
Development of an Automatic Classification System for Differentiation
of Obstructive Lung Disease using HRCT

Namkug Kim,1,2 Joon Beom Seo,1 Youngjoo Lee,2 June Goo Lee,3 Song Soo Kim,4 and Suk-Ho Kang2

The motivation is to introduce new shape features and
optimize the classifier to improve performance of differ-
entiating obstructive lung diseases, based on high-
resolution computerized tomography (HRCT) images.
Two hundred sixty-five HRCT images from 82 subjects
were selected. On each image, two experienced radiol-
ogists selected regions of interest (ROIs) representing
area of severe centrilobular emphysema, mild centrilob-
ular emphysema, bronchiolitis obliterans, or normal lung.
Besides 13 textural features, additional 11 shape fea-
tures were employed to evaluate the contribution of
shape features. To optimize the system, various ROI size
(16×16, 32×32, and 64×64 pixels) and other classifier
parameters were tested. For automated classification,
the Bayesian classifier and support vector machine (SVM)
were implemented. To assess cross-validation of the
system, a five-folding method was used. In the compar-
ison of methods employing only the textural features,
adding shape features yielded the significant improve-
ment of overall sensitivity (7.3%, 6.1%, and 4.1% in the
Bayesian and 9.1%, 7.5%, and 6.4% in the SVM, in the
ROI size 16×16, 32×32, 64×64 pixels, respectively; t
test, PG0.01). After feature selection, most of cluster
shape features were survived ,and the feature selected
set shows better performance of the overall sensitivity
(93.5±1.0% in the SVM in the ROI size 64×64 pixels; t
test, PG0.01). Adding shape features to conventional
texture features is much useful to improve classification
performance of obstructive lung diseases in both Bayes-
ian and SVM classifiers. In addition, the shape features
contribute more to overall sensitivity in smaller ROI.
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INTRODUCTION

C haracterizing medical images including local
texture and shape analysis of lung parenchy-

ma is potentially useful for understanding various

lung diseases, as abnormalities in texture and shape
can be related to disease pathology. High-resolution
computerized tomography (HRCT) can afford
accurate images for the detection of various
obstructive lung diseases, including centrilobular
emphysema, panlobular emphysema, and bronchio-
litis obliterans. Features on the thin-section HRCT
images, however, can be subtle, particularly in the
early stages of disease, and diagnosis is subject to
interobserver variation. The main characteristics of
the images used for the detection of obstructive
lung diseases are the presence of areas of abnor-
mally low attenuation in the lung parenchyma,
which, in the case of emphysematous destruction of
the lung parenchyma, can be detected automatically
by means of attenuation thresholding. Areas of
decreased parenchymal attenuation, however, are a
feature of other obstructive lung diseases.1
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In the past study, there have been several studies
for developing computer-aided diagnosis (CAD) in
the differentiation of obstructive lung disease as a
second opinion for radiologists. The selection of an
appropriate classification scheme has been shown to
be important for improving performance based on
the characteristics of the data set.2,3 Chabat, et al.,
developed a classification system of obstructive
lung disease using texture features of lung paren-
chyma with abnormally low attenuation area (LAA)
and Bayesian classifier.4 Xu, et al., also developed a
classification system of emphysema using 3D
texture analysis and a Bayesian classifier.5 There
are other trials of applying the shape features to
disease differentiation. Rangayyan used the bound-
ary and shape analysis for classification of mam-
mographic masses.6 Yamagishi studied LAA shape
relationship between emphysematous change and
relatively large bronchovascular bundle forming the
margin of secondary pulmonary lobule.7

The previous studies showed the possibility of
automatic classification of differentiation of ob-
structive lung diseases. However, the studies were
not performed for the optimization of classifier. In
this study, new shape features from the clinical
knowledge were proposed. Shape information of
LAA in the lung image may be able to provide
better information than texture information. To
optimize the classifier, region of interest (ROI)
size, binning size, and shape analysis parameters
need to be tested. In addition, various classifiers,
its parameters and feature selection methods need
to be tested and compared. The detailed analysis
allows us to compare the results in the terms of not
only their accuracy, but also other properties,
including class-specific sensitivity, robustness
from ROI (region of interest) size, which are
important to the application of machine classifiers
in CAD.

