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A method is proposed for 3D segmentation and quantifica-
tion of the masseter muscle from magnetic resonance (MR)
images, which is often performed in pre-surgical planning
and diagnosis. Because of a lack of suitable automatic
techniques, a common practice is for clinicians to manually
trace out all relevant regions from the image slices which is
extremely time-consuming. The proposed method allows
significant time savings. In the proposed method, a patient-
specific masseter model is built from a test dataset after
determining the dominant slices that represent the salient
features of the 3D muscle shape from training datasets.
Segmentation is carried out only on these slices in the test
dataset,with shape-based interpolation then applied to build
the patient-specific model, which serves as a coarse
segmentation of the masseter. This is first refined by
matching the intensity distribution within the masseter
volume against the distribution estimated from the segmen-
tations in the dominant slices, and further refined through
boundary analysis where the homogeneity of the intensities
of the boundary pixels is analyzed and outliers removed. It
was observed that the left and right masseter muscles’
volumes in young adults (28.54 and 27.72cm3) are higher
than those of older (ethnic group removed) adults (23.16
and 22.13cm3). Evaluation indicates good agreement
between the segmentations and manual tracings, with
average overlap indexes for the left and right masseters at
86.6% and 87.5% respectively.
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INTRODUCTION

T he large masseter muscle is one of the
muscles of mastication which plays a major

role in mastication. It is the strongest jaw muscle
and acts to raise the jaw and clench the teeth. The
masseter’s broad origin and insertion allow it to
apply chewing force over a broad area. When the
masseter muscle is functioning, its fibers shorten

and help to shift the mandible laterally to chew.
When the masseter muscle contracts, it elevates the
mandible, closing the mouth. Due to its importance
in the human masticatory system, the masseter
muscle is of interest to maxillofacial surgeons.
Clinicians will like to visualize the muscle in 3D
and carry out important quantification such as
volume. Before these can be carried out, the
muscle has to be segmented first.
Another motivation for segmentation of the

muscle is that it can be used to build a statistical
muscle model when many datasets are available. It
has been observed that a variety of facial models
have been developed to aid surgeons in surgery
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planning1,2. Examples include a physics-based
model for static soft tissue prediction and muscle
simulation described in3. Different tissue groups are
assumed to possess similar properties, and linear
elastic modeling is used to simplify their highly
complicated biomechanical behavior. The primary
inadequacy of existing pre-surgery facial models is
that they do not take into account the actual
location, shape, and size of the muscles. The
availability of a muscle model which provides the
above information and which can be integrated with
current available facial models would be extremely
useful for the planning of maxillofacial surgery.
Image segmentation is a key component of

medical image analysis and statistical model build-
ing. A variety of image processing techniques have
been developed for medical image segmentation. A
simple yet often effective means for obtaining
segmentation of images in which different structures
have contrasting intensities is thresholding. Exam-
ples of connectivity-based thresholding, which finds
a boundary between two regions using the path
connection algorithm and changing the threshold
adaptively, can be found in4,5. A major limitation of
thresholding is that it does not take into account the
spatial characteristics of an image and thus is
sensitive to the noise, artifacts, and intensity
inhomogeneities that can occur in magnetic reso-
nance (MR) images. In another recent approach,
supervised range-constrained thresholding, it was
found that by confining the analysis to the
histogram of a region of interest (ROI), a good
threshold can be found even when the image quality
is poor6. Besides thresholding, the traditional active
contour model, which matches a deformable model
to an image, has been constantly improved and used
extensively in MR image segmentation7,8. It is an
energy minimizing spline whose energy depends on
its shape and location within the image.
Despite the numerous image processing techniques

which have been developed for the segmentation of
various anatomic structures, none has been proposed
for the 3D segmentation of the masseter, to our best
knowledge. Previously, we did propose methods for
segmenting the human masticatory muscles from 2D
MR slices9,10. However, these methods are 2D in
nature, and repeatedly applying the 2D method to all
the slices in the dataset may not achieve good
segmentation results because, in a 3D MR dataset,
there are slices where no clear boundary exists
between the muscles and the surrounding tissue.

