “reduced” order system. Tracking the needle
tip with an imaging systems typically enable us to measure only the position of the needle
and not its orientation (without performing any differentiation), which in reduced
coordinates is just the distance from the y-z plane, namely x. This system can be represented
in state space form:

(4)

Note that x = 0 corresponds to the desired equilibrium state of remaining within the y-z
plane to which we wish to stabilize the needle.

We reparameterize the system in terms of insertion distance, l, enabling the physician to
control the insertion speed. In a slight abuse of notation, we write ẋ where we mean dx/dl,
and interpret the insertion distance as “time” for convenience of exposition.1 This results in

(5)

IV. FEEDBACK CONTROL
Using judiciously chosen generalized coordinates, we reduced the plant model to a third
order nonlinear system (5). This system can be feedback linearized (see, e.g. [10]) via a
transformation of state and input coordinates:

1This is equivalent to setting u1 = 1 in (4).
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(6)

and

(7)

The state equations in the feedback linearized form are:

(8)

The system (Af, Bf, Cf) is completely controllable and observable.

A. Estimator Dynamics and Control
Note that even though the change of coordinates from the nonlinear system (5) to the
feedback linearized system (8) is highly nonlinear, the first state – and more importantly the
output – is identical for both systems. In other words the system is completely observable
even though only one of the states (y = z1 = x1) can be measured directly.

Hence, simple control system design techniques from linear system theory can be used to
control this system. A full state Luenberger observer with the following dynamics estimates
all the states from the output:

(9)

The control input to the system is then given by full-state feedback, using the state estimate:

(10)

Because the system is linear and time-invariant, the separability principle allows us to select
the observer gain matrix, L, and proportional gain matrix, K, independently. Since estimates
of the states are used to calculate the control input, u, we use high gain observer feedback.
Note that it may be possible to measure the state x2 too if the needle can be segmented while
it is being inserted into the tissue. The “roll” (x3) cannot be measured even in these cases
due to very small size of the bevel-tip. In such cases, we can use a reduced state Luenberger
observer instead of the full state observer.

Note that one difficulty arises because we must compute u from (7). However, we do not
know x, so we must use ẑ to compute an estimate of x by plugging ẑ into the inverse of (6).
This implies that the estimator dynamics will have an input error. In this paper, we assume
that the error computing u is negligible; determining the robustness of our observer-
controller framework given this discrepancy is work in progress.
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B. Stability Analysis
In the present framework, there are singularities at β = ±π/2 due to the introduction of
generalized coordinates. In addition, the nonlinear transformation from x to z also introduces
singularities at γ = ±π/2. This limitation seems inescapable: global linearization is
mathematically impossible for dynamical systems on the space of rigid transformations.
Fortunately, our feedback linearization scheme works for all needle positions and
orientations except when the needle is orthogonal to the plane to which we are trying to
stabilize. We believe that this scenario is not of clinical significance; such large errors in
orientation should be addressed at the level of planning, not with low-level servo control.

That said, it is important for the above described controller never to take the system – or
even the state estimate! – to these singularities. In this section, we perform Lyapunov
stability analysis to find the region of attraction of the controller.

Let r ∈ ℝ be a number such that . For z ∈ = {z ∈ ℝ3 : ∥z∥ ≤ 2r}, the
coordinate transformation mapping x to z is well-defined and invertible. This implies that β
and γ never reach the singularities at ±π/2. By defining e = z – ẑ as the error in estimation,
the closed-loop feedback system is now given by

The matrices K and L are chosen to make (Af – Bf K) and (Af – LCf) Hurwitz (eigenvalues in
the open left-half plane). Hence for every such K and L, there exist real symmetric positive
definite matrices P and R such that (Af – Bf K)T P+P(Af – Bf K) = –I and (Af – LCf)T R+R(Af
– LCf) = – I, respectively. Consider the sets De = {e ∈ ℝ3 : ∥e∥ ≤ r} and Dz = {z ∈ ℝ3 : ∥z∥
≤ r}. We define a positive definite function V : Dz × De → ℝ as:

Taking the time derivative of the function V, we obtain

Note that  is a real symmetric positive semi-definite matrix. Hence we can
always choose a, b ∈ R and a, b > 0 with b > aλmax(Q). With this choice of a and b, we
observe that V is a Lyapunov function for the complete closed-loop feedback system.

