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This paper presents an adaptive attention window (AAW)-
based microscopic cell nuclei segmentation method. For
semantic AAW detection, a luminance map is used to
create an initial attention window, which is then reduced
close to the size of the real region of interest (ROI) using a
quad-tree. The purpose of the AAW is to facilitate
background removal and reduce the ROl segmentation
processing time. Region segmentation is performed within
the AAW, followed by region clustering and removal to
produce segmentation of only ROIls. Experimental results
demonstrate that the proposed method can efficiently
segment one or more ROIs and produce similar segmenta-
tion results to human perception. In future work, the
proposed method will be used for supporting a region-
based medical image retrieval system that can generate a
combined feature vector of segmented ROls based on
extraction and patient data.
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INTRODUCTION

ith the increase of genome projects that have

decoded the genomes of several species,
created genetic maps, and analyzed the order of the
chromosome maps, various medical assistance sys-
tems such as the picture archiving communication
system have been introduced that integrate informa-
tion communication, computer networking, database
management, digital imaging, and a user interface.
These systems manage digital images acquired using
various imaging modalities such as CT, X-ray, MRI,
and PET. As such, a lot of research has recently been
focused on efficient medical image retrieval, allow-
ing target images to be found in a huge database.
Traditionally, medical images have been indexed
and retrieved using just text. Yet, traditional text-
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based retrieval can produce irrecoverable mis-
matches according to the subjectivity and viewpoint
of the writer. Furthermore, this kind of retrieval is
costly and time consuming.

Thus, to overcome these problems, various types
of content-based image retrieval (CBIR)'™ have
been proposed over the last few decades. Unlike
text-based retrieval, CBIR indexes images using
color, texture, shape, and sound, which are then
used for retrieval instead of keywords. Ideally, the
goal is to create an interactive system for retrieving
images that is semantically related to the user’s
query from the database. More recent research has
also focused on region-based retrieval™® that allows
the user to specify a particular region or object in an
image and request the system to retrieve similar
images containing similar regions.

Most existing region-based image retrieval sys-
tems rely on image segmentation and require
extraction of the region of interest (ROI), which
occupies a large portion of the entire image.
Therefore, semantic ROI segmentation is essential
for efficient region-based image retrieval.

In the medical field, region-based image retrieval
is also helpful for diagnostic purposes. For example,
diagnosis systems based on cytology and histophys-
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iology are used to analyze tissue specimens to detect
lesions as an early signal of latent cancer. Plus,
measuring the cell cycle using a diagnosis system
can enhance the effectiveness of drug discovery and
development. However, existing diagnosis systems
are restricted when dealing with cells and due to the
subjective variance of an observer. Therefore, an
integrated diagnosis system’* with an automatic aid
method was recently developed to assist with the
detection of cancer.

For a semantic analysis, an automatic aid method
requires an ROI-based approach rather than a pixel-
based approach to detect an abnormal nucleus or
lesion. In particular, the ROI segmentation is a
crucial preprocess to enable successful cell classifi-
cation or diagnosis.

Comaniciu and Meer’ developed the Image
Guided Decision Support system to analyze tissue
structures and organ states to support diagnosis
and identify factors in clinical pathology. The
system extracts an ROI within the attention scope
using the mean-shift segmentation method. How-
ever, to extract the ROI before segmentation, the
attention window must be defined by hand.

Chen et al.'” developed a method of image anal-
ysis to resolve the problems of touching cells and
ambiguous correspondence, resulting in a computa-
tional bio image system that facilitates the automated
segmentation, tracking, and classification of cancer
cell nuclei in time-lapse microscopy images.

Tscherepanow et al.'' proposed a method for clas-
sifying segmented regions in bright field microscope
images. However, since an active contour is used for
the cell segmentation, the performance can deteriorate
when an image contains cells with a complex structure.

Unlike general natural images, microscopic
images have different characteristics with distinct
meanings based on human estimation and a varying
brightness according to the fluorescence staining.
For example, salient parts such as cell nuclei tend to
be brighter, while the remaining parts have a more
monotonous appearance. All existing medical im-
age-segmentation methods segment regions from an
image regardless of the meaning of the ROlIs,
meaning that exact ROI segmentation is impossible
without human interaction. Thus, for semantic ROI
segmentation such as salient cells, knowledge of the
exact positions of relevant ROIs is crucial.

