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In this paper, we propose a new prostate detection
method using multiresolution autocorrelation texture
features and clinical features such as location and shape
of tumor. With the proposed method, we can detect
cancerous tissues efficiently with high specificity (about
90–95%)and high sensitivity (about 92–96%) by the
measurement of the number of correctly classified
pixels. Multiresolution autocorrelation can detect
cancerous tissues efficiently, and clinical knowledge
helps to discriminate the cancer region by location and
shape of the region and increases specificity. The
support vector machine is used to classify tissues based
on those features. The proposed method will be helpful
in formulating a more reliable diagnosis, increasing
diagnosis efficiency.
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INTRODUCTION

P rostate cancer is the second most commonly
diagnosed cancer in elderly men. Because life

expectancy is increasing, early detection and inter-
vention of prostate cancer is extremely important to
reduce the associated death rate. Different types of
diagnostics, such as digital rectal examination (DRE)
and prostate-specific antigen (PSA), are used today
to detect prostate cancer at an early stage. Those two
methods are used as a combination to make a reliable
diagnosis. However, DRE easily misses small
tumors, and PSA values are dependent on several
factors that are not caused only by prostate cancer.6

Several imaging types can be used to make a more

reliable diagnosis, and transrectal ultrasound
(TRUS) is one of them.
The use of the TRUS test has become wide-

spread because of its ability to visualize the
prostate gland with no injurious effects and at
inexpensive cost as well as its real-time character-
istic. While the TRUS test is currently the most
widely used imaging method, it has relatively low
predictive value in detecting cancer1 because of
considerable overlap of benign and malignant
lesion characteristics, in addition to the fact that
its predictive ability is highly dependent on the
radiologist’s interpretation. To improve the current
TRUS test, a real-time computer-aided diagnosis
system with high performance is required. It is
because the general process of TRUS works in real
time, unlike other imaging modalities such as
computed tomography or magnetic resonance
imaging. The TRUS test system must give some
useful information in real time to the radiologist.
Unfortunately, no TRUS computer-aided diagnosis
system for prostate cancer detection exists till now.
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As an effort to invent a practical computer-aided
system for the TRUS test, an automatic process of
finding cancer in a TRUS image has been
suggested in this paper. This can help radiologists
by suggesting the search region in an ultrasound
image. The automated process can save time
routinely spent for visual inspection of the TRUS
image by radiologists and increase diagnosis
efficiency. Therefore, the suggested method shows
prospective directions for the system available in
real world.
In spite of the importance of early detection of

prostate cancer, only a few works have been
published on computer-aided diagnosis of prostate
cancer. In a research introduced by Ellis et al.,13

the authors report that the TRUS test, using the
features of maximum height, width, volume, and
so on of prostate, showed 64% accuracy in
classifying benign and malignant lesions. In spite
that their research does not show the outstanding
results, it is meaningful for they correlated the

pathological examination with TRUS image fea-
tures. In the TRUS examination described by
Huynen et al.,2 texture features of co-occurrence
matrices, which were introduced by Haralick
et al.,5 were used to classify benign and cancerous
tissue. Good results were reported with this
method (80% sensitivity and 88% specificity).
With a similar approach, de la Rosette et al.3

tested the capacity of the automated urologic
diagnosis expert system to detect cancer. Values
of 90% sensitivity and 64% specificity were
obtained. Llobet et al.6 also used co-occurrence
matrices, known as the gray level dependence
matrix, for texture features. They applied two
classifiers, k-nearest neighborhood and Hidden
Markov models, to classify the pixels and they
compared both results. Their research showed
57.2% sensitivity and 61.0% specificity when the
threshold they used was tuned to get an appropri-
ate balance, while 93.6% sensitivity and 14.8%
specificity in a maximum sensitivity case. Other

Fig. 1. Overall procedure of proposed method.
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texture features such as autocorrelation, frequency,
energy, and discontinuity were used to discrimi-
nate between benign and cancerous tissue by
Yfantis et al.4 However, the author did not
mention the sensitivity or specificity of those
features in their study.4

The existing papers mainly used texture features.
However, discrimination between benign and can-
cerous tissues based only on texture features is
extremely difficult due to the problem of imperfect
supervision (incorrect labeling of specific pixels).6

