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In this paper, a fast, slice-by-slice, nonrigid registration
algorithm of dynamic magnetic resonance breast images is
presented. Themethod is based on amultiresolutionmotion
estimation of the breast using complex discrete wavelet
transform (CDWT): the pyramid of oriented complex
subimages is used to implement a hierarchical phase-
matching-based motion estimation algorithm. The resulting
motion estimate is nonrigid and pixel-independent. To
assess the method performance, we computed the corre-
lation coefficient and the normalized mutual information
between pre- and postcontrast images with and without
realignment. The indices increased after using our approach
and the improvement was superior to rigid or affine
registration. A set of clinical scores was also evaluated.
The clinical validation demonstrated an increased readabil-
ity in the subtraction images. In particular, CDWT registra-
tion allowed a best definition of breast and lesion borders
and greater detail detectability.
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INTRODUCTION

I n the past few years, dynamic contrast-

enhanced magnetic resonance imaging (MRI)

has gained attention in the early diagnosis of

breast malignancies and its differentiation from

other breast diseases.1,2 In a typical examination, a

patient is scanned prior to and immediately after

the intravenous injection of the contrast agent

[Gadolinium-diethylenetriamine pentaacetic acid

(DTPA)].3Y5 Postcontrast scans are performed

repeatedly and the resulting MR image consists

of a set of images of parallel tissue slices. The

evaluation of the contrast agent uptake curves,

estimated from the difference between pre- and

postcontrast images,1,2 may improve the discrim-

ination between malignant and benign lesions.

However, during MR dynamic acquisitions

(which usually last a few minutes), any motion

by the patient, even mere respiration activity, may

induce changes in the shape of the breast and

misalignment between precontrast and postcon-

trast volumes. Volumes matching is usually

required to improve accuracy and efficiency of

lesion detection,1Y5 and motion-correction algo-

rithms must take into account that: (1) breast

tissues may deform in a nonrigid way and (2)

voxel intensity and contrast may change between

precontrast and postcontrast scans.

Several registration methods have been proposed

in the literature for solving the specific problem of

breast MRI registration6Y13 using rigid and non-

rigid transformations, as well as different figures

of merit. Voxel-based algorithms carry out align-
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ment by the calculation of similarity measures,

such as joint entropy, mutual information (MI), and

normalized mutual information (NMI), which are

independent from pixel intensity. However, these

algorithms are usually limited to rigid or affine

transformation.6 Conversely, a nonrigid registration

algorithm based on elastic deformation using phys-

ical models7 assumes that the intensity of tissue

between images remains constant. An attempt to

realize a nonrigid transformation taking into ac-

count pixel intensity variation was proposed by

Hayton et al.,8 who introduced a pharmacokinetic

model to describe changes in pixel values. How-

ever, the need to select the model of the different

tissues and lesions may limit the performance of

the method. A different solution was proposed by

Rueckert et al.,10 and later, by Rohlfing and

Maurer.11 The authors obtained a nonrigid registra-

tion by combining an affine transformation for the

global motion of the breast and a free-form

deformation based on B-splines for the local breast

motion. The method iteratively minimizes a cost

function, which represents a combination of the cost

associated with the smoothness of the transforma-

tion and a measure of similarity (NMI). Finally, an

approach including automatic feature extraction

and realignment based on corresponding features

between pre- and postcontrast images was pro-

posed.12 In the work by Denton et al.,13 the

superiority of a nonrigid registration method with

respect to rigid or affine ones was demonstrated.

However, these last methods, although very

attractive, are iterative and often very time

consuming for a direct clinical application.

Fleet et al.14 introduced the advantages of using

phase-based approaches for solving the general

problem of stereo images matching. Phase-based

motion estimation algorithms utilize the Fourier

shift theorem, which relates shifts in spatial domain

to phase rotation in the frequency domain.14 The

performance of this algorithm has been successive-

ly improved by Magarey and Kingsbury15 using a

multiresolution hierarchical structure based on

complex discrete wavelet transform (CDWT) and

Gabor-like basis. In the work by Magarey and

Kingsbury,15 both computational complexity and

noise sensitivity have been reduced. The algorithm

is fully automatic and very fast.