Accordingly, this paper presents an adaptive
attention window (AAW)-based ROI microscopic
cell image-segmentation method. For semantic
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AAW detection, an initial attention window (IAW)
is created using a luminance map, then the IAW is
reduced close to the size of the ROI cell using a
quad-tree. The purpose of the AAW is to determine
the rough position of relevant ROIs, thereby reduc-
ing the amount of processing time for segmenting
ROIs. Finally, region-level segmentation is per-
formed within the AAW, along with background
removal and region clustering to segment only the
ROls.

The remainder of this paper is organized as
follows. “Adaptive Attention Window Generation”
explains the AAW generation based on human
perception, then “ROI Segmentation Within the
AAW?” describes the ROI segmentation within the
AAW. “Experimental Results” evaluates the accu-
racy and applicability of the proposed ROI seg-
mentation based on experiments, and some final
conclusions and areas for future work are presented
in “Conclusion”.

ADAPTIVE ATTENTION WINDOW GENERATION

For the semantic segmentation of ROIs, the posi-
tions of the considered ROIs must first be identified
within an image. Therefore, this paper proposes an
AAW method for ROI extraction. The coarse posi-
tions of the considered ROIs are determined using the
proposed AAW, which changes adaptively according
to the location of the ROIs within an image. Figure 1
shows the architecture of the proposed AAW-based
segmentation. The AAW generation is based on
human perception in the preprocessing step. Then,
as a result of the proposed method, only the ROIs
remain in the segmentation step.

Luminance Map Generation

Human perception plays an important role in
computer vision and pattern recognition, and many
studies have attempted to use it to analyze the
semantic meaning within an image. For example, Itti
et al.'> proposed a saliency-based visual attention
model based on color, luminance, and orientation,
then selected the most salient area based on a
winner-take-all competition. However, in this paper,
the TAW within an image is detected using a
luminance map and quad-tree split based on human
perception during the image-segmentation prepro-
cessing. In medical images, since the intensity is the
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Fig 1. Architecture of proposed method.

unique component, a luminance feature map is used
to detect the IAW, rather than a color feature map,
as the color can change according to the dye used.
Figure 2 shows the AAW generation process within
an image.

First, to generate the luminance map (L), two
different sized filters (7%7 and 13x13) are applied

to a 1/2 down-sampled gray image (L'(s)) against
the original image and the luminance contrast
computed. As such, the filters estimate the center-
surround differences between the center point and
the surrounding points within the filter scale s, and
these differences produce the feature map.

&>

() (d)

Fig 2. AAW generation process. a Input image, b luminance map, ¢ IAW, and d final AAWs.
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Initial AW Generation Steps
Step 1. Initialize the size of the IAW
IAW = width x3/4

IAW | = height X3/4

Step 2. Find the candidate position of JAW,, ¢,

IAW_ = Max(SUM (L))

cx,cy

Step 3. Calculate the mean (7L,,) of £ within
the [AW
Step 4. Repeat
Shrink boundary pixel IJAW,,of IAW
until (JAW,, < TL,)
Step 5. Final IAW Generation

Fig 3. Initial AW generation.

When the center surround difference is large, the
most active location stands out, and the map is
strongly promoted. Conversely, when the difference
is small, the map contains nothing unique and is
suppressed. Thus, when using Eq. 1, the sum yields
two different feature maps from the two filters.

]
I

> > L) (1)

se{7x7,13x13}

N | —

These maps are then summed and normalized
into one luminance feature map L, which is up-
sampled to the size of the original image and
smoothed with a Gaussian filter to eliminate any
pixel-level noise and highlight the neighborhood
of influence for the output map. Examples of
luminance maps are shown in Figure 2b.

Initial AW Generation Using Luminance Map

After generating the luminance map, the IAW is
detected to remove useless regions such as back-
ground, thereby reducing the amount of processing
time required for ROI segmenting and improving the
extraction performance. ROIs are generally located
near the center area; however, since this is not always
true, the size of the IAW is very important.

Therefore, this paper proposes a top-down AW
shrinking method that uses the created luminance
map. The initial rectangular IAW is three quarters the
size of the image and reduced until it meets
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predefined conditions. This size was determined by
experiments and the analysis of reference images in a
database where the largest cell size as the ROI in the
experimental database set was found to be less than
three quarters the size of the image.