Because of the lack of a computerized technique,
it is a common practice for the masseter to be
manually segmented from all the MR slices before
analyzing them in 3D11,12. This is a highly time-
consuming process given that the image set of the
head typically contains more than 150 axial slices
with 1mm thickness, and the masseter muscle
usually occupies about 80 slices. The lack of a
computerized method for the segmentation of the
masseter is most probably due to the fact that it
lacks strong edges in MR images and that it has
fairly similar intensity values with its surrounding
soft tissue. This situation is more severe in some
MR slices, especially in the regions where the
masseter first and last appears in a MR dataset
comprising of axial slices. In such slices, the use of
thresholding or active contour techniques will not
provide good solutions.
There is an increasing use of model-based

techniques for segmentation in MR images, such
as the work described in13, which incorporates
prior knowledge for segmenting the corpus cal-
losum from MR images with little human inter-
vention. Another example is found in14, where
segmentation is carried out via matching of
distributions belonging to photometric variables
that incorporate learned shape and appearance
models for the objects of interest. We seek some
motivation from these model-based techniques to
segment the masseters from MR datasets.
The proposed method is a two-stage process.

In the first stage, we build a patient-specific
model by first determining the locations of the
dominant slices, which capture the salient fea-
tures of the 3D masseter shape, from training
sets where the relevant masseter regions have
been segmented by an expert radiologist. The
dominant slices are determined using a set of
shape- and area-based criteria15. The MR slices
where the masseter first and last appears in the MR
dataset are included under this criteria. Given a test
dataset, the masseter regions in these dominant
slices are manually segmented. Alternatively, our
earlier proposed segmentation methods9,10 can be
made use of. Having manually segmented the
masseter regions from the dominant slices, shape-
based interpolation16 is used to create the patient-
specific masseter muscle model. This serves as an
initial coarse segmentation which we further refine
in the second stage by first matching the distribu-
tions of the intensity values belonging to the pixels
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within the masseter model to their expected
distributions which we estimate from the distribu-
tions of the pixels within the manually segmented
masseter regions in the dominant slices. The
boundary of the resulting structure is then expand-
ed and boundary analysis performed on it. In this
process, we remove boundary pixels whose inten-
sity values fall outside the SD range which we
obtained from the boundaries of the manually
segmented masseter regions in the dominant slices.
For the quantitative analysis, our hypothesis was

that the left and right masseter muscle volume of
(ethnic group removed) adults without any known
facial abnormalities would be balanced and that the
older adults would have smaller masseter muscle
volume compared to young adults. The “Materials
and Methods” section describes the data used and
the proposed method. The “Results and Discussion”
section presents the results and discussion, while
the “Conclusions” section concludes the paper.

MATERIALS AND METHODS

Data Acquisition

Fifteen datasets were acquired using a 1.5-T
Siemens MR scanner (Symphony maestro class
with quantum gradients) and a T1 FLASH imaging
sequence (1mm thickness, 512 × 512 matrix,
240mm FOV, TR = 9.93, TE = 4.86). This
imaging protocol was approved by an institutional
review board. The subjects are male adult volun-
teers whose informed consent was obtained and
whose identities are anonymized.

Overview of Proposed Method

The proposed method (Fig. 1) is a two-stage
process designed to provide accurate segmentations
of the masseters in a MR test dataset. In stage 1, the
left and right masseters in the training sets were first
manually segmented by an expert radiologist and
the locations of the dominant slices determined
from them. Given a test dataset, manual segmenta-
tion of the muscle on the dominant slices is carried
out, followed by shape-based interpolation to
construct the 3D muscle model which serves as a
coarse segmentation. In stage 2, two refinements are
performed on the coarse segmentation to arrive at
the final segmentation. We first match the distribu-

tions of the pixels’ intensity values in the masseter
regions of the MR slices in the masseter model to
their expected distributions. The boundary of the
output result is then expanded, and we perform
boundary analysis on it. In this iterative process, we
remove boundary pixels whose intensity values fall
outside the threshold.