In this paper, the algorithm proposed by Mag-

arey and Kingsbury15 has been applied to the

slice-by-slice registration of MRI-breast images.

Accuracy and performance of the algorithm will

be addressed in relation to the specific problem

using both quantitative indices and clinical score.

MATERIALS AND METHOD

The Registration Algorithm

In this section, the algorithm proposed by

Magarey and Kingsbury15 for solving the problem

of estimating motion in video image sequences is

briefly introduced. Only the features relevant to

MR image registration will be addressed here. A

detailed theoretical description can be found

elsewhere.15,16 The method can be divided in

two steps: (1) decomposition of the original image

and (2) estimation of the motion field (MF) at

different scales, as shown in Figure 1.

CDWT Decomposition

The algorithm is based on a multiresolution

survey obtained by a CDWT decomposition.15

The DWT has been largely proposed in literature

Fig 1. The registration algorithm.
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as an efficient tool for multiresolution analysis

because it is possible to implement it as a bank of

filters. The decomposition is obtained at different

scales, m, by repeated applications of a simple

processing block (Fig. 2, top), in which 1-

dimensional convolutions with filter basis pair,

performed both along the columns and rows, is

followed by downsampling. Even-length finite

impulse response (FIR) filters are used with

approximate Gabor form

h0 nð Þ � a0e
� nþ0:5ð Þ2

2�2
0 e j!0 nþ0:5ð Þ ð1Þ

h1 nð Þ � a1e
� nþ0:5ð Þ2

2�2
1 e j!1 nþ0:5ð Þ ð2Þ

where n=jD,...,Dj1 and a0, a1, s0, s1, w0 and

w1 are the filter parameters. Gabor-like filters are

used because they are optimally localized in both

spatial and spatial frequency domains.

At a given scale m along the decomposition, a

set of details, D(n,m), and a coarse approximation,

I (n,m), of the original image I are obtained. With

respect to the original image, it is equivalent to

apply the following linear filters

D n;mð Þ nð Þ ¼
X
k

I kð Þy n;mð Þ 2mn� kð Þ ð3Þ

I mð Þ nð Þ ¼
X
k

I kð Þ� mð Þ 2mn� kð Þ ð4Þ

where n is the spatial coordinate; I(n) is the

original image; and y(n) and �(n) are, respec-

tively, the wavelet and the scaling filters, and their

parameters are closely related to those of h0 and

h1. It can be shown that y(n) and �(n) are also

Gabor-like

y mð Þ nð Þ � ame
� n�nmð Þ2

2�2m ejwm n�nmð Þ ð5Þ

� mð Þ nð Þ � bame�
n�nmð Þ2
2�2m ejbwm n�nmð Þ ð6Þ

In the spatial frequency domain, the central

frequency Wn,m specifies the orientation of each

filter, ie, a direction in the spatial plane where

contours are mainly enhanced.

When observed in the frequency domain, these

spatial filters can cover only the first quadrant (see

Fig. 2, bottom), whereas the negative part of the

spectrum is neglected. However, for a detailed

image analysis, both the first and second quad-

rants contain nonredundant information and can-

not be excluded (conversely, the third and fourth

quadrants are conjugated versions of the first

two). For this reason, the conjugated filters of h0
and h1 have been considered. Conjugating h0 and

h1 reflects their frequency responses at w = 0. An

extension of the decomposing path of Figure 2

(top), in which a parallel path is added, is

considered; the parallel path uses the same 2-

dimensional building block except that the row

filtering is performed using h*0 and h*1 instead of

h0 and h1.

In conclusion, at each level m, there are eight

complex outputs, two (I (1,m), I (2,m)) are images at

lesser resolution that correspond to inputs at the

next level m + 1; the other six subimages {D(n,m),

n= 1,...,6} may be regarded as the (down-sam-

pled) output of an equivalent wavelet filter, which

has 2-dimensional Gabor form. Each wavelet

filter, and its corresponding subimage, has a

characteristic orientation specified by the spatial

frequency Wn,m. Their orientation can be evenly

spaced in the range [j:/2, :/2] by a careful

selection of h0 and h1.