Our goal is to ensure that neither the states, nor their estimates, encounter the singularities
introduced by feedback linearization. Note that

where d = min(λmin(P), λmin(R)). If c > 0 ∈ ℝ is chosen such that c ≤ dr2, then for all (z, e)
∈ S = {(z, e) ∈ Dz × De : V(z, e) ≤ c}, z, ẑ belongs to the set D. If the initial deviation of the
system from the desired plane is such that the initial states are in S, then the proposed
controller will stabilize the needle to the desired plane without reaching any singularities.
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V. EXPERIMENTAL VALIDATION
A. Numerical Simulations

Extensive simulations were conducted in MATLAB to test our proposed controller. We used
a discrete-time implementation of the system and the controller-observer pair, to reflect a
real-world implementation as closely as possible. The plant model was discretized assuming
constant insertion of the needle into the tissue between samples. We assumed measurement
noise of up to ±1 mm with a uniform distribution. This seems clinically reasonable given
that 3D ultrasound imaging can be accurate to within 0.8 mm [6]. The parameter value for
the model has been taken to be 1/κ = 9.7 cm, the smallest radius of curvature value we have
achieved in laboratory trials.

In our simulations, it was observed that if the entry point is too far away from the desired
plane, the estimator states leave the region of attraction. To avoid such singularities, we
performed estimator saturation, i.e., if the estimator states left the region of attraction, they
were pulled back to the closest point in region of attraction in the same direction. For
example, if [ẑ1, ẑ2, ẑ3]T = [0, 1.5, 0]T, then it is pulled to [ẑ1, ẑ2, ẑ3]T = [0, 1, 0]T. Since we
use a proportional gain controller in z-space, this pull-back affects only the magnitude of the
input and not the sign of the input.

We tested our controller over a uniform grid (10 × 10 × 10) of 1000 initial conditions of up
to ±10 mm error in depth from the plane, and up to ±15° initial error in both “pitch” and
“roll” (x2 and x3). In all cases, we seeded the initial condition of the observer to ẑ2 = ẑ3 = 0°,
and for the first state, ẑ1 = z1 + noise of up to 1 mm. Each initial condition was simulated 10
times with noise, for a total of 10,000 simulations. Each insertion was to a length of 30 cm.
We found that:

• 93% of initial conditions converged to within ±6 mm.

• 75% of initial conditions converged to within ±3 mm.

• even when the states did not converge within the ±6 mm tolerance, they did not
“blow up” (i.e. the states did not diverge to infinity).

Next, we tested our controller with initial conditions of up to ±10 mm error in depth from
the plane, and up to ±10° initial error in both “pitch” and “roll” (x2 and x3) and insertion
length of 30 cm. We found that:

• 99% of initial conditions converged to within ±6 mm.

• 80% of initial conditions converged to within ±3 mm.

• even when the states did not converge within the ±6 mm tolerance, they did not
“blow up”.

Using an initial condition of x0 = [10mm, 3°, 5°]T, we tested the controller using an
incorrect value of κ (up to 20% error) and found that the controller always converged. Thus
the system appeared to be insensitive to parametric uncertainty; an analytic proof of this
remains a work in progress.

B. Characteristic Examples
We show a few characteristic examples to give the reader a flavour of the controller. In these
simulations, the model parameter was taken as 1/κ = 9.7 cm. In the first example, initial
conditions have the correct depth but non-zero (and unknown) pitch and roll. Such initial
conditions are typical in physical experiments for testing 2D path planners. An example
simulation with no noise measurement is shown in Figure 4. In the next few examples, we
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navigate the needle to a desired plane in the tissue far away from its initial entry point
(Figures 5, 6, 7). In these plots, the x-axis is the length of needle inserted into the tissue and
the y-axis is the depth (distance) of the needle tip away from the y – z plane. Recall that, at
the goal depth is zero. In all these examples, we can observe that the controller stabilizes the
needle tip to the desired plane, while without any control, the needle tip never converges to
the desired plane.