Pixels cannot be labeled as positive or negative by
simply analyzing the images at the texture level.
Therefore, it is necessary to analyze other features
of cancerous regions as well as discriminative
texture features.
In this paper, we propose new multiresolution

autocorrelation texture features and clinical fea-
tures such as location and shape of tumor for
prostate cancer detection. Multiresolution autocor-
relation can detect cancerous tissues efficiently
with high specificity and sensitivity. Clinical
features help to discriminate the cancer region by
location and the shape of the region, and they
increase specificity of cancer detection. The
proposed method can help urologists to analyze
the prostate TRUS images efficiently, limiting the
search area to the detected cancerous region. It also
shows high specificity together with maintaining
high sensitivity. Therefore, the detected region can
help urologists to reduce the analysis variance
among them. Our method aims to find the location
of the cancer region in the ultrasound image,
searching from the top left to bottom right of the
TRUS image. The location of the cancerous
region, as well as cancer detection performance
itself, is important. The suggested method shows
prospective results for the automated diagnosis;

however, further research is required to accelerate
the speed of this method for availability in real-
time scanning.

CANCER DETECTION METHOD

A large portion of the ultrasound image of the
prostate gland is a nonprostate lesion. To decrease
the search area of the image, the darker region is
segmented by histogram equalization. Since the
prostate region is relatively darker than the sur-
rounding region, the segmented region is consid-
ered to be a prostate lesion. After initial prostate
segmentation, multiresolution autocorrelation is
extracted to be used as a feature. If this autocorre-
lation is extracted from the cancerous region, it is
considered to be a feature of the cancer region. If it
is extracted from the noncancer region, then it is
considered to be a feature of the noncancer region.

Fig. 2. Original image (left) and
transformed image (right).

Fig. 3. Segmented binary image.
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These features become training data for the support
vector machine (SVM). After training is finished,
the sliding window from top left to bottom right of
the image is tested by the trained SVM. If it is
considered as cancer, the center pixel of the window
patch is considered to be a cancer pixel. This
process is repeated until the whole image is tested.
Figure 1 shows the overall procedure of the
proposed method.

Histogram Equalization

Histogram equalization increases the brightness
difference between hypoechoic tissue (dark region)
and hyperechoic tissue (bright region). Since
prostate is darker than the surrounding lesion,
histogram equalization makes prostate much
darker than its surrounding. After histogram
equalization, we make a binary image to limit the

Fig. 4. Autocorrelation coefficients extraction.

Fig. 5. Graph of the extracted autocorrelation coefficients.
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searching area only to the darker region. Each
pixel value in the TRUS image is transformed by
the equation defined by

Sk ¼ T rkð Þ ¼
Xk
j¼0

Pk rj
� � ¼ Xk

j¼0

nj
n

where Sk is transformed value of intensity value rk,
T is the transforming function, Pk is the probabil-
ity, nj is the number of pixels with intensity value
rj, and n is the number of all pixels. After
histogram equalization is done, the darker region
is segmented to be the searching area. The
accuracy of the initial segmentation by histogram
equalization was about 75%, measured by the
accordance with the boundary of prostate. Howev-
er, it included about 98% of the cancerous lesions
that were pointed by a radiologist. If a method to
detect the precise prostate boundary is used, it will
show better performance. Figure 2 shows the result
of histogram equalization, and Figure 3 shows the
segmented binary image. In this research, texture
features are extracted in the segmented region.
Then, only the image window in the prostate

tissue becomes the region of interest (ROI).

Texture Feature Extraction

Different tissues have markedly different tex-
tures. Therefore, texture descriptors of the window
image can be good features of cancerous tissue. In
this research, the brightness of the tissue is used as
a texture feature.7 In addition to brightness, multi-
resolution autocorrelation coeffcients in two
dimensions are used. Figure 4 shows the concept
of autocorrelation, and its coefficients have shapes
like in Figure 5.
Autocorrelation coefficients are defined as,8

� �m; �nð Þ ¼ A �m; �nð Þ
A 0; 0ð Þ

where

A �m; �nð Þ ¼ 1

m��mð Þ n��nð Þ

�
Xm�1��m

x¼0

Xn�1��n

y¼0

f x; yð Þ � �f
� �

� f xþ�m; yþ�nð Þ � �f
� �

where m and n are the x- and y-coordinate values
of the center point, f(x, y) is the pixel values of the
window image, and �f is the mean of f(x, y). How
to choose the size of the image window and

Fig. 6. a 0° direction, b 45° direction, c 90° direction.
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parameters of Δm and Δn are dependent on the
problems. The following matrix is the extracted
texture feature.

V �m;�nð Þ ¼
� 1;1ð Þ

..

.

� �m;1ð Þ

� � �
. .
.

� � �

� 1;�nð Þ
..
.