Motion Estimation

At each level m, an estimation of the MF f is

obtained by minimizing, for each subpixel n, the

following quantity:

SSDm n; fð Þ

¼
X6
n¼1

D
n:mð Þ
i;1 nþ fð Þ � D

n:mð Þ
i;2 nð Þ

��� ���2
P n:mð Þ ð7Þ

where D
n;mð Þ
i;1 nþ fð Þ and D

n;mð Þ
i;2 nð Þare the detail

CDWT coefficients at scale m, as obtained from

the decomposition of images I1 and I2, respective-

ly, and where P(n,m) is the energy of each wavelet

filter. The quantity 7 is known as subband

squared difference (SSD).15 The SSD is analogous

to the squared pixel difference computed in the

intensity domain;16 however, details rather than

intensities are used and all information contained

in the six subbands are combined. The SSD is
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independent from any offset or scaling between I1
and I2 intensites.16 In addition, it can be demon-

strated15 that Eq. 7 it is a maximum likelihood

estimator of the MF f.

This approach is particularly attractive thanks

to the property of interpolability of the subimages

D
n;mð Þ
1 nþ fð Þ, which allows to rewrite expression

7 as a 2-dimensional quadratic surface with

elliptical contours:

SSD mð Þ n; fð Þ � 1

2
f � f0ð ÞT� f � f0ð Þ þ � ð8Þ

where f0 is the minimum location, k is the

curvature matrix, and d is the minimum height

of the surface. Surface parameters {f0, k, d} may

be computed directly from the coefficients

D
n;mð Þ
i;1 nþ fð Þ, and D

n;mð Þ
i;2 nð Þ from the spatial

frequency Wn,m.
15 They are obtained for each

subpixel n at level m of each image.

For our purposes, two parameters are of interest:

f0 and k. f0 represents the desired displacement for

the subpixel n. The values f0 of all the subpixels

form the nonrigid MF at level m. The curvature

matrix k also plays an important role as measure of

confidence in the estimate. In fact, it may be shown

that the curvature of the surface in a given

direction indicates the confidence of the estimate

f0 in that direction. A scalar confidence measure is

Fig 2. Two-dimensional DWT processing block (top). The image (I) is filtered low-pass and high-pass by h0 and h1, respectively, and
then down-sampled. This operation is firstly applied for columns and then for rows. I(1,1) represents the input for the next decomposition
level. CDWT outputs in frequency domain at level 1 (bottom). I(1,1) and I(2,1) are the low-resolution output images, whereas {D(n,1),
n=1,...,6} are the subband images oriented in the six directions defined by Wavelet filters.

k
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obtained from k for each subpixel. In this way, the

unreliable estimates can be removed, so that they

cannot influence subsequent processing and the

global minimum, rather than a local minimum, can

be found.

Equation 8 provides a very efficient way of

computing f0 over a real interval of values,

avoiding an extensive, time-consuming search

over a discrete set of candidates. The registration

procedure starts at the coarsest level (m =mmax) of

the CDWT decomposition and continues up to the

finest level mmin. The result of the m-level

estimator is a coarse approximation of the MF.

The estimate may be refined by including infor-

mation contained at finer scales according to a

coarse-to-fine strategy. In this regard, motion

estimates and the other surface parameters are

propagated to the next finer level (m =mmaxj1).

First, parameters are scaled and interpolated

(bilinear interpolation is used) to obtain the right

number of samples:

f0 7!2 f0 � 7!�=4 � 7! � ð9Þ
and the interpolated field of level m surfaces

is denoted by SSD¶(m). Next, the SSD(mj1) is

computed as described in the previous section.

