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Purpose: The purpose of the study was to evaluate the
usefulness of power law spectral analysis on mammo-
graphic parenchymal patterns in breast cancer risk assess-
ment. Materials and Methods: Mammograms from 172
subjects (30 women with the BRCA1/BRCA2 gene
mutation and 142 low-risk women) were retrospectively
collected and digitized. Because age is a very important
risk factor, 60 low-risk women were randomly selected
from the 142 low-risk subjects and were age matched to
the 30 gene mutation carriers. Regions of interest were
manually selected from the central breast region behind
the nipple of these digitized mammograms and subse-
quently used in power spectral analysis. The power law

spectrumof the formP fð Þ ¼ B
�
f β was evaluated for the

mammographic patterns. The performance of exponent β
as a decision variable for differentiating between gene
mutation carriers and low-risk women was assessed using
receiver operating characteristic analysis for both the
entire database and the age-matched subset. Results:
Power spectral analysis of mammograms demonstrated
a statistically significant difference between the 30
BRCA1/BRCA2 gene mutation carriers and the 142 low
risk women with an average β values of 2.92 (±0.28) and
2.47(±0.20), respectively. An Az value of 0.90 was
achieved in distinguishing between gene mutation carriers
and low-risk women in the entire database, with an Az

value of 0.89 being achieved on the age-matched subset.
Conclusions: The BRCA1/BRCA2 gene mutation carriers
and low-risk women have different mammographic paren-
chymal patterns. It is expected that women identified as
high risk by computerized feature analyses might poten-
tially be more aggressively screened for breast cancer.
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INTRODUCTION

M ammography is a valuable tool for the early
detection of breast cancer1,2 and has been

regularly used for breast cancer screening. An

estimated 178,480 new cases of invasive breast cancer
are expected to occur among women in the USA in
2007.3 Many factors increase a woman’s risk of
developing breast cancer,4,5 with the inherited
susceptibility genes, most notably BRCA1 and
BRCA2, accounting for approximately 5–10% of
all cancer cases. Approximately 50% of these gene
mutation carriers will develop breast cancer by the
age of 50 years.6–9 Therefore, a woman at high risk
of developing breast cancer is expected to benefit
from close surveillance and aggressive screening for
breast cancer.
Mammographic parenchymal patterns have been

studied extensively10–25 to demonstrate the rela-
tionship between breast density and the risk of
developing breast cancer. Wolfe10 described the
mammographic parenchymal patterns with four
categories (N1, P1, P2, and DY) based on the
radiographic appearance of prominent ducts and
dysplasia. Visual estimation of the percentage of
fibroglandular tissue on the mammogram as breast
density has also been used to characterize the breast
parenchymal patterns.12,13 Quantitative breast density
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estimation and mammographic pattern characteriza-
tion based on computerized texture analyses14–25

have been also investigated using digitized mam-
mograms. Numerous studies13,18–20 have shown that
increased mammographic breast density yields as
high as a five- to sixfold increase in risk of
developing breast cancer.
In our earlier studies,21,22 regions of interest

(ROIs) were selected from the central breast region
behind the nipple, and then computerized radio-
graphic features were extracted from the ROIs to
characterize both breast density and the parenchy-
mal texture patterns of the breast. Our results
showed that women at high risk of developing
breast cancer tended to have dense breasts with
mammographic patterns that were coarse and low
in contrast. Our results also suggested that there
was a statistically significant decrease in the
performance of the computerized texture features
in the task of distinguishing between high-risk and
low-risk women groups, as the ROI location was
varied from the central region behind the nipple.23

Power law spectrum of the form P fð Þ ¼ B
�
f �

has recently been shown by Burgess et al. to be
related to the background parenchymal pattern of
breast structure on mammography.26,27 Thus, in our
current study, we investigate such power law
spectral analysis on the digitized mammograms of
two groups of women—BRCA1/BRCA2 gene
mutation carriers and low-risk women. Power
spectral analyses were performed on selected ROIs,
and the performance of the individual image β value,
as the decision variable in the task of differentiating
between BRCA1/BRCA2 gene- mutation carriers
and low-risk women, was evaluated using receiver
operating characteristic (ROC) analyses.28,29

MATERIALS AND METHODS

Database

The cases used in this study are summarized here
and have been described in detail elsewhere.22