Determination of Dominant Slices
for the Masseter Muscle

A method for determining the dominant slices,
which together best captures the shape and size of
the masseter muscle, from training datasets was
proposed in our earlier work15. In the training sets,
the left and right masseters were first manually
segmented by an expert radiologist, and we
identify the candidates for dominant slice from
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Fig 1. Overview of proposed method.
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these training datasets using a set of criteria which
we briefly highlight here:

� Slices where the muscle first and last appears
(Fig. 2). We define these two slices to be Ii
and If respectively. At these two slices,
automatic computerized techniques may not
be suitable, as even expert radiologists would
have to depend on their vast experience to
differentiate between muscle and its surround-
ing soft tissue. As such, the selection of Ii and
If is currently being performed manually.

� Slices where the muscle area pattern under-
goes a change, i.e., the turning points in the
plot of cross-sectional muscle area vs In where
Ii G In G If (Fig. 3). This allows us to capture
the main features of the cross-sectional area
belonging to the masseter.

� Slices in which the structure of the muscle
undergoes a significant change in orientation,
i.e., the turning points in the plot of the
muscle centroid �x;�yð Þ on each slice vs In
(Fig. 4). This allows us to detect the locations
where the structure of the masseter undergoes
an abrupt change in orientation.

Fuzzy-c-means (FCM) clustering17 is carried out
on all the locations of the candidate slices, with the
clusters’ centroids selected as the dominant slices.
There is a trade-off between the number of
dominant slices used and the accuracy obtained.
Using more dominant slices also meant an increase
in time taken. In the identification of the dominant
slices which was carried out in our earlier work15,
we did vary the number of dominant slices from
four to seven slices. We decided on the use of six
dominant slices, as a decreasing increment in
accuracy was observed when the number of
dominant slices was increased from six to seven.
In our work here, we use the six normalized
locations of the dominant slices identified earlier.

Patient-Specific Masseter Modelling
Using Shape-Based Interpolation

Having determined the dominant slices through the
training data, 2D segmentation of the masseter is
carried out on the dominant slices in the given test
dataset. A hybrid approach to shape-based interpola-
tion16, which has been validated quantitatively and

effectively used for 3Dmodeling of the Schaltenbrand-
Wahren atlas18, is then used to create patient-specific
masseter model from the segmented regions.

Matching Distributions in MR Slices

The patient-specific masseter model serves as a
coarse segmentation of the masseter. We perform an
initial refinement by matching the distributions of
the intensity values belonging to the pixels in the
masseter regions belonging to the slices within the
masseter model to their expected distributions which
we estimated from the distributions of the pixels
within the manually segmented masseter regions in
the dominant slices. The rationale behind this is that
there is relatively uniform distribution of the inten-
sity values within the muscle structure.
In implementation, we first compute the mean

MRið Þ and standard deviation SDRið Þ intensity of
the region bounded by the masseter model in slice
Si. Through the distributions of the pixels’ inten-
sity values lying within the manually segmented
masseter regions in the dominant slices, we
estimate the intensity distributions M est

Ri
; SDest

Ri

� �
for the masseter regions in the slices Si lying
between the dominant slices, Sj with intensity
distribution MRj ; SDRj

� �
and Sk with intensity

distribution MRk ; SDRkð Þ using linear interpolation.
The masseter regions in the dominant slices of the

coarse segmentation built from a test dataset have
been manually segmented; hence, we assume that
they are reasonably accurate and do not perform any
refinement on them. As for the slices lying in
between the dominant slices, there might be some
inaccuracies with the masseter regions, and this can
be improved. An initial refinement process is carried
out for the masseter region in each slice:

� Generate eight new cross-sectional regions by
shifting the centroid of the original cross-sectional
region to its eight-connected neighbors (Fig. 5).

� Calculate the intensity mean M 0
Ri
and SD SD0

Ri

of the nine cross-sectional masseter regions
(inclusive of the original region).

� Compute the absolute difference between each
region mean and estimated mean M 0

Ri
�M est

Ri
,

and between each region SD and estimated
SD SD0

Ri
� SDest

Ri
.

� Normalize each of the values computed for
M 0

Ri
�M est

Ri
by dividing them with the maxi-

mum value of M 0
Ri
�M est

Ri
.
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Fig 2. MR slices where masseter a first and b last appears.
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� Normalize each of the values computed for
SD0

Ri
� SDest

Ri
by dividing them with the

maximum value of SD0
Ri
� SDest

Ri
.