The latter is then added (using a weighting factor

x) to the coarser ones, thus producing a new

surface: the cumulative squared difference

(CSDm+1) surface

CSD mð Þ n; fð Þ ¼
xCSD0 mþ1ð Þ

n; fð Þ þ SSD mð Þ n; fð Þ mmin � m < mmax

SSD mð Þ n; fð Þ m ¼ mmax

8<
:

ð10Þ
The cumulative combination of surfaces makes

it possible to incorporate information from every

level of detail in the estimated MF. In addition,

maintaining prior information from lower levels

guides us towards a unique minimum in regions

affected by aperture problems. The procedure is

iterated until a desired level of detail (mmin) is

reached.

Algorithm performances depend on some project

parameters, eg, the maximum and minimum

decomposition levels, mmin and mmax, and the type

of interpolation used for the coarse-to-fine propa-

gation of the estimate. The choice of the optimal

parameters is influenced by the characteristics of

the images to be realigned. To optimize the

parameters for breast MR images, we performed

simulations based on the application of a known a

priori MF. The values that minimized the error in

the estimate were selected. In particular, we used

an eight-sample Gabor filter, FIR interpolating

kernel (windowed sinc), and mmin = 2, mmax = 6.

Patient Data

Fifteen 3-dimensional contrast-enhanced (Gd-

DTPA) MRI examinations were considered for this

study. Data were acquired using a 3-dimensional

FLASH sequence with time to repeat = 8.1 ms, time

to echo = 4 ms, flip angle = 20-, acquisition

time = 67 s, field of view= 320 mm, 192� 256

matrix, and axial slice orientation. The MR images

were acquired on a 1.5-T system (Siemens Vision,

Erlangen, Germany). A sequence of six scans was

acquired. Every scan acquired a volume of 50

slices, resulting in a slice thicknessG 3 mm. After a

basal (precontrast) scan, five postcontrast scans

were acquired 67 s after Gd-DTPA injection

(patients received 0.1 mmol/kg). The examinations

were selected a posteriori among patients acquis-

itions routinely performed at the Department of

Images for Diagnosis and Therapy of the National

Cancer Institute of Milan. Patients’ ages ranged

from 37 to 67 years (median 45). All the selected

studies have been classified by radiologists as

affected by consistent patient motion (Q 5 mm)

between precontrast and postcontrast volumes.

Misalignment was identified by presence of rim

artifacts and areas of false enhancement on sub-

traction images.

Method Evaluation

To test the performance of the proposed

registration method, we used both quantitative

numerical indices and qualitative clinical scores.

As in the work by Denton et al.,13 the new

approach was compared with two techniques

based on rigid registration and affine transforma-

tion, respectively. Two quantitative indices were

computed: MI and correlation coefficient (CC).

They are used as similarity measures between the

precontrast image I1 and the postcontrast image I2
correct for the MF (namely, T(I2), where T(.) is

the estimated transform).

k k
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MI has been largely proposed as an index of

similarity between images.6 Maximization of MI

has also been proposed as a criterion for aligning

MR and multimodality images.8 In this paper, we

used the NMI index8

NMI ¼ H I1ð Þ þ H T I2ð Þð Þ
H I1; T I2ð Þð Þ ð11Þ

to verify the efficiency of the realignment proce-

dure. In Eq. 7, H(I1) and H(T(I2)) are the entropy

of the image I1 and T(I2), respectively, and

H(I1,T(I2)) is their joint entropy.

The CC was computed as

CC ¼
~ I1 � I1
� �

T I2ð Þ � T I2ð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ I1 � I1
� �2

T I2ð Þ � T I2ð Þ
� �2

r ð12Þ

where I 1 and T I2ð Þ are the average intensities of

I1 and T I2ð Þ.
Concerning the clinical evaluation of the regis-

tration procedure, two expert radiologists were

asked to score the subtraction images after

realignment. Subtraction images were obtained

between the precontrast and the first (and the

fourth) postcontrast volume. The clinicians com-

pared the subtraction images obtained without

registration with those obtained by affine regis-

tration and by our method (CDWT registration).