Women with known BRCA1 and BRCA2 gene
mutations were recruited from the Cancer Risk
Clinic at the University of Chicago and the
University of Pennsylvania Cancer Center where
genetic counseling is available for women at high
risk of developing breast cancer. The gene mutation
carriers were tested at the Clinical Laboratory

Improvement Amendments-approved laboratories
under the institution review board-approved proto-
cols at both institutions. For women known to have
breast cancer, we only used mammograms that were
obtained before the cancer diagnosis. These prior
mammograms were reviewed by an expert mam-
mographer and were included only if they were free
of any detectable abnormalities. The 30 BRCA1
and BRCA2 gene mutation carriers had ages 33 to
55 years, with a mean age of 42.7 years.
The mammograms of 142 low-risk women from

the screening mammography program at the Univer-
sity of Chicago Hospitals were also obtained. These
mammograms were of women who had no family
history of breast or ovarian cancer and no prior
history of breast cancer or benign breast disease.
These women had a less than 10% lifetime risk of
developing breast cancer based on the Gail model.30

Because age is one of the most important risk
factors, 60 low-risk women were randomly selected
and age matched to the 30 BRCA1 and BRCA2
mutation carriers at 5-year intervals for the study.
All mammograms were digitized using a laser

film digitizer (Konica LD 4500; Konica Medical,
Wayne, NJ) at 100×100-μm2 pixel size and 10-bit
quantization level. The laser film digitizer was
routinely calibrated to assure that film optical
density in the range of 0.0 to 3.5 is linearly
translated into digital pixel values. ROIs, 256 by
256 pixels in size, were manually selected from the
central breast region behind the nipple,23 as they
usually include the most dense part of the breast.
These ROIs were used for subsequent power law
spectral analyses. An example of a selected ROI
from a breast image is shown in Fig 1.
The breast percentage dense was estimated by

an expert breast radiologist for the age-matched
data set. The histogram of the percentage dense
distribution is shown in Fig. 2. The 30 gene
mutation carriers have breast percentage dense
ranging from 5 to 90%, with a mean of 43%, and
the 60 age-matched low-risk women have breast
percentage dense ranging from 3 to 90%, with a
mean of 37% ( p=0.22 from a two-tailed t test for
the difference between the two groups).

Power Law Spectral Analysis

Power law spectral analysis performed in this
study is based on the power spectrum from the
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discrete Fourier transformation (DFT) of the ROI
image data. The discrete Fourier transform31 of an
ROI image, f(m, n), of size M by N is given by

F u; vð Þ ¼ 1

MN

XM�1

m¼0

XN�1

n¼0

f m; nð Þ exp �2� i
mu

M
þ nv

N

� �h i
;

u ¼ 0; 1; . . . ;M � 1 v ¼ 0; 1; . . . ;N � 1

ð1Þ
where u and v are the spatial frequencies in the x
and y directions, respectively.
The ROI image used in our study has a finite

number of data samples, which can be represented

by the two-dimensional Rect function in spatial
domain and results in a two-dimensional sinc2

function in the spatial frequency domain.26 To
reduce the discontinuity in the spatial domain, a
window function is applied on the ROI image
before the DFT.26 The radial window function is
based on a Hanning window function,26,32,33 h(r),
which is given by

h rð Þ ¼ 1

2
1� cos

2�r

R

� �� �
;

for r � R and zero elsewhere:

ð2Þ

The power spectrum, P(f) (also called spectral
density), is given by

P fð Þ ¼ F u; vð Þj j2; ð3Þ
where f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

is radial frequency.

The power law spectrum26 is defined by

P fð Þ ¼ B
�
f �: ð4Þ

This power law spectrum was calculated using
selected ROI images. The algorithm used for
estimating the exponent β for an ROI image is as
follows: (1) Compute the power spectrum of the
ROI image, (2) average the power spectrum along
a radial slice, and (3) estimate the exponent β from
the least squares fit of the power law spectrum up
to the Nyquist frequency.26,34

Fig 1. A selected ROI from central breast region behind nipple
on a digitized mammogram.