� Out of the nine possible regions, select the
masseter region which has the minimum
combined difference between its distribution

and the estimated distribution, i.e., minimize
the following criterion:

TRðNormalized M 0
R i

�M est
Ri

� ���� ���
þ Normalized SD0

Ri � SDest
Ri

� ���� ���Þ
ð1Þ
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Fig 3. a Change in cross-sectional muscle area pattern. b Turning points in the plot of cross-sectional muscle area vs In.
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Fig 4. a X-coordinate of muscle region centroid vs In. b Y-coordinate of muscle region centroid vs In.
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Boundary Analysis

Having selected the masseter regions whose
distributions best matches the estimated distribu-
tions, 3D boundary analysis is carried out on the
resulting masseter structure. Before this analysis is
carried out, we first expand the boundary by 2
pixels. The rationale behind this is that the model
might have omitted some of the pixels which
should be included. Expanding the boundary will
include some of the pixels which were previously
left out. However, expanding the boundary also
meant the inclusion of some pixels which should
not be included. We attempt to solve this problem
by removing boundary pixels whose intensity
values fall outside the SD range of the masseter
boundaries in the dominant slices and are classi-
fied as outliers. The rationale behind this is that the
boundary pixels belonging to a single anatomy
should have intensity values that do not have a
wide SD. In our work here, the pixels with
relatively higher intensity values and relatively
lower intensity values probably belong to sur-
rounding bright tissue and bone tissue respectively.

We calculate the intensity SD SDref
B

� �
of the

boundaries belonging to the manually segmented
masseter regions in the dominant slices of the test
dataset. This is set as a threshold, and the
refinement process is carried out as follows:

� Obtain the boundary of the 3D muscle.
� Calculate the mean (MB) and SD (SDB) of the

boundary’s intensity.
� If SDB > SDref

B , remove those boundary pixels
with intensity values smaller than MB � SDref

B
or greater than MB þ SDref

B .
� Obtain the resulting muscle and repeat the

above three steps.
� Stop iterations when SDB G SDref

B .

We provide examples of the cross-sectional
regions before and after applying our proposed
boundary analysis in Figure 6 to illustrate the
effectiveness of the method. It can be observed
that the brighter boundary pixels were removed in
the process of the proposed boundary analysis.

Evaluation

The manual contour tracings for the masseters
are provided by an expert radiologist (PSG) who
has more than 15years of clinical experience and
has been actively involved in research on image
segmentation. These manual contour tracings serve
as ground truth in the evaluation of the computer-
ized segmentations obtained using our proposed
method. To evaluate the consistency between the
computerized segmentations and the ground truth,
we use the overlap index κ19,

� ¼ 2� P M \ Cð Þ
P Mð Þ þ P Cð Þ

� �
� 100% ð2Þ

where M and C denote the regions obtained by
manual and computerized segmentation tech-
niques, respectively,M ∩ C the intersection between
M and C, and P(·) the number of pixels in a region.
The smallest value of κ is 0% (no overlap), and the
largest value is 100% (exact overlap).

RESULTS AND DISCUSSION

We make use of the leave-one-out method20 to
evaluate our proposed method, and we have a total
of 15 MR datasets from male adult volunteers.
Using such evaluation strategy, all the datasets

Fig 5. Shifting of the centroid and its corresponding masseter
region.
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were involved in training and testing. A total of 30
masseter muscles (left and right) were segmented,
and examples are provided in Figure 7. The
average κ index achieved for the left and right
masseters are 86.6% and 87.5%, respectively. The
numerical validation and quantification results for
the left and right masseters segmentations are
summarized in Table 1.

Accuracy of Patient-Specific Model
and Number of Dominant Slices Used

The patient-specific model plays an important
role in our proposed method, as it serves as an
initial coarse segmentation. In addition to comput-
ing the accuracies of the segmentation results
obtained using our proposed method, we also