� �m;�nð Þ

0
BBB@

1
CCCA

Different textures show different shapes of autocor-
relation coefficients. The three-dimensional shape of
autocorrelation is projected into two dimensions
according to specific direction so that the difference
of shape between cancerous tissue and benign
(noncancer) tissue can be noticed clearly in Figure 6.
The red line represents the autocorrelation shape

of cancerous tissue, and the blue line represents the
autocorrelation shape of noncancer tissue. In spite
that it is difficult to discriminate between the two line
shapes in Figure 6a, Figure 6b and c show that
autocorrelation shift Δm, Δn=7–9 may maximize
the accumulated difference between cancer tissue
and noncancer tissue while balancing computational
burden and discriminative ability. To extract multi-
resolution autocorrelation of texture, autocorrelation
coefficients of 12 times down-sampled image, as
well as those of the original size image, must be
extracted. In this study, the radius of Δm=Δn=7
(7×7=49 coefficients) with a 25×25 size image
window for the original image, and in the same
way, the radius of Δm=Δn=5 (5×5=25 coeffi-
cients) with a 15×15 size image window for 1/2
times down-sampled image were used. Figure 7
shows how to extract the feature vector of multi-
resolution autocorrelation coefficients.
The choice on the values of Δm, Δn was made

considering the experimental results that the best
performance was achieved when Δm, Δn=7 for the
original size image. The other values of Δm, Δn
caused the decrease in specificity or sensitivity.

Table 1 shows the influence of Δm, Δn on the
performance. The result of Table 1 was gained by
the experiment on the original size image. As can be
seen, the performance at Δm, Δn=7 achieves the best
result in the original size image. In the similar way,
Δm, Δn=5 achieves the best result in the down-
sampled image in our database. In this research,
those two selections of Δm, Δn=7 in the original size
image and Δm, Δn=5 in the 1/2 times down-sampled
image are combined to be used as texture features.
The extracted autocorrelation features can be

training data for SVM as well as test data for the
trained SVM. The incremental use of the autocor-
relation coefficients from the down-sampled image
enables the texture features to have more informa-
tion about the lesion. Originally, the autocorrelation
coefficients have the information on the self-similarity
of the image window. Therefore, the additional usage
of the coefficients from the down-sampled image
gives the information of self-similarity in the down-
sampled image. The difference between the multi-
resolution autocorrelation and the large-shift single
resolution autocorrelation is that the large-shift
autocorrelation can be easily influenced by small
noise and resolution variance, while the multiresolu-
tion autocorrelation has more robustness to small
noise and resolution variance, as well as much less
computation time. If the tested image window is
classified to be cancerous, its center pixel is labeled to
be a cancer pixel.

Fig. 7. Feature extraction of
multiresolution autocorrelation
coefficients.

Table 1. The Influence of Δm, Δn on Performance

Δm, Δn Sensitivity Specificity

15 79.6 87.8
11 81.5 85.5
9 83.5 86.3
7 87.3 85.1
5 84.1 85.1
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In Figure 8, cancer pixel classification results
are shown. The cancer pixels are colored blue.
However, they still have a lot of false-positive
cancer regions. To reduce the false-positive rate
(FPR), more information about the cancer tissue
must be taken into account.

Clinical Feature Extraction

Texture features can be good discriminative
features of cancer tissue and noncancer tissue.
However, as Figure 8 shows, mere texture features
are not enough for cancer detection. Therefore,
clinical knowledge-based features such as the
location of the cancerous region and the shape of
the cancerous region are applied in this research.

Location Feature Clinically, the peripheral zone
(the lower part of the TRUS prostate image) is the
most frequent site of prostate cancer, and around
70% of prostate cancers originate from the
peripheral zone.9 Therefore, the hypoechoic region
(dark region) with cancer texture in the peripheral
zone has a high possibility of cancer, while the

hypoechoic region with the cancer texture in the
other zone of prostate (upper part of the TRUS
image) has a low possibility of cancer (Fig. 9).

Shape Feature The hypoechoic region of an ellipse
shape has a higher possibility of cancer, while that
of an irregular shape has a lower possibility of
cancer.10 To estimate the cancer-textured region as
an ellipse, the difference between the ellipse and
the boundary of the cancerous region is integrated.
If the cancerous region has a similar shape as an
ellipse, the integration will be small. The longest
axis and its orthogonal axis of cancerous region
boundary become the estimation of radial axes of
an ellipse. Then, the coordinate of the boundary of

Fig. 8. Cancer detection results by texture feature: original images (left) and cancer-detected images (right).