C. Exploratory Laboratory Experiments
Preliminary experiments were also conducted on the needle steering device described in
Section II. In this apparatus, two stereo cameras track the three-dimensional position of a
needle tip. The gel used in the experiments is about 35mm thick, so that it is sufficiently
transparent for tracking purposes. This phantom tissue has a refractive index of about 1.3.
Refraction is accounted for in our calculations by assuming that tissue’s top surface is
horizontal. Due to this assumption, we notice an error of about 4 mm in position estimates,
much higher than one expects from fluoroscopy and ultrasound (0.8 mm). The needle used
for the experiments had a radius of curvature of 9.7 cm when inserted into the tissue. Figure
8 shows our two best trials to date obtained in laboratory experiments.

Since measurement noise was very high in our present experimental setup, we noticed that
our region of attraction was very small despite carefully tuned controller gains. We believe
that with ultrasound or fluoroscopy the controller will work much better, as can be seen in
the simulations. We are currently working to enhance the visual tracking setup to enable
measurements with lower noise.

VI. DISCUSSION AND FUTURE WORK
We present a nonlinear observer-controller pair that stabilizes a flexible bevel-tip needle to a
desired 2D plane. By reparameterizing the kinematic models as functions of arc length,
rather than time, we allow for human control of insertion speed, and our controller rotates
the needle accordingly. This paradigm will enhance safety by keeping the surgeon in the
loop in a manner that enables him or her to regulate the insertion speed while monitoring the
progress of corrective steering actions.

Our next step is to evaluate the performance of this controller by conducting tests on a
variety of tissues (phantom, ex vivo, and animal cadaver) using ultrasound or fluoro imaging
systems. Due to tissue inhomogeneity, implementing control on real tissue might benefit
from an adaptive version of our controller that would “learn” the model parameters while
stabilizing the needle to a 2D plane. Our ultimate goal is to incorporate automatic needle
steering with pre- and intra-operative planning to greatly enhance the effectiveness of
percutaneous therapies.
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Fig. 1.
This fluoroscope image demonstrates that a 0.6 mm diameter bevel tip nitinol needle can
steer through bovine muscle [13].
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Fig. 2.
The needle steering device inserts the needle into phantom tissue while the needle tip
position is tracked using two overhead cameras.
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Fig. 3.
Kinematic bicycle model: Frame A is the inertial world reference frame. Frames B and C are
attached to the two wheels of the bicycle. This figure is reproduced from [13] with
permission from the authors.
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Fig. 4.
Simulation with an initial deviation of β = 5° and γ = 10° and correct depth. In this
simulation there is no measurement noise. With no control, even when the needle starts on
the desired plane, small deviations in the “pitch” and “roll” cause the needle to diverge the
needle from the desired plane. With control, the needle stabilizes to the desired plane.
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Fig. 5.
Simulation with initial deviation of x1 = 10mm, β = 5° and γ = 10°. In this simulation there is
no measurement noise. With no control, the needle very does not converge to the desired
plane. With control, the needle stabilizes to the desired plane.
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Fig. 6.
With measurement noise: Simulation with insertion speed of 0.5cm/s and a deviation of x1 =
10mm, β = 3° and γ = 5°. Noise in the depth measurement is within ±1mm.
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Fig. 7.
Error in the parameter value: Initial deviation of x1 = 10mm, β = 3° and γ = 5°. Error in the
parameter value is 10%. Noise in the depth measurement taken to be within ±1mm. Notice
that the controller stabilizes the needle tip to the desired location even when there is an error
in the model parameter, κ.
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Fig. 8.
Experimental runs with needle inserted at the right depth: We cannot accurately determine
the initial values of other two states- x2 and x3 during the initial insertion. With the
controller the distance of the needle tip from the desired 2D plane is within the measurement
noise levels.
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