To determine the proper location (AW, ,) and size
(AW,,) of the IAW, the window that includes the
maximum magnitude from the luminance map (L) for
the full image is initially chosen, then the size of the
IAW is shrunk to the approximate size of the ROIs.
Figure 3 shows the shrinking steps and conditions that
are presented as a pseudo code for the IAW genera-
tion, while Figure 2¢ shows some examples of IAWs.

AAW Extraction Using Quad-tree Split

After the IAW is selected, the IAW needs to be
shrunk to the most approximate size of the salient
ROIs. The existing split method for extracting close-
shape ROIs initially considers the image as one
region, then iteratively splits according to a homo-
geneity criterion into smaller and smaller regions.
This split method is realized according to geometri-
cal structures such as squares, triangles, and poly-
gons'>. To split into real ROIs and reduce the
processing time, the proposed method extracts an
AAW with a size close to the real ROI within the

AAW Extraction Steps using Quad-tree Split
t: split level, t=0
Step 1. Set a threshold( 4y ) using luminance map(L )
for block split within Initial AW
1 —
Haw =77 %‘V, L
Step 2. Split IAW into 4x4 sub-blocks(S)

Step 3. Calculate average( 4, ) for each sub-block

using luminance map

1 ——
My, =N2L

Step 4. If(/ub,- <u 4w )» then remove block

Otherwise, 4x4 sub-block re-split
t=t+1
If (t < 3), then repeat from Step 2
Otherwise, proceed to Step 5
Step 5. Merge or remove block

Fig 4. Pseudo code for AAW extraction.
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limited IAW using a quad-tree that splits based on a
square structure. Unlike previous research'®'”, the
IAW is shrunk using the luminance feature map as
the split condition within the IAW. Figure 4 shows
the splitting steps for extracting the AAW.

The shrinking steps and conditions are as follows.
First, the average (uaw) of the luminance map is
calculated within the AW, and the IAW is split into
4 x4 scale 1 sub-blocks. The average is then used as
a threshold to further divide the sub-blocks. As
such, for every sub-block, if the average (uaw) of
the luminance map within a sub-block is above the
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threshold, that sub-block is split again into 4x4
scale 2 sub-blocks; otherwise, it is removed.

This process of removing sub-blocks is based on
the assumption that humans usually concentrate on
special regions that have a high luminance con-
trast'”. That is, if the average of the luminance map
is low, this means that the sub-block has a lower
probability of containing salient regions; alterna-
tively, if the average is high, this means the sub-
block has a higher probability of containing salient
regions. Therefore, a sub-block with a higher
luminance feature map compared to the predefined

Creation of Initial AW

l

Threshold for
luminance map( £, )

'

Split image into
4x4 sub-blocks

:

Average(s; ) calculation
of each sub-block

Region merging
or Removing

Fig 5. AAW extraction processes.
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threshold is split again to detect close ROIs. This
process is repeated to scale 3. Finally, the scale 3
sub-blocks are either merged into adjacent large
sub-blocks or removed if they are far away from
major sub-blocks. Figure 5 shows the proposed
AAW extraction processes.

ROI SEGMENTATION WITHIN THE AAW

While object-based image segmentation is useful
in many applications, it is still generally beyond
current computer vision techniques due to the
uncontrolled nature of the available images and
requirement of much processing time. Since an
object is generally a group of related regions, the
present study proposes a way of segmenting an
image into regions, then merging these regions into
an ROL Thus, after the AAW is created, the regions
within the AAW are classified as ROIs or back-
ground regions. To do this, the AAW is segmented
into several regions that are then clustered into ROIs
according to the proposed algorithm.

In the ROI segmentation step, the AAW is filtered
and segmentation performed based on region merg-
ing and labeling using each channel. The boundary
regions are then removed as background regions,
which have a relatively low importance. Finally, the
major regions with the highest luminance are
selected from among the segmented regions, except
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for the background regions, and the adjacent regions
merged into the major regions to produce the final
segmented ROIs. As the result, the proposed method
allows multiple salient cell regions to be segmented
as ROIs according to the image characteristics.

Region Segmentation and Background
Removal

As mentioned in the introduction, the image-
segmentation technique of Ko et al.® is applied in the
proposed method for semantic region segmentation
where three types of adaptive circular filter are used
to segment an image based on the amount of image
texture information and Bayes’s theorem. After an
image is segmented within the AAW, the segment-
ed regions still consist of ROIs and some meaning-
less regions as shown in Figure 6b. Thus, for
semantic ROI extraction, these meaningless regions
need to be removed as background.