MATERIALS AND METHODS

Image Selection and Segmentation

The images were selected from HRCT (Sensa-
tion 16, Siemens, Erlangen, Germany) obtained in
17 healthy subjects (NL, n=67), 26 patients with
bronchiolitis obliterans (BO, n=70), 28 patients
with mild centrilobular emphysema (CLE, n=65),
and 21 patients with panlobular emphysema or

severe centrilobular emphysema (PLE, n=63).
Ethical approval was obtained from the local
institutional review board of our institution and
written informed consent was waived. Images
were acquired with 0.75 mm collimation and a
sharp kernel (B70f) by using the 16-detector row
CT. The selected data were stored in Digital Imag-
ing and COmmunications in Medicine (DICOM)
format.
The visual characteristics for each of the four

classes of images are illustrated in Figure 1
Panlobular or centrilobular emphysema produces
small focal, approximately circular, areas of lung
destruction that superficially resemble cysts (i.e.,
air-containing spaces sometimes with a thin defin-
able wall), as shown in a case of severe centri-
lobular emphysema in Figure 1a. The conspicuity
of the pattern is dependent on the severity of the
disease. For a mild case, as shown in Figure 1b,
the characteristic texture appearance is visible but
less obvious. The air trapping and underperfusion
caused by bronchiolitis obliterans results in homo-
geneously hypoattenuated lung, as shown in
Figure 1c. For comparison, Figure 1-D shows the
CT appearance of normal lung parenchyma.
For each image, two thoracic radiologists with

10 years experience selected three sizes of con-
centric rectangular ROI (16×16, 32×32, and 64×
64 pixels), which represent a typical area of lung
parenchyma of each of three diseases or normal
lung tissue with agreement. In this study, this
classification was regarded as a gold standard.
Areas between −400 and −1,024 HU were seg-
mented for clipping major pulmonary vessels.

Feature Definition

From each ROI, texture and shape features were
derived in the form of an N-dimensional vector v.
The vector v contained the values of 13 texture
features and 11 shape features chosen to describe
the ROI characteristics. All features are listed in
Table 1.

Texture Features

As the typical texture features, histogram fea-
tures (mean, SD, skewness, and kurtosis), gradient
features (mean and S.D.), run length encoding
(short and long primitive emphasis), and co-
occurrence matrix (angular second moment, con-
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trast, correlation, entropy, and inverse difference
momentum) were employed.4

The features that described the spatial depen-
dence of gray-scale distributions were derived
from the set of co-occurrence matrices. Since
histogram and co-occurrence matrix-based features
do not represent the length of the gray level
primitives, acquisition-length parameters were also
computed at each ROI to provide another set of
features to be included in the feature vector v.

Shape Features

Textural features do not capture effectively the
characteristics of a specific type of shape in the CT
image. In the case of obstructive lung diseases, LAA,
segmented by thresholding below −950 HU, is
regarded as representing the disease. To reduce the
noise of HRCT reconstructed by B70f kernel, median
filter of 3×3 kernel size was applied three times. By
thresholding −950 HU, all LAA objects were recog-
nized and labeled. For the shape descriptors, the size of
LAA (mean and SD), number of emphysema clusters,
circularity, (1) circularity SD, aspect ratio, (2) and
aspect ratio SD of the objects at each ROI were

Table 1. Summary of 13 Textural Features and 11 Shape
Features that Represent Each ROI

Class Descriptor Dimension

Texture
features

Histogram

Density mean
Density SD
Skewness
Kurtosis

Gradient
Gradient mean
Gradient SD

Run-length matrix
Short primitive emphasis
Lung primitive emphasis

Co-occurrence matrix

Angular second moment
Contrast
Correlation
Inverse difference moment
Entropy

Shape
features

Top-hat transform

White top-hat mean
White top-hat SD
Black top-hat mean

Black top-hat S.D.