Fig 2. The histogram of breast percentage dense for the 30
BRCA1/2 gene mutation carriers and the 60 age-matched low-
risk women.
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Computer-extracted Feature

As noted earlier, mammograms from both
BRCA1 and BRCA2 gene mutation carriers and
low-risk women were included in this study. The
exponent β was estimated for each image and was
used as a computer-extracted feature (i.e., the
mathematical descriptor) to characterize the mam-
mographic parenchymal pattern of the specific
mammogram. The usefulness of the exponent β
as a decision variable in the task of differentiating
between the BRCA1 and BRCA2 gene mutation
carriers and the women at low-risk of developing
cancer was evaluated using ROC analysis.28,29

RESULTS

The power spectrum (spectral density), which is
based on the discrete Fourier transform method
with a radial Hanning window, was calculated for
each ROI image in the data set. Figure 3a shows an
example of an ROI image selected from the
BRCA1/BRCA2 mutation carrier group. The spec-
tral density surface plot for the same ROI image is
shown in Fig. 3b. This spectral density surface plot
is sharply peaked at zero frequency and has little
angular dependence. The relationship between
spectral density and spatial frequency (log–log
plot) is shown in Fig. 3c for the same ROI. The
least squares fit from the log–log plot yields a β
value of 2.90 and a coefficient of determination R2

value of 0.99 for the linear fit.
An ROI image selected from a woman at low

risk for breast cancer is shown in Fig. 3d. The
surface plot of the 2D spectral density for the same
ROI image is shown in Fig. 3e, and the log–log
plot between spectral density and spatial frequency
is shown in Fig. 3f. A β value of 2.58 is estimated
from the linear regression line with a coefficient of
determination R2 value of 0.97 for the linear fit.
The least-squares fits were performed between

log spectral density and log spatial frequency on
each mammographic image for the entire database.
Figure 4 shows the relationship between individual
β value and the coefficient of determination R2

value of the corresponding linear regression line
for all the ROI images. A relatively high R2 value
was observed for the entire data set (average R2

value of 0.96 with a standard deviation of 0.02).
Such high R2 value suggests that indeed there is a

linear relationship between log spectral density and
log spatial frequency for the mammographic
patterns of breast structure. The mammographic
parenchymal patterns appear to have an approxi-
mately isotropic power law spectrum of the form
P fð Þ ¼ B

�
f �, as noted earlier by Burgess.26

Larger β values (Figure 4) were obtained for the
database of 30 gene mutation carriers with an
average value of 2.92±0.28. Whereas, an average
β value of 2.47±0.20 was obtained for the
database of 142 low-risk women. The p value
was less than 0.0001 with 95% confidence interval
of 0.36–0.53 for the difference of the two means
from an unpaired t test. The usefulness of the β
value as a decision variable in the task of
differentiating between the gene mutation carriers
and the low-risk women can be indicated in terms
of area under the ROC curve, Az. Using this single
feature, ROC analysis yielded an Az value of 0.90
in differentiating between gene mutation carriers
and low-risk women in the entire database. For the
age-matched subset, an Az value of 0.89 was
achieved. The estimated standard error for Az

value was 0.04, both for the entire database and
in the age-matched subset.

DISCUSSION

In this study, we investigated the power law
spectrum, of the form P fð Þ ¼ B

�
f �, of the

mammographic parenchymal patterns of BRCA1
and BRCA2 gene mutation carriers as well as of
women at low risk for developing breast cancer.
Our results demonstrate that in general, the
mammographic parenchymal patterns appears to
have an isotropic 2D power law spectrum of the
form P fð Þ ¼ B

�
f �, with β in the range from 2.0

to 3.3 for the entire database. Similar observations
on mammographic images, in general, have been
reported by others.32,35

An important issue is the understanding of the
effect of high frequency noise on the power
spectral analysis. In our study, we chose to include
frequencies—up to the Nyquist frequency in the
estimation of the exponent β value, as the purpose
of our study was to differentiate between gene
mutation carriers and low-risk women for breast
cancer risk assessment, rather than to characterize
the parenchymal patterns for human observer
detection tasks. Others have shown that human
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Fig 3. a A selected ROI image from a digitized mammogram of a BRCA1 gene-mutation carrier. b The surface plot of the power
spectrum of the ROI image in a. c The log–log plot of spectral density vs spatial frequency of the ROI image in a. The coefficient of
determination R2 value for the linear fit is 0.99. d A selected ROI image from a digitized mammogram of a low-risk woman. e The surface
plot of the power spectrum for the ROI image in d. f The log–log plot of spectral density vs spatial frequency of the ROI image in d. The
coefficient of determination R2 value for the linear fit is 0.97.
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observer detection performance depends on the
statistical characteristics of the image noise.36