In conventional background removal methods
such as Malpica et al.'® and Otsu'’, a threshold is
used to separate ROls, like cells, from background
regions such as cytoplasm. Although background
removal using a global threshold is simple and
efficient as it uses a histogram to create a bi-modal
representation of an image, this separation method
is not always suitable as a histogram does not neces-
sarily provide a bi-modal representation and can fail to
accurately segment ROIs. Therefore, this paper pro-

_*_,

(a) (b) (c)

Fig 6. Background region removal. a AAW, b segmentation results, and ¢ background removal.
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poses a background removal method using the bound-
aries of the detected AAW and segmented regions.

If region segmentation is performed as shown in
Figure 6b, boundary regions are defined as back-
ground within the AAW and removed. This
definition is based on the following assumption:
The major region is most likely to exist inside the
AAW, while the background regions are more
likely to exist at the AAW boundaries.

Therefore, the ratio for each region that connects
with the AAW boundary is estimated using the Eq. 2.

card(SaawNSk) k=12

B_P = Bt 2.,

n (2)

Where Saaw and S, represent the boundary
coordinate set for the AAW and kth region,
respectively, card (4) represents the cardinality of

ROI results

Original images

265

each set, and the symbol B_P; indicates the ratio of
the kth region that connects with the AAW bound-
ary. These ratios are then compared with a pre-
defined threshold and, if larger, that region is
regarded as a background region and removed. To
determine the threshold for background region
removal, the ratios for regions that connected with
the AAW boundaries for database images were
estimated and the average ratio taken as the
threshold. Thus, in this paper, the threshold for
background removal was set at 2.3, which dem-
onstrated the best boundary removal performance
based on several experiments using database
images. As such, this threshold means that 2.3%
of all boundary pixels in the kth region connect
with the AAW boundary.

Figure 6¢ shows the ROIs separated when using
the proposed background removal algorithm where

) )

@

&

o

ROI results

Original images

Fig 7. ROI segmentation results.3
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nuclei are the major regions and cytoplasm is the
background, which consists of monotonous colors.

Region Clustering

After removing the background regions, some
regions may still not be an ROI. Thus, for exact
segmentation of the ROIs, the segmented regions
have to be clustered as major regions. The clustering
algorithm used in this study is updated version of Ko
and Nam’s'® region clustering algorithm as the
shape and size or connectivity of regions is used to
deal with the problem of over-segmentation.

After the background region removal, the major
regions are selected for clustering, whereby similar
adjacent regions are merged sequentially if the adja-
cent regions satisfy a few conditions. The merging
steps according to clustering conditions are based on
Eq. 3. For the regions segmented within the AAW,
the size of each region is calculated, except for the
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removed background regions. Then, n seed regions
with a saliency above a predetermined threshold
and larger size compared to the other regions are
selected as the major regions. In this paper, the
number of seed regions was fixed at five based on
the finding that the cell images in the experimental
database tended to include fewer than five nuclei.
Second, the ratio that the adjacent region is
connected with the boundary or belongs to the seed
region is calculated. Starting from each seed region
sequentially, two regions are merged if the two
regions satisfy the following conditions:

Ob, — card(BR; N ROIy)
e card(P,,) (3)
P,, = min(BR;, ROI;)

where BR; is the set of boundary pixels in the ith
comparison region, ROI; denotes the set for the kth
seed region, P,, denotes the set for the relatively

Fig 9. ROI segmentation results. a Original images. b Segmentation results by Comaniciu and Meer. ¢ Segmentation results by proposed
method.
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smaller region between BR; and ROI,, the symbol
card (4) represents the cardinality of set 4, and Ob;
denotes the ratio of the inclusion relation between
the kth ROI; and ith BR;. The symbol Ob,, be-
comes zero when the BR; region is not connected
and exists outside of ROI;, and becomes one when
the BR; region surrounds ROI,. Finally, if Ob; is
above 0, BR; is merged with ROI,, and the area of
Ob; ;. is updated. However, if Ob,; is 0, which
means that BR; is located outside Ob;;, BR; is
removed and merged with the background region
according to Eq. 4.

if 0<Ob;; <1 Then BR; C ROI;
else, BR; C Background

Figure 7 shows the ROI segmentation results
when using the proposed algorithm.