Cluster

Number of cluster
Area mean
Area SD
Circularity mean
Circularity SD
Aspect ratio mean
Aspect ratio SD

Fig 1. Axial thin-section CT scans of the chest (window level, −800 HU; width, 1,000 HU). On each image, the rectangles highlight
three regions of interest (ROIs) with 16×16, 32×32, and 64×64 sizes that are typical of a particular condition. a Panlobular or severe
centrilobular emphysema (PLE), b Mild centrilobular emphysema (CLE), c Bronchiolitis obliterans (BO), d normal lung parenchyma (NL). A
typical normal lung region was selected in (d).
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included. The circularity and aspect ratio of cluster
were computed as follows8:

Circularity ¼ 4��Area

Circumference2
ð1Þ

Aspect ratio ¼ minimum diameter

maximum diameter
ð2Þ

In addition, mean and SD of objects of
subtraction image from white and black top-hat
transformation result to original image were used.
The white and black top-hat transform, which
detects the top/bottom region of image density
distribution, was employed. The image was
rescaled using −748 HU upper threshold and
−1,024 HU lower threshold. White top-hat trans-
form detects the top white region with the given
size of structure element by gray scale morpho-
logical operators of erosion and dilatation9. The

gray scale erosion and dilatation operator cut off
the top region. The subtraction of the resulting
image from the original image finally produces the
white top-hat transformed image. The mean and
SD of segmented objects were calculated from the
top-hat transformed images at each ROI. Black
top-hat transform uses the inversion of the image
and applies the procedure which is the same to the
white top-hat transform. Figure 2 shows the
original image and white and block top-hat trans-
formed images.
In summary, each ROI was characterized by the

24-dimensional vector v, which contained the
feature values (Table 1).

Machine Learning Method

As a subfield of artificial intelligence, machine
learning is concerned with the design and devel-
opment of algorithms and techniques that allow
computers to learn. In general, to avoid over-
estimating the classification accuracy, the gold
standard data is split into exclusive training and
testing data sets. In this study, the machine
learning method trained the training data set of
the gold standard and generated its own model. By
using this model, the classifier classified the
testing data set and determined its own accuracy
based on the gold standard.

Feature Selection Method

It is useful to identify the subset of input
variables that contribute most in the classification.
The elimination of irrelevant input features that
introduce noise often improves classification per-
formance. Besides better overall sensitivity, a

Fig 2. Original HRCT image and top-hat transformed HRCT
images. a original HRCT image, b white top-hat transformed
image, c black top-hat transformed image.

Table 2. User Chosen Parameters for SVM

Feature ROI Gamma Cost

Texture feature set

16 0.09 70
32 0.06 70
64 0.06 100

Texture + shape feature set

16 0.03 60
32 0.03 40
64 0.04 40

Refined feature set

16 0.12 50
32 0.12 70
64 0.15 20
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smaller number of features reduces the time spent,
especially for the real-time classification. Exhaus-
tive search over all possible combinations of input
variables to identify the optimal subset is known as
NP-complete problem.10 In the study, five differ-
ent types of feature selection methods which rank

the variables and identify the near-optimal subset
were tested and compared based on the classifica-
tion performance and clinical applicability: se-
quential forward selection (SFS), sequential
backward selection (SBS), plus l-take away r
(PTA(l,r)), sequential floating forward selection
(SFFS), sequential floating backward selection
(SFBS).11 For example, in SFS, it starts with all
input variables and sequentially deletes the next
variable that mostly decreases the classification
performance at that step. This greedy feature
selection method may not find the optimal feature
set, but nonetheless, their time complexity is only
linear in the number of features compared with the
exponential growth for the exhaustive search.

Experimental Settings

For the optimization of classifier, various
experiments have been conducted. At first, various
optimal binning sizes were evaluated. For valida-
tion of usefulness of new shape analysis, the only
13 texture features and the 11 shape features with
the texture features were separately employed to
build a classifier. For validation of the usefulness
of the feature selection method, the full and the
refined feature sets from the full feature set
obtained by the various feature selection methods
was also evaluated and compared. To evaluate
which classifier shows better performance on this
problem, Bayesian classifier and support vector
machine (SVM) were implemented and compared.