Original MR image Region of interest 
Cross-sectional 
region before 

boundary analysis

Cross-sectional 
region after 

boundary analysis

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig 6. Samples of cross-sectional regions before and after boundary analysis.
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computed the accuracies of the patient-specific
models. The average κ index achieved for the left
and right patient-specific masseters models are
83.5% and 84.2%, respectively. The validation
results are tabulated in Table 1, and examples of
the patient-specific models are provided in Figure 8.
From our experiments, it was observed that on

average, our segmentations have improvements in
accuracies of 3.1% and 3.3% over that of the
patient-specific models (Table 1). The biggest and
smallest improvements for the left masseter, which
we observed from our experiments, are 4.0% and
1.7%, respectively, while for the right masseter,
they are 4.7% and 2.1%, respectively. It should be
emphasized here that though we cannot always
assure of a significant improvement, there is
always positive improvement in the accuracy over
that of the patient-specific models. Comparing the
results in Figures 7 and 8, it can however be
observed that the segmentation results (Fig. 7)
have coarser surfaces compared to the patient-
specific models (Fig. 8). This is due to the removal
of outlier pixels on the boundary in the boundary
refinement step. In addition, as the final output was
built from the cross-sectional contours on the axial
planes (with small thickness of 1 mm), the surface
strictly passes through these contours; thus, it
seems that the output originated from a sequence
of 2D operations when in actual fact, we carried
out 3D analysis.
The number of dominant slices used in our work

here is six, and manual segmentations are carried
out on only these six slices, which is only a small
fraction of the 80 MR slices which the masseter
typically occupies, and hence, the amount of work
clinicians need to do is minimized. To further
illustrate the efficiency of our proposed method,
we measured the amount of time taken for an

expert to segment a masseter using our proposed
method and using manual contour tracing on all
image slices. Using the former, it took about 3 min
including the time taken to identify Ii and If, while
using the latter, the time taken was about 20 min. It
should be highlighted that time required to identify
Ii and If is dependent on the quality of the images.
Poor image quality may result in more time needed
to correctly identify Ii and If.

Sensitivity to Selection of Starting Slice Ii
and Ending Slice If

When building the patient-specific model, the
selection of MR slices Ii and If, where the masseter
first and last appears, respectively, is performed
manually, and hence, there will be inter- and intra-
observers errors. An accurate selection of these
two slices is challenging, as the masseter in the
MR images at these regions lack strong edges and
has similar intensity values with surrounding soft
tissue.
A sensitivity test was carried out to study the

effects that the selection of Ii and If has on the
accuracies of our patient-specific models. In this
test, we varied the original selection of Ii and If by
±2 slices. It was observed through this test that
such selection variation resulted in accuracy
variation of less than 2%. The main reason behind
this is that in our work here, the MR datasets used
consist of 1 mm slices, and the masseter muscle
typically occupies about 80 slices, and hence, a
variation of two slices will only cause a deviation
of only 2.5%.

On Selection of Centroid Candidates

It was mentioned in the “Matching Distributions
in MR Slices” section that we shift the centroid of
the masseter region in each MR slice from its
original position to its eight-connected neighbors
and check for the agreement between the distribu-
tions of the corresponding regions and the esti-
mated distribution which was derived from the
masseter regions in the dominant slices. The region
which has the best matched distribution is selected.
We restrict the candidates for the centroid to the

eight-connected neighbors to preserve the shape of
the patient-specific masseter model. In addition,
we performed some experiments where the list of
candidates for centroid was expanded to include the

Fig 7. 3D segmentations of left and right masseters.R

Table 1. Summarized Results for Left and Right Masseters

Parameter

Left Masseter Right Masseter

Mean SD Mean SD

Overlap index obtained using
patient-specific models and
matching distributions (%)

86.6 1.18 87.5 1.42

Overlap index obtained using
patient-specific models (%)

83.5 1.07 84.2 1.26

Volume measurements (cm3) 26.23 3.95 25.53 4.26
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16 pixels surrounding the eight-connected neigh-
bors. It was observed that the final selected position
of the centroid is usually among the original
centroid and its eight-connected neighbors.

On Expanding the Boundary of the Model
After Initial Refinement

It was mentioned in the “Boundary Analysis”
section that we expanded the boundary of the
coarse segmentation by 2 pixels before carrying
out boundary analysis on it. By doing so, we hope
to include those masseter pixels which have been
omitted by the coarse segmentation. The main
reason why we are restricting the expansion to 2
pixels is that, in a number of the MR slices,
especially those in the region where the masseter
first and last appears, the muscle and tissue have
very similar intensity values, and we hope to
minimize the inclusion of such pixels.
It should also be noted that in the boundary

analysis under our proposed method, not only the
pixels in the expanded boundary are being consid-
ered. At every iteration, the intensity SD of the
boundary is being calculated, and pixels classified
as outliers are removed. The iterations stop only
when the intensity SD is smaller than the
threshold which was derived from the boundaries
of the manually segmented masseter regions in the
dominant slices.