Rigid registration was not included in clinical

evaluation. The following properties of the image

were evaluated: (a) small structure (lesions and

vessels) detectability, (b) definition of breast

borders and structures, (c) definition lesion bor-

ders, and (d) diagnostic usability of the images.

Each property was scored from 0 to 5, with 5

corresponded to top quality.

RESULTS

Figures 3, 4, and 5 show some examples of the

algorithm outcomes. In Figure 3, a postcontrast

image (Fig. 3a), the correspondent nonregistered

subtraction image (Fig. 3b), and the registered

subtraction image (Fig. 3c) are shown, where there

Fig 3. Post-contrast image (a) and the correspondent non-registered (b) and registered (c) images. In (d), (e) and (f) the same images in
which the same contour around the two significant lesions is put.
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are two significant left-breast multifocal lesions. A

contour of lesions is delineated in the postcontrast

image (Fig. 3d), and the same contour is put on both

non-registered (Fig. 3d) and registered (Fig. 3e)

subtraction images. The subtraction puts emphasis

on lesions, but, as demonstrated by contours, the

algorithm preserve even volume and shape of

lesions.

Figure 4 shows a case with several contrast-

enhanced lesions, caused by left-breast multicentric

carcinoma in retroareolar region. A comparison of

maximum-intensity projection reconstruction of

subtraction image after no registration (Fig. 4a),

rigid registration (Fig. 4b), affine registration (Fig.

4c), and wavelet registration (Fig. 4d) is pre-

sented. The comparison shows as the presence of

several artifacts avoids the identification of the

vascular structures in the left-breast internal

region (Fig. 4a,b). In Figure 4c, vessel detection

is recovered and contrast-enhanced lesions are

more clearly defined. The best performance is

realized by CDWTmethod (Fig. 4d); a small medial

lesion (arrow) is also detectable.

In Figure 5a, the punctual uptake to the right in

the internal breast region is hidden by rim artifacts

of the breast glandular tissue structures. The arti-

fact reduction in Figure 5b,c improves the lesion

detectability even if border effect at the cutaneous

Fig 4. A case of multicentric lesion in the left breast. Maximum-intensity projection reconstruction of the images difference after a no
registration, b rigid registration, c affine registration, and d wavelet registration. The arrow shows a small medial lesion in the left breast.
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profile remains. In Figure 5d, thanks to the CDWT

registration, lesions to the left breast are better

visible (open arrow) and, in addition, it is worth

noting that a small controlateral lesion (in the right

breast) is also detectable (arrow).

Table 1 summarizes the results of the registra-

tion quality methods in terms of NMI and CC for

the different types of transformation. All the

measured indices show an improvement after

registration: the best performance was obtained

Fig 5. Subtraction between precontrast and postcontrast images in a cranial position: a no registration, b rigid registration, c affine
registration, and d wavelet registration. In d, the cluster of lesion is better detectable. The right breast is also present to show the small
controlateral lesion (arrow) detectable in d.

Table 1. Normalized Mutual Information and CC of the Patient Studies After Different Types of Registration (Mean TStandard Deviation)

NR RR AR WR

NMI 0.379 T 0.057* 0.391 T 0.050* 0.400 T 0.053* 0.417 T 0.050
CC 0.945 T0.025* 0.954 T0.020* 0.956 T0.020* 0.965 T0.015

NR = no registration, RR = rigid registration, AR = affine registration, WR = wavelet registration
*PG0.001
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by the use of the CDWT. It is worth noting that

the improvement obtained by CDWT algorithm is

significantly different in respect to all the other

methods.

Results of clinical evaluation are summarized in

Figure 5. The mean clinical score was higher

using CDWT algorithm for all the analyzed

features. In particular, comparing affine and

CDWT registration, we have an improvement in

lesion borders (affine registration vs CDWT:

3.1 T 0.8 vs 3.6 T 0.5 P G 0.001, paired t test),

details (3.2 T 0.6 vs 3.6 T 0.5, P G 0.05, paired t

test), and breast borders (3.2 T 0.8 vs 3.6 T 0.4,
P G 0.1, NS). Scores obtained by CDWT registra-

tion were always superior or equal to affine

transformation for all the clinical aspects. In only

two cases affine transformation have a better

score than CDWT. As a consequence, the score

for the global clinical judgement was always

better or equal using CDWT. In one patient (study

3), CDWT reached the maximum score.