This step is repeated until no more regions exist.
If the initial seed ROI; has no other regions to
merge with and the final size of the clustered ROI,
is below the predefined threshold, it is regarded as
noise and merged with the background region.

<original image>

<under-extraction.>

<manual seg>

[N .+--
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EXPERIMENTAL RESULTS

The experiments conducted to evaluate the pro-
posed method were performed on a Pentium PC
single-CPU 2.8 GHz with a Windows operating
system. The proposed method was implemented
using Visual C++ 6.0 language and 180(1)x 140(H)
reference images from a database used for experi-
ments. In this paper, a set of 200 cell images that
included plant cells, white blood cells, and red
blood cells were used where the histology was
taken from a microscope. The image set consisted
of 106 images of normal cells (fewer than five cells)
and 94 images of numerous cells and abnormal
cells (fewer than four cells).

Figure 8 shows some examples of the cell images
used for the experiments.

Experimental comparison of ROI segmentation is
generally very difficult as there are few if any related
works using cell images with AW. Thus, to validate
the effectiveness of the proposed approach, the seg-
mentation performance of the proposed system was
compared with that of Comaniciu and Meer’s” algo-
rithm where the user creates the initial AW by hand

<automatic seg=

<over-extraction>

Fig 10. Under- and over-segmentation errors.
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Table 1. Error Comparison

Method Under-segmentation Over-segmentation Average accuracy (%) Standard Deviation (under) Standard Deviation (over)

Comaniciu and Meer 0.109 0.431 46.0 0.165 0.317

Proposed method 0.116 0.148 73.6 0.112 0.214

and the segmentation is then performed using a mean-
shift algorithm that is normally used for natural image
segmentation. Figure 9 shows the ROI segmentation
results for both ROI-based extraction methods.

To evaluate the performance of the ROI extrac-
tion, the evaluation method proposed by Kim et al.'®
was modified. First, three different pathologists
were asked to crop the ROI from each image using
a graphic tool, and only ROIs were used for
comparison when at least two pathologists were in
agreement. Figure 10 shows the under- and over-
extraction errors marked by arrows for the auto-
matically extracted ROIs when compared with the
manually selected ROIs.

The segmentation results for each method were
compared with the manually extracted segmentation
result and the error ratio estimated using Eq. 5.

card(M — (M N S))

U= Sur
_ card(S — (M N5S)) (5)
0= Ss

AVG.S = (1 — (SU @So)) x 100

Where M represents a manually extracted ROI
and S represents an automatically extracted ROI
using each segmentation method, S,, and Sg denote
the total size of the pixels of an extracted ROI, S,
and Sp represent the inaccuracy of the under-
extraction ratio and over-extraction ratio, respec-
tively, and AVG_S represents the accuracy between
a manually cropped ROI and a systematically
extracted ROI where a number closer to 100 repre-
sents a lower error and higher accuracy, while a
number closer to 0 represents a higher error and
lower reliability. Figure 11 shows the performance
evaluation results using Eq. 5.

When compared to Comaniciu and Meer’s meth-
od, the proposed method showed a similar under-
segmentation ratio, as shown in Figure 11. However,
the proposed method had a lower over-segmentation
ratio of 14.8% compared to Comaniciu and Meer’s
segmentation method at 43.1%, as shown in Figure 11
and Table 1, respectively.

From the experimental results in Figure 11, since
Comaniciu and Meer’s method segmented the ROIs
within a static rectangle region defined by the user,
this led to a high over-extraction error ratio and also
created many fragments as useless regions or ROIs.
In addition, the over-extraction error with Comaniciu
and Meer’s method was higher for the images
between 106 and 185 that included numerous normal
cells and abnormal cells, as the window was almost
the same as the original image. In contrast, as the
proposed method created an AAW with a form close
to the ROIs and the segmentation was performed
within the created AAW, this enabled the position of
the ROIs to be detected accurately. As such, the
proposed method had a lower over-extraction error
ratio and high accuracy AVG S at 73.6%. There-
fore, the proposed segmentation method produced a
better performance than the comparative algorithm.
Furthermore, the standard deviation for the under-
and over-extraction error ratio represented a regular
rate with the proposed segmentation.