Optimal Binning

The bin size could influence on the performance
of classifier.12 To find optimal binning, variable
linear binning sizes (Q, bin size: 16, 32, 64, 128,
144, 196, and 256) of run length encoding and co-
occurrence matrix were tested. The overall accu-
racy of Bayesian classifier was used as a metric to
find an optimal combination of all ROI size, and
binning sizes for run length encoding and co-
occurrence matrix. Every following experimental
test was performed with experimental optimal
conditions, except the ROI size. In the case of
ROI size, in general, a smaller ROI size is
preferred, because the smaller ROI is regarded as
representing better locality of lung parenchyma
and showing better classification results, overlaid
on lung HRCT images.

Fig 3. Experimental result of overall accuracy of various
binning at each ROI size. a in case of 16×16 ROI size, b in case
of 32×32 ROI size, c in case of 64×64 ROI size.
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Cross-Validation

To check cross-validity of input data, a fivefold
cross-validation scheme to evaluate the classifiers
was employed. The five-folding cross-validation was
performed as follows: the data set of each class
was divided uniformly and randomly into five
exclusive stratified subsets. Four subsets from the
all subsets in turn, which constructed each fold at a
time, were chosen. In this way, five folds, of which
distributions are similar to original data, were
obtained. Each fold was in turn held aside as the
test set, when the other exclusive four subsets were
used to train the classifiers. The average of the five
folds cross validation results was employed for
overall result of each classification method. To
facilitate training, it is necessary to normalize the
distribution of features to have zero mean and
unit variance. The distribution of feature which is
normal for the Bayesian classifier was assumed.

Machine Classifiers Implementation and Setting

The Bayesian classifier was implemented using
MATLAB (The MathWorks, Natick, MA,
USA).13–15 To validate the performance, the
Bayesian classifier was tested twenty times repeat-
edly, since results may have a variance with
randomly chosen data set. In the SVM, the
classifier using the MATLAB OSUSVM Toolbox
was employed16. Note that the SVM is associated
with a few model parameters that need to be fine-
tuned during training for best performance17–23.
The testing on which type of kernel functions (i.e.,
radial basis function versus polynomial) and what
its associated parameters (i.e., the kernel width σ
for radial basis function and the order p for the
polynomial) are better was performed; in addition, it
also needs to determine the regularization parameter
C. The kernel type used in this study is the radial
basis function. Various gamma values and costs

Table 3. Overall Accuracy of Every Binning Size (Q) of 64×64 ROI Size

RLE\GLCM 16 32 64 128 160 256 384

16 0.8462 0.8576 0.8649 0.8765 0.8765 0.8801 0.8760
32 0.8574 0.8617 0.8648 0.8723 0.8647 0.8615 0.8611
64 0.8535 0.8649 0.8459 0.8646 0.8645 0.8498 0.8497
128 0.8574 0.8570 0.8535 0.8606 0.8797 0.8417 0.8457
160 0.8497 0.8531 0.8645 0.8723 0.8643 0.8494 0.8417
256 0.8503 0.8608 0.8534 0.8684 0.8647 0.8421 0.8534
384 0.8310 0.8611 0.8496 0.8570 0.8377 0.8306 0.8346

Table 4. Accuracy, Number of Iteration at Maximum Accuracy, and Total Iteration Number
at each Feature Selection Method and ROI Size

Parameter SFS SBS PTA(3,2) SFFS SFBS

ROI 16 Accuracy 85.0 83.2 84.6
Iteration num at Max 5 51 17
Total iteration 55 54 265

32 Accuracy 80.5 84.0
Iteration num at Max 5 30
Total iteration 55 265

64 Accuracy 81.7 84.9 85.7 85.8 82.9
Iteration num at Max 21 46 39 36 123
Total iteration 55 54 265 113 150

SFS Sequential forward selection, SBS sequential backward selection, PTA(l,r) plus l-take away r, SFFS sequential floating forward
selection, SFBS sequential floating backward selection
All study was performed using the SVM classifier.

CLASSIFICATION FOR DIFFERENTIATION OF OBSTRUCTIVE LUNG DISEASE 141



were tested to optimize the performance of SVM for
each ROI size in the range of 0.01~10 and
10~1,000 by a unit of 0.01 and 10, respectively.
All user-chosen parameters were listed in Table 2.