DISCUSSION AND CONCLUSION

In this paper, a new method for a 2-dimensional

registration of pre- and postcontrast breast images

has been proposed and validated. The correct MF

is obtained by a multiresolution algorithm based

on CDWT image decomposition. We evaluated

the algorithm with respect to both rigid and affine

registration approaches as in the work by Denton

et al.,13 and we verified its performances using

numerical indices and clinical scores. The pro-

posed approach had the best performances: NMI

and CC indices were significantly higher using the

CDWT method with respect to rigid and affine

registration. These results are also confirmed by

clinical scores (Fig. 6).

Because the goal we want to achieve is the

method applicability for clinical tasks, in the

current version, the method is limited to a slice-

by-slice registration. Even if 3-dimensional regis-

tration has been proposed for breast volume, the

use of 2-dimensional registration is not a limiting

factor for this kind of application;12 in fact, in

clinical practice, the slice thickness of the trans-

versal image is much greater than the within-plane

resolution (ie, pixel width), so that the partial

volume effects make displacements in the axial

direction harder to detect. In addition, taking into

account the prone position on the breast coil,

movements of the patient are more likely to occur

in the transversal plane only, and, finally, changes

in the shape of the breast due to gravitation occur

parallel to the image plane.

There are peculiar properties that make the

proposed algorithm particularly appealing for the

registration of MR breast images: the registration

is (1) nonrigid, (2) pixel-independent, and (3)

computationally efficient. The use of a nonrigid

registration has been suggested for breast’s soft

tissue,7Y12 but only a few algorithms take into

account the fact that pre- and postcontrast images

have different pixel intensities due to the injection

of contrast agent.8Y12 With respect to those works,

in our approach, the nonrigid matching is easily

obtained thanks to the coarse-to-fine strategy, and

it does not need a combination of different

Fig 6. Performances of wavelet registration (wr) with respect to no registration (nr) and affine registration (ar). The graph represents
the mean values of the clinical score for the different clinical aspects (standard deviation bars are superimposed).
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registration techniques for global and local re-

alignment.10,11 Furthermore, the estimation of the

MF is not restricted to a predefined finite set of

values,12 nor does a definition of a pharmacoki-

netic model.8 In addition, it is worth noting that,

in our method, a regularization of the MF can be

easily performed at each level of decomposition

using a confidence filtering.16

A second requirement for realignment of breast

images is pixel independence: MI has been largely

proposed as the optimum similarity measure in

images,6 and it has already been used for breast

image analysis.10,11 In our approach, an extension

of SSD is used as a similarity measure. The SSD

is computed on the image details rather than pixel

values; thus, the solution is independent from

scaling and shifts in the gray levels of the pre- and

postcontrast images. Although the algorithm does

not maximize MI directly, we observed (Results)

an increase of MI using CDWT registration with

respect to rigid and affine method, in demonstra-

tion of the algorithm robustness.

Most of the algorithms10,11 use an iterative

search to find the MF. The limit is the computa-

tional efficiency and problem of local minimum.

In our approach, thanks to the fact that the figure

of merit can be expressed as a quadratic surface

with elliptical contours, the MF can be computed

by simple arithmetic operations. In addition,

because the MF estimation is obtained by a

coarse-to-fine strategy,16 the algorithm is likely

to fast converge to the minimum. Thus, the

algorithm is highly efficient from a computational

point of view: in our Matlab\ implementation,

which is totally automatic, the registration of two

breast volumes (50 slices) takes, on average, less

than 1 min, running on PC.

In conclusion, the proposed approach, even if it

is not 3-dimensional, provides better performance

than rigid and affine ones; it increases the MI

between pre- and postcontrast images and, from a

clinical viewpoint, it improves images readability.

In addition, this performance is obtained by a full

automatic, low-computational algorithm.
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