Fig. 9. Cancer possibility of the prostate gland by location.
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the cancerous region and the estimated ellipse is
transformed to a polar coordinate. After coordinate
transformation, the difference over the ellipse and
the boundary is integrated. Figure 10 shows the
cancerous region boundary and the estimated
ellipse. The difference between the ellipse and
the boundary of the cancerous region is defined as

Z 2�

0

r1 � r2ð Þ2
r 2
1

d�

where r1 is the distance from the center of the
ellipse to the boundary contour of ellipse, r2 is the
distance from the center of the ellipse to the bound-
ary contour of the cancer region, and θ is the angle
between r1 and the horizontal axis. Thus, the
clinical feature is composed of location and shape
features. To get appropriate clinical features of
cancer, true locations of cancer regions are provided
by a radiologist. Then, the clinical features of the
true cancer regions become positive training data
for the cancer region, and the clinical features of the
other region become negative training data. To get
the training database for the clinical features, 310
contours from the whole database (51 images) were
gained first. Then 150 contours were randomly
selected from those 310 contours to extract the
clinical features of training data. Among those 150
contours, 80 contours of the true cancer region
become the data for true cancer features, and the
remained 70 contours become the data for noncancer
features. The location and shape features are trained
using SVM. The trained SVM can predict whether a
specific region belongs to the cancer or benign tissue.

In Figure 11, the green and red region is predicted
as a cancer region by trained SVM. The red region
is considered as a cancer region by the radiologist.
The green region is considered as a false-positive
region. The blue region has cancer texture but is
considered a noncancer region by clinical features.

Classification by Support Vector Machine

In the proposed method, SVM11, 12 was used as
the classifier. SVM has an advantage over tradi-
tional neural networks in generalization perfor-
mance. While neural networks such as multiple
layer perceptron perform at a low error rate on test
data, SVM performs excellent generalization,
which is called structural risk minimization. The
purpose of structural risk minimization is to set an
upper bound on the expected generalization error.
While there exist numerous decision planes that
show the zero error rate on the training set, the
performance of the decision planes on test data
will vary. Among those decision planes, the
decision plane with the maximum margin between
two classes will achieve optimal worst-case gen-
eralization performance. While SVM was original-
ly designed to solve problems where data can be
separated by a linear decision boundary, it can still
deal with problems that are not linearly separable
by using kernel functions such as Gaussian
functions, polynomial functions, and sigmoid
functions. In this paper, the Gaussian kernel
function was chosen with the input vector com-
posed of the texture and clinical features. The
classification result of SVM was used to distin-

Fig. 10. Cancer boundary and estimated ellipse (left) and shape difference (right).
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guish between the cancer region and noncancer
region in the ultrasound image.

EXPERIMENTS

Classifications by support vector classification
experiments were carried out to test the performance
of the proposed method. Fifty-one TRUS prostate
images of 51 persons (one image for one person) were
used, which were collected from the Seoul National
University Bundang Hospital, Gyeonggi, Republic of
Korea. The sites of the tumors were pathologically

proven. Five TRUS images were randomly selected to
extract texture features of cancer tissue. Among the
five TRUS images, about 100 image windows of size
25×25 in the original size image and size 15×15 of
the same center pixel in 1/2 times down-sampled
image were collected to be cancer image windows,
and among the same five TRUS images, about 100
image windows were collected to be benign (non-
cancer) image windows. Among those 51 images, 46
images were used for the test, for the other five images
were used for training data. The tested 46 TRUS
images were of about 350×300 size of the same
resolution. True-positive rate (TPR=sensitivity), and

Fig. 12. Desired output by a radiologist (left) and definition of TPR, FPR(right).

Fig. 11. Original images (left) and cancer detected images (right).
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FPR (=1−specificity) must be defined first to evaluate
the performance of the proposed method. We operate
two types of experiments. One is to define TPR
(=sensitivity) and FPR (=1−specificity) on the basis
of the classified area of region, and the other is to
define TPR and FPR on the basis of the number of
true-positive lesions and false-positive lesions.
In the first experiment, it is considered to be

true-positive if the center of the testing window

Table 2. The Results of the Lesion Number-based Performance
of the Proposed Method 2

Detection Accuracy Average Number of False Positive

73.1 2.77
84.6 3.96
92.3 3.73
88.5 3.62
96.4 3.96

Fig. 13. Cancer detected images and true-positive regions (circle)
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exists in the region that a radiologist pointed out to
be a cancer region. It is considered to be false-
positive if the center of the testing window exists
in a region that is not pointed out by a radiologist
(Fig. 12). Those regions that were pointed out by a
radiologist were all pathologically proven.