Next, to verify the applicability of the proposed
method as a medical diagnosis aid system, the
importance of the regions segmented using each
method was compared with the manually cropped
regions. Figure 8b shows examples of the abnormal
cell images according to various diseases. For the
evaluation, a count was made of the number of cells
segmented from the total 200 images and number of
abnormal cells segmented from the 94 images that
coincided with the manually cropped ROIs. Table 2
compares the number of manually segmented cells
with the number of cells automatically segmented
by the two methods, while the graphs in Figures 12
and 13 show the number of cells extracted from the
200 images and number of abnormal cells extracted
from the 94 images, respectively.

Table 2. Comparison of ROl Segmentation

Method No. of ROIs  No. of abnormal ROIs
Manually segmented ROls 829 122
Comaniciu and Meer method 475 74
Proposed method within AAW 703 108
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Fig 12. Comparison of segmented cells. a ROl segmentation comparison between manually segmented cells with segmented cells
using Comaniciu and Meer’s method. b ROl segmentation comparison between manually segmented cells with segmented cells using the
proposed method.
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Fig 13. Comparison of segmented abnormal cells. a ROl segmentation comparison between manually segmented cells with segmented
cells using Comaniciu and Meer’s method. b ROl segmentation comparison between manually segmented cells with segmented cells
using the proposed method.
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As shown in Table 2 and Figures 12 and 13, since
Comaniciu and Meer’s method had a high over-
segmentation error ratio and was unable to exactly
segment the ROIs, it had a very low segmentation
number. In the case of the abnormal cells, it also had
a very low segmentation number at 74 compared with
the number of manually segmented abnormal cells at
122. However, the proposed method segmented 703
cells, resulting in an 89% segmentation ratio, which
was very close to the manually segmented results.
Furthermore, in the case of the abnormal cells, the
proposed method had a relatively high segmentation
number at 108 out of the total 122 abnormal cells.

Since the salient parts in cell images, such as
normal and abnormal cell nuclei, tend to be relatively
bright against the background according to the dye
material, the proposed method utilized this charac-
teristic by splitting the images into small sub-regions
with ROIs using a luminance contrast feature map to
create AAWs and then segmented the exact ROIs
within the AAWs. As such, the proposed method
was able to segment the abnormal cells very
efficiently. Thus, the experimental results confirmed
the effectiveness of the proposed method as a
diagnostic aid in relation to detecting abnormal cells.

CONCLUSION

Most existing CBIR systems supporting region-
level retrieval use an image-segmentation method
and require a ROI segmentation, which occupies a
large portion of the entire image. Therefore, semantic
ROI segmentation is essential for efficient region-
based image retrieval. Also, an automatic aid method
requires a region-based approach for ROIs, such as
abnormal nuclei or lesions, rather than a pixel-based
approach. Yet, this requires several techniques such
as ROI segmentation, region classification, and cell-
cycle tracking. In particular, ROI segmentation is
crucial preprocess that then enables the other
techniques to perform successfully.

Unlike natural images, microscopic cell images
have different meanings according to human estima-
tion and a varying brightness according to the
fluorescence staining. For example, salient parts
such as cell nuclei tend to be bright, while other
parts have a more monotonous appearance. Most
conventional medical image-segmentation methods
segment regions from the complete image regardless
of the ROIs. Thus, for the semantic segmentation of
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ROIs such as salient cells, the exact positions of the
considered ROIs need to be known and segmented
within an image.

Accordingly, this paper proposed an AAW-based
microscopic cell image-segmentation method for
ROI-based medical image retrieval and clinical
diagnosis. The proposed method creates an [AW
based on human perception using a luminance
contrast map, then extracts an AAW that is similar
to the size of the real ROIs using quad-tree split.
Thereafter, region-level segmentation is performed
within the AAW and the final ROIs segmented using
background removal and region clustering. The
segmentation within the extracted AAW not only
reduces the amount of processing time for region
segmenting but also extracts really exact ROIs.
Experimental results confirmed that the proposed
method could efficiently segment multiple ROIs and
produced similar segmentation results to human
perception. Its effectiveness as a medical diagnosis
aid system was also demonstrated.

In future work, the proposed method will be used
to develop a content-based medical image retrieval
system that can generate a combined feature vector
of segmented ROIs based on extraction and patient
data. Furthermore, the proposed segmentation meth-
od will be applied to an automatic medical diagnosis
aid system.
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