Statistical Analysis

For every case, training and testing were
conducted 20 times, and each case was performed
five times for fivefold cross-validation. For com-
parison of time complexity of classifiers, testing
time was measured in a unit of an experiment
which consists of testing 256 ROIs with 100
repetitions. All the testing results were statistically
compared (t test; significant alpha, 0.01) except for
normality testing (significant alpha, 0.05). All the
statistical analysis was performed in this study by
Statistica™ 7.0 (StatSoft, Tulsa, OK, USA).

EXPERIMENT RESULTS

ROI and Optimal Binning Size

Figure 3 shows the experimental result of
overall accuracy of various binning with each

ROI size. The overall accuracy was improved in
proportion to increase of ROI, regardless of
classifier and feature set (t test, pG0.01). This
seems so natural since large ROI may contain
more information.
Table 3 shows the overall accuracy of every

binning size (Q) at 64×64 ROI size. The tested
optimal parameters resulted in 64×64 pixels of the
ROI size, 16 of run length encoding and 256 of co-
occurrence matrix, respectively (t test, pG0.01).

Feature Selection Methods

These five feature selection methods were
performed. Based on the experimental results,
characteristics of each feature selection method
were evaluated in terms of classification accuracy,
robustness, and number of iteration (Table 4).
There were no significant accuracy differences

among the algorithms, but there are wide differ-
ences of classifier accuracy pattern and number of
iteration at maximum accuracy. The accuracy at
the SFS method shows fast increase and fast
decrease of classifier accuracy. PTA shows slower
increase and mild decease. SFFS shows fast
increase and a plateau.

Table 5. Overall Sensitivity, Class-Specific Sensitivity, and Specificity Based on the Texture Features

Classifier ROI Testing Time(s) Overall Sensitivity (%) S.D. (%)

Sensitivity (%) Specificity (%)

PLE CLE BO NL PLE CLE BO NL

Bayesian 16 7.04 65.9 1.5 88.3 39.3 56.1 80.8 96.9 85.2 92.1 80.3
32 7.01 76.1 1.2 93.7 69.7 62.1 82.0 97.9 87.6 92.9 90.2
64 7.23 85.3 0.9 97.5 79.4 78.1 86.6 98.7 92.5 94.3 94.7

SVM 16 0.30 66.3 1.4 86.6 46.8 58.9 73.7 94.7 83.3 91.9 85.4
32 0.33 77.3 1.3 96.1 70.4 65.4 79.0 97.5 88.7 92.2 91.9
64 0.20 85.8 1.2 95.9 78.5 76.9 92.6 98.0 91.6 95.6 96.0

PLE Panlobular or severe centrilobular emphysema, CLE mild centrilobular emphysema, BO bronchiolitis obliterans, NL normal lung
parenchyma.

Table 6. Overall Sensitivity, Class-Specific Sensitivity and Specificity Based on the Full Feature Set

Classifier ROI Testing time(s) Overall sensitivity (%) SD (%)

Sensitivity (%) Specificity (%)

PLE CLE BO NL PLE CLE BO NL

Bayesian 16 11.20 73.2 1.7 91.3 76.7 64.8 61.4 99.1 84.7 86.4 93.8
32 11.82 82.2 1.2 97.0 87.3 73.9 71.9 99.1 92.9 89.4 94.7
64 11.57 89.4 1.0 99.3 92.9 83.9 82.4 98.8 95.8 93.1 98.2

SVM 16 0.33 75.4 1.6 92.4 74.4 61.2 75.3 96.7 90.2 89.8 91.0
32 0.28 84.8 1.3 96.7 83.1 78.1 82.3 98.2 94.6 91.0 96.2
64 0.32 92.2 1.1 99.0 92.8 83.9 93.8 98.6 96.5 97.4 97.3

PLE Panlobular or severe centrilobular emphysema, CLE mild centrilobular emphysema, BO bronchiolitis obliterans, NL normal lung
parenchyma
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Classification Using the Texture Features