TPR ¼ number of pixels in cancer�predicted region
number of pixels in true cancer region

FPR ¼ number of pixels in cancer�predicted region
number of pixels in benign region

In the second experiment, lesion-based perfor-
mance was also measured for the practical use. In
this experiment, the lesion is defined as a region
closed by a boundary contour. The number of total
lesions equals to the number of closed contours
(blue region, red region, and green region), and the

contoured regions that passed the test of clinical
features are considered as positive lesions (green
region and red region). Among those positive
lesions, the ones that were proven to be cancer
are true positives (red region), and the other
lesions are false positives (green region).
Differently with the first experiment, the perfor-

mance of the proposed method must be measured by
the accuracy of detected true-positive lesions over
the whole database and the average number of false-
positive lesions in one image. In this experiment, the
comparison between the previous methods is not
meaningful, for their results are not based on the
detected cancer lesion number and the number of
false-positive lesions. Therefore, only the perfor-
mance of the proposedmethod 2 is shown in Table 2.
As seen in Table 2, 96% of cancer lesions are
detected with about 3×4 false-positive lesions.

RESULTS

In this section, experimental results of cancer
detection are presented. By the first definition of
TPR and FPR based on the area as in the previous
section, our method achieved promising results.
Figure 13 shows some result images of the proposed
method. In spite of some amount of false positives
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Fig. 14. ROC curve of various methods on our database.

Table 3. The Results of the Proposed Methods and Previous
Methods

Sensitivity Specificity

Huynen et al.2 80 88
de la Rossette et al.3 90 64
Llobet et al.6 57.2 61.0

The proposed method 1
96 90
92 90.5

The proposed method 2
96 91.9
92 95.9
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(green region), our method has good ability to
detect cancer regions. Table 3 shows the perfor-
mance of the previous methods and the proposed
methods. In Table 3, all values were gained using
their own database. The proposed method 1 is the
method using only multiresolution autocorrelation,
and proposed method 2 is the cancer-detected
images (Fig. 13) and true-positive regions (circle)
method using clinical features and multiresolution
autocorrelation. Since each author has used their
own database, we implemented each author’s
method using our database, and show the receiver-
operating characteristic (ROC) curves of each
method in Figure 14. Figure 14 shows the ROC
curves of each method. We implemented all the
methods of the studies of Huynen et al.,2 Llobet
et al.,6 and Yfantes et al.4 However, the method of
Llobet et al.6 did not produce a meaningful result
for our database. In Llobet et al.6, the ROC curve
using their method can be found. Table 3 gives a
comparison of our methods with the previous
methods. The proposed method 1 used texture
features only and has high sensitivity and high
specificity (96% sensitivity at 90% specificity, 92%
sensitivity at 90.5% specificity), and the proposed
method 2 used clinical textures as well as texture
features. The clinical features have the ability to

increase specificity while maintaining sensitivity.
When the clinical features work with texture
features, it shows 96% sensitivity at 91.9% speci-
ficity. At 92% sensitivity, it achieves 95.9%
specificity, which is sufficiently high. The ROC
curve of the proposed method 2 shows a high peak
around 92% sensitivity. This point seems to show
the best performance. Considering the result of
Table 3 and Figure 14, the proposed method has
high specificity while maintaining high sensitivity.
The ROC curve of the proposed method 2 by

the second definition of performance measure,
based on the number of lesions as in the previous
section, is in Figure 15. The perturbation around
the accuracy of 90% is because of the influence of
clinical features. The clinical features limit mono-
tonic increasing of detection accuracy. The best
selection of the performance seems to be the one
near the perturbation point.

CONCLUSION

The proposed multiresolution autocorrelation
can be used as a good texture feature to classify
cancer tissue. The size of the autocorrelation
window can be determined by the shape of autocor-
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relation. Clinical features such as location and shape
can be used to reduce the FPR. Our method shows
that if texture features are used with clinical features
such as location and shape of the hypoechoic region,
it can maintain high sensitivity with high specificity.
The proposed method can limit the ROI so that
radiologists can focus on the detected ROI, increas-
ing the efficiency of diagnosis. However, the
proposed method may achieve successful result only
for the similar database. If this method is applied to a
large sample database or a database that has a
different prevalence of cancer, it may not achieve
this high sensitivity and specificity. For the applica-
tion of this method in a real situation, further research
is required to decrease the calculation time, and the
further research on the shape feature of cancer may
accelerate the development of a more useful auto-
mated diagnosis-supporting system.
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