Understanding the image noise properties is
useful in evaluating the effect of image noise on
the visual signal detection performance. From
Fig. 3c and f, it is apparent that image noise is

present at high frequencies in the mammographic
images, as indicted by the slight change in slopes
of the log–log plots at frequencies around one
cycle per millimeter.
BRCA1 and BRCA2 gene mutation carriers and

low-risk woman have different mammographic
patterns, which are indicated by the β value as a
computer-extracted feature (Figure 4). On average,
the larger β values were obtained for mutation

Fig 7. The distribution between the exponent β from the
power spectral analysis and breast percentage dense for the
entire database. The correlation coefficient (r) between β and
percentage dense is 0.26 (P=0.013).

Fig 6. The distribution between the exponent β from the
power spectral analysis and FMP for the entire database. The
correlation coefficient (r) between β and FMP is 0.62 (PG
0.0001).

Fig 5. The distribution between the fractal dimension esti-
mated from the power spectral analysis (DP(f )) and from the
Minkowski fractal dimension (DM(f )) for the entire database. The
correlation coefficient (r) between DM(f ) and DP(f ) is 0.80 (PG
0.0001).

Fig 4. The distribution between the exponent β values of
power law spectrum and coefficient of determination R2 values
for the entire database.
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carriers, and the smaller β values were obtained for
low-risk women. As indicated by the Az value, the
high-level performance in differentiating between
mammographic patterns of gene mutation carriers
and low-risk women was achieved by using the
exponent β value as the single feature.
It is interesting to note that as observed in

Fig. 4, the goodness of the fitting, as indicated by
the coefficient of determination R2 value, is higher
for the gene carrier database as compared to the
low-risk database. While the reason for this is still
under investigation, it may be that women at high
risk for breast cancer have a parenchymal texture
pattern that is more statistically self-similar over a
range of spatial scales than that of women at low
risk, or it may be that because of the coarser nature
of the parenchymal texture pattern of women at
high risk, spectral analysis yields more accurate
calculations within the spatial limitations of the
0.1-mm pixel size.
To further elaborate the relationship between the

exponent β and mammographic parenchymal pat-
terns, the exponent β can be transformed to the
fractal dimension, which is defined by

� ¼ 8� 2D; ð5Þ

where D is fractal dimension.26,37 For the gene
mutation carriers, their mammographic images
appear to have a coarser texture, as reflected by a
lower fractal dimension (larger β value). The
texture pattern from the low-risk women yields
higher fractal dimension (smaller β value). These
observations agree with our previous studies on
fractal analysis of mammograms.25 As seen in
Fig. 5, we obtained a correlation coefficient of r=
0.80 (P value less than 0.0001) between the fractal
dimension estimated using the β value and the
fractal dimension estimated using the Minkowski
algorithm from our earlier studies.25

The exponent β value indirectly characterizes
the frequency content of the texture pattern with a
large β value reflecting a low spatial frequency
component. The exponent β value was compared
with our previous investigations of the first
moment of power spectrum (FMP).24 FMP is
derived from the two-dimensional Fourier trans-
form and is used to characterize the texture
pattern’s spatial frequency content. For the gene
mutation carriers, their mammographic patterns
appear to be dominated by low-frequency content

(larger β value), which is in good agreement with
their FMP features (smaller FMP value). From
Fig. 6, a correlation coefficient of r=0.62 (P value
less than 0.0001) was obtained between β value
and FMP.
A relatively low correlation coefficient (r=0.26)

was observed between β value and breast density
(Figure 7). Mammograms from both the gene
mutation carriers and the women at low risk
spanned the range of densities. Thus, breast
density and parenchymal patterns may act as risk
factors in a complementary way.
In summary, the results from this study agree

with prior research in that mammographic paren-
chymal patterns have an isotropic 2D power law
spectrum of the form P fð Þ ¼ B

�
f �. Furthermore,

we have found that the mammographic images of
BRCA1 and BRCA2 gene mutation carriers
present a coarser texture (i.e., larger β value) than
those of women at low risk for breast cancer. Such
a radiographic marker may aid clinicians in
assessing an individual’s risk of developing breast
cancer and for monitoring the effectiveness of
preventive and therapeutic treatments.
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