Classification experiment with 13 texture fea-
tures was performed at first to get a base classifi-
cation performance for evaluation of the effect of
adding shape features to the classifier. Testing time,
overall sensitivity, SD of overall sensitivity, sensi-
tivity, and specificity for each of the four classes are
given in Table 5. The best performance was
achieved by the SVM with 64×64 pixels of ROI.
Two classifiers showed similar results; ROI size
had a significant effect on overall sensitivity. As
ROI increases, the overall sensitivity becomes
higher (t test, pG0.01). Among four classes, the
CLE was most hard to classify correctly in every
ROI size, while PLE was easy to classify compar-
atively. In the term of testing time, SVM was quite
fast (took less than 0.4 s to test all sample 20
times). The Bayesian, however, consumed more
than 7.0 s. Testing time was measured in a unit of
an experiment which consists of testing 256 ROIs
with 100 repetitions.

Classification Using the Texture and Shape
Features

Eleven shape features in existing 13 texture
features were added to the feature set, and
classifiers ware tested. Testing time, overall sensi-
tivity, SD of overall sensitivity, sensitivity, and
specificity for each of the four classes are given in
Table 6. In a comparison to the result using only
texture feature, adding the shape features yielded
better overall sensitivity regardless of ROI and

classifier (t test, pG0.01). The following have the
same result as the texture feature experiment: the
overall sensitivity was improved in proportion to
the increase of ROI size in every classifier (t test,
pG0.01). Comparing the sensitivity of four classes,
CLE had the worst sensitivity in every case, while
PLE had the best one (t test, pG0.01). The
differences in class-specific sensitivity in the
Bayesian classifier, however, are pretty larger than
the SVM classifier. The class-specific sensitivity
for each classifier is displayed in Figures 4 and 5.
In the Bayesian classifier, testing time was in-
creased up to at least 11.2 s, while it was not
increased in the SVM classifier compared to using
only texture feature.

Classification Using the Refined Features
by Feature Selection Method

Finally, an experiment using refined feature set
from full feature set by the forward elimination
feature selection method was performed. The
number of refined features and eliminated features
are listed in Table 7. Many shape features survived
after the feature selection. In comparison to the
experiment using all texture and shape feature, the
experiment using refined feature set yielded better
overall sensitivity regardless of ROI and the type
of classifiers, especially in the SVM classifier (t
test, pG0.01; Table 8). The SVM classifier yielded
the best overall sensitivity 93.5% with 64×64
pixels of ROI size (t test, pG0.01).

Fig 4. Sensitivity over feature set (SVM classifier, 32×32 ROI
size).

Fig 5. Specificity over feature set (SVM classifier, 32×32 ROI
size).
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Contribution of Shape Features

In the experiments, the performances of machine
classifiers with the three different feature sets were
tested to evaluate the usefulness of shape features for
differentiation of obstructive lung diseases. In a
comparison to employing only the texture feature
set, the full feature set yielded higher overall
sensitivity 7.3%, 6.1%, 4.1% in the Bayesian
classifier and 9.1%, 7.5%, 6.4% in the SVM
classifier in the order of ROI size 16×16, 32×32,
64×64 pixels, respectively (t test, pG0.01).
Improvements in overall sensitivity of each ROI
size are shown in Figure 6. According to these
experimental results, the composition of shape and
texture features is useful to improve classification
accuracy of obstructive lung diseases in both
classifiers.
The improvement was largely due to the

improvement of sensitivity of CLE and BO. For
example, employing shape features yielded 20.3%
for CLE and 18.7% for BO higher class-specific
sensitivity than those of employing only texture
features (SVM, 32×32 pixels of ROI). Improve-
ments on class-specific sensitivity are displayed in
Figure 7 for the SVM classifier.

DISCUSSION

Effect of ROI Size

Employing shape features improved overall
sensitivity regardless of ROI size and classifier,
and the improvements were larger in the smaller
ROI size. The improvement of overall sensitivity
at each ROI size is displayed in Figure 8.
It is interesting that the shape analysis improved

the overall sensitivity at smaller ROI. In clinical
application, smaller ROI may be preferred because
smaller ROI may represent local property better.
Therefore, for the whole lung classification, the
shape analysis is regarded as more clinically useful
in the terms of ROI size as well as overall
sensitivity.