Quantification of Segmentation Results
and Clinical Findings

The volumes of each of the 3D masseter
segmentations were computed from a series of
2D MR images by summing up the number of
voxels enclosed within the boundary of the
segmentation on the 2D image slices and multi-
plying it with the voxel size. The mean volumes of
the left and right masseters are 26.23 and
25.53 cm3, respectively (Table 1). As the MR
datasets were acquired from male adult subjects
who have no reported facial problems, the left and
right masseters’ volumes of each subject are
relatively similar. This is in line with the hypothesis
of our quantitative study. However, as the subjects
have a wide age range, we find that the SDs are
relatively large at 3.95 and 4.26 cm3 for the left and
right masseters, respectively.

We further classify our results according to the
age group of our subjects. For those who are less
than 30 years old, the mean left and right masseter
volumes are 28.54 cm3 and 27.72 cm3, respective-
ly, while for those more than 40 years old, the
mean left and right masseter volumes are
23.16 cm3 (shrinkage of 18.85%) and 22.13 cm3

(shrinkage of 20.17%), respectively. This is in line
with the hypothesis of our quantitative study that
older adults would have lower masseter muscle
volume. In addition, these findings are in line with
what was previously reported in a study11 which
mentioned that the masseter muscle volume in
young adults (31.77±8.99 cm3) is higher than that
of older adults (21.22±6.16 cm3). Despite this, it
should be emphasized here that our studies are not
conclusive as we only make use of 15 datasets.

Future Work

The segmentation work presented here is an
extension from our earlier proposed work15 on the
building of patient-specific masseter models via
the determination of dominant slices. Though
human interaction is required in the building of
the patient-specific models which serve as coarse
segmentations, it is being kept to a minimal, and
manual contour tracings is limited to only 6 out of
80 MR slices which the masseter muscle occupies.
The two processes, matching distributions in MR
slices and boundary analysis, which are performed
on the coarse segmentations to arrive at the final
segmentations, are automatic. The segmentation
results obtained are encouraging. In the future, we
plan to apply our proposed method for segmenta-
tion of other masticatory muscles such as the
lateral and medial pterygoids, as well as the
segmentation of other anatomies.

CONCLUSIONS

We have proposed a method to perform 3D
segmentation of the masseter, which is the stron-
gest jaw muscle, from MR images. This, to our
best knowledge, is currently unavailable. The task
is a challenging one because of the fact that the
muscle lacks strong edges in MR images and that
it has fairly similar intensity values with its
surrounding soft tissue. This situation is more
severe in some MR slices than others. Our method,

Fig 8. 3D patient-specific models of left and right masseters.R
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which makes use of patient-specific masseter
models and matching of distributions of pixels’
intensity values, both within the masseter volume
and on its boundaries, produces segmentation
results with average κ index for the left and right
masseters at 86.6% and 87.5%, respectively.
Human intervention is being minimized in our

work here. Unlike conventional practices where
clinicians segment the muscle from every MR slice
which it occupies, our proposed method requires
that the clinician only performs manual contour
tracing only on six dominant slices, which we
determined using shape- and area-based criteria,
out of 80 MR slices which the masseter typically
occupies. Through the manually segmented muscle
regions in the dominant slices, we estimate the
distribution of the pixels’ intensity values belong-
ing to the masseter regions in the MR slices lying
between the dominant slices. The distribution of
the boundary pixels’ intensity values of the
masseter regions in the dominant slices is also
computed, and this serves as a threshold when
boundary analysis is carried out and boundary
pixels with relatively higher or lower intensity
values are classified as outliers and removed.
Quantification was performed after segmenting

the masseters using our proposed method, and the
masseter muscles’ volumes were computed. It can
be observed that the left and right masseter
muscles’ volumes in young adults (28.54 and
27.72 cm3) are higher than those of older adults
(23.16 and 22.13 cm3).
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