Feature Selection Methods

In Figure 3, SFFS shows fast increase and
lasting plateau of accuracy performance, which
means that the robustness of SFFS is regarded as
better than other methods. In addition, there is a
possibility to apply early termination with high
accuracy with relatively small number of iteration.

Table 7. The Number of Refined Feature and Added Features

Classifier ROI Number of refined feature Added featuresa (shape features)

Bayesian 16 13 (6) 7, 11, 21, 23, 2, 1, 12, 18, 22, 4, 8, 16, 20 (16, 18, 20, 21, 22, 23)

32 19 (8)
7, 11, 3, 17, 21, 16, 23, 4, 1, 18, 14, 20, 22, 9, 6, 5, 13, 2, 24 (13,
16, 17, 18, 20, 21, 22, 24)

64 16 (8) 7, 11, 21, 18, 15, 14, 16, 1, 3, 22, 23, 4, 13, 6, 12, 9 (13, 14, 15, 16, 18, 21, 22, 23)
SVM 16 14 (8) 7, 13, 20, 24, 5, 2, 19, 16, 1, 6, 23, 21, 11, 17 (13, 16, 17, 19, 20, 21, 23, 24)

32 17 (9)
8, 9, 7, 11, 21, 15, 23, 16, 18, 5, 22, 17, 1, 14, 3, 24, 2 (14, 15, 16,
17, 18, 21, 22, 23, 24)

64 15 (5) 8, 12, 4, 9, 8, 11, 21, 20, 7, 18, 22, 5, 1, 16, 3 (16, 18, 20, 21, 22)

aFeatures were listed in order of selected features by the forward feature selection method

Table 8. Overall Sensitivity, Class-Specific Sensitivity, and Specificity Basis on the Refined Feature Set

Classifier ROI Testing Time(s) Overall Sensitivity (%) SD (%)

Sensitivity (%) Specificity (%)

PLE CLE BO NL PLE CLE BO NL

Bayesian 16 6.39 76.9 1.4 93.7 70.2 59.1 85.2 98.4 90.4 92.4 87.9
32 8.70 83.8 1.2 97.0 81.9 71.7 85.3 99.3 93.6 91.6 93.8
64 7.95 90.3 0.8 100.0 89.8 83.2 88.7 98.,8 97.2 94.9 96.0

SVM 16 0.35 77.9 1.4 95.5 73.4 64.5 78.8 97.6 91.8 92.6 88.8
32 0.18 85.9 1.0 98.3 82.2 78.8 84.7 98.6 95.5 91.4 95.9
64 0.17 93.5 1.0 99.8 92.3 88.3 93.8 98.9 96.4 98.2 97.9

PLE Panlobular or severe centrilobular emphysema, CLE mild centrilobular emphysema, BO bronchiolitis obliterans, NL normal lung
parenchyma
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Considering the number of iteration, SBS needs
much more iterations than SFS (Table 4). This
means there will be a critical problem, if there are
many features.

Gold Standard Acquisition

The reliability of subjective visual assessment
for this classification is open to question. Other
methods, however, such as pulmonary function
tests, do not reliably distinguish between the
various pathologic causes of obstructive lung
diseases. Biopsy is not performed routinely in
patients with obstructive pulmonary disease, either
because patients have such severe disease that
surgery is precluded or because they have mild
disease that does not warrant an invasive proce-
dure. Furthermore, there are regional differences in
the predominant disease; in patients with emphy-
sema, areas of mild and severe disease may coexist
in different parts of the lungs. Despite its limi-
tations, CT evaluation by two experienced radiol-
ogists is a reasonable standard of reference. All of
tested classifiers based on the texture and shape
feature set achieved high sensitivity and specific-
ity. Irrespective of the diagnostic reliability of
subjective assessment, both classifiers with the
texture and shape feature set classify ROI in a way
that is consistent with that of the experienced
observer who provided the training data; neverthe-
less, the ability of the classifier to successfully
match image chosen by one observer falls short of
fully competent diagnostic performance.

Contingency Matrix

The largest number of cases of misclassification
resulted from confusion between cases of NL and
BO in this study. The confusion between cases of
CLE and BO also occurred frequently. This is not
surprising, given the similar visual appearances at
CT for these two conditions. On the other hand,
misclassification of the PLE rarely occurs in all
classifiers. This is reasonable because the image of
PLE has a prominent characteristic in comparison
to other diseases. An example contingency matrix
is given in Table 9. The bold numbers in Table 9
represent major misclassifications between the BO
and CLE. Nevertheless those confusions between
diseases, the general discriminating values of two
classifier bases on the texture and shape feature set
were demonstrated, with higher overall sensitivity
and specificity than the classifier basis on the only
texture feature.

Normal Distribution Assumption

The assumption that the features in each class
are distributed normally can also be questioned. In
the normality test, 1~3 of the distribution of
features in all ROI size was not normal. The
significance level was 0.05, and the rejection
region was χ295.991. It could affect the perfor-
mance of the naïve Bayesian and Bayesian
classifier which relies on the assumption regarding
the underlying class-specific probability distribu-
tion. However, it has been demonstrated that
Bayesian classifiers with such a probabilistic

Fig 6. Improvement of overall sensitivity with adding shape
features to texture features based on the ROI size.

Fig 7. Improvement of class specific sensitivity with adding
shape features to texture features based on the ROI size in the
SVM classifier.
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model were robust, even when the assumption on
class-specific probabilities being normally distrib-
uted was considerably violated24. Furthermore, the
number of features with a probability distribution
that is not normal was small. Hence, this assump-
tion is reasonable and could not affect the
performance of those two classifiers.

Training and Testing Time

Training time could be an issue if the classifier
is required to be updated dynamically. In this case,
the Bayesian and SVM classifiers would be
appropriate. Since it is enough to update a
classifier once weekly or monthly in the real

Fig 8. Application of the classifier to differentiation of lung parenchyma. At every pixel, the semi-transparent color was coded by the
classification result. (a) CT scan obtained in a patient with PLE. Most of the parenchyma was labeled as severe emphysema. (b) CT scan
obtained in a patient with signs of CLE. Most of the classified samples were labeled as CLE. Some areas of the lung with homogeneously
decreased attenuation and large air cysts were classified as BO or PLE. (c) CT scan in a patient with BO. Most of the parenchyma was
labeled as BO, whereas some areas were classified as normal lung parenchyma. Areas of the lung with increased attenuation adjacent to
areas of decreased attenuation allow the classifier to identify the texture of CLE in the vicinity of the major bronchi. (d) CT scan obtained
in a healthy subject (window level, −850 HU; width, 400 HU) with automated classification. Samples classified confidently are labeled
as normal. For color figures, please go to Springerlink to view the online version.
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world, training time is not so important. Testing,
however, is conducted repeatedly on new samples.
Hence, testing time is critical for clinical applica-
tions such as a color disease overlay program. For
example, the system implemented in Figure 8
needs about 10,000 iterations of pixel-by-pixel
testing to completely color mask a CT image. We
therefore measured the time needed to test 265
samples. We found that the testing time of the
SVM classifier did not exceed 0.02 s in any case,
whereas the Bayesian method spent about 3.35 s.
The SVM classifier would take less than 0.4 s to
classify all samples, whereas the Bayesian classi-
fiers would take about 2 s (Tables 6 and 8). The
SVM methods are regarded as acceptable for
clinical applications in terms of testing speed.

CONCLUSIONS

We have demonstrated that not only texture
features, but also shape features are useful in
constructing classifier of several diseases that cause
decreased attenuation of the lung parenchyma.
Adding shape features, the Bayesian and SVM
classifier achieved higher overall sensitivity than
those based on the only texture features in every
ROI size. The overall accuracy was significantly
improved in proportion to increase in ROI, regard-
less of classifier and feature set. In addition, the
tested optimal parameters resulted in 64×64 pixels
of the ROI size, 16 of run length encoding, and 256
of co-occurrence matrix, respectively. Based on
these optimal parameters, the best overall sensitivity
of 93.5% was achieved by the SVM classifier based
on the optimized feature set. The shape features
contribute more to the overall accuracy in the case
of smaller ROI with the SVM classifier, which is
good property on the clinical purpose.

The software used for this work is not available
as open source, but the data set is available
through Springer as supplemental data.
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