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In this paper, a new neural network model inspired by
the biological immune system functions is presented.
The model, termed Artificial Immune-Activated Neural
Network (AIANN), extracts classification knowledge
from a training data set, which is then used to classify
input patterns or vectors. The AIANN is based on a
neuron activation function whose behavior is conceptu-
ally modeled after the chemical bonds between the
receptors and epitopes in the biological immune system.
The bonding is controlled through an energy measure to
ensure accurate recognition. The AIANN model was
applied to the segmentation of 3-dimensional magnetic
resonance imaging (MRI) data of the brain and a
contextual basis was developed for the segmentation
problem. Evaluation of the segmentation results was
performed using both real MRI data obtained from the
Center for Morphometric Analysis at Massachusetts
General Hospital and simulated MRI data generated
using the McGill University BrainWeb MRI simulator.
Experimental results demonstrated that the AIANN model
attained higher average results than those obtained using
published methods for real MRI data and simulated MRI
data, especially at low levels of noise.
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INTRODUCTION

I n today’s clinical settings, biomedical imaging
has become a standard tool used in different

diagnostic fields,2–7 radiation therapy8,9 and surgi-
cal planning.10–12 The increased availability of
biomedical imaging data permits routine noninva-
sive examination of patients to characterize brain
structures and cerebral and spinal vasculature in
aging and neurological disease states. However,
the accurate reproducible interpretation of biomed-
ical imaging studies, which is performed visually
by highly trained physicians, remains an extremely

time-consuming and costly task.13 For the purpose
of aiding physicians in the interpretation of
biomedical imaging studies, several techniques
have been proposed for the segmentation of
biomedical images, including model-based,14,15

Kohonen neural networks,16 regression analysis
image scatter charts,17 energy functional,18 and
statistical or k-nearest neighbor classification.19,20

Based on the wealth of image processing tech-
niques developed for both biomedical and non-
medical images, several projects have been
developed for brain segmentation of Magnetic
Resonance (MR) images, e.g., the Internet Brain
Segmentation Repository (IBSR),107 image regis-
tration of multiple modalities, e.g., Automatic
Image Registration (AIR),21 and anatomical recon-
struction, e.g., Computerized Anatomical Recon-
struction and Editing Toolkit (CARET).22

Segmentation of MR imaging studies has been
achieved based on different schemes for both
single-channel and multi-channel data (T1, T2,
PD)23 including techniques based on neural net-
works,24–28 classification techniques,29–33 or pre-
defined models/knowledge.34,35 The application of
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segmentation techniques to MR images of the
brain can be broadly classified into two categories.
In the first category, segmentation is mainly based
on the direct use of the intensity data contained in
the MR images, with the goal of quantifying
global and regional brain volumes, i.e., white
matter, gray matter, and/or cerebro-spinal fluid
(CSF) volumes, from high-resolution MR images.
Examples of approaches from this category include
techniques that involve fitting a Gaussian or
polynomial model to the data.89–92 Because of
the sensitivity of the Gaussian fitting to noise,
which results in speckled regions in the segmen-
tation, Markov Random Field (MRF) models are
sometimes combined with the fitting in the
segmentation process.93–100 In the second catego-
ry, segmentation is performed in conjunction with
ideal prior segmentations for the purpose of
guiding the segmentation process. This category
is composed of model-based (or atlas-based)
techniques that typically require images to be
coregistered to a segmented standard model image
of the brain.96,103 The registration aims to find a
non-rigid transformation that maps the standard
brain to the specimen to be segmented. The
transformation is then used to segment the brain
specimen into the constituent tissues. In both
categories, the segmentation could be automat-
ed90,96,97 or semiautomated and typically involves
several steps, such as preprocessing of the data,
segmentation, normalization, and in some
schemes, quantification of regional volumes within
a stereotaxic coordinate system.36,37 Brain volu-
metric measurements, based on both categories of
techniques, have been correlated with clinical
measures and are being used with increasing
frequency as objective markers of aging and
disease states. For example, cross-sectional and
longitudinal differences in brain structure during
aging,38 prediction of Alzheimer’s disease,40 pre-
treatment evaluation of patients with temporal lobe
epilepsy,39 objective measures of disease severity
and progression in multiple sclerosis41–44 and brain
parenchymal volume,45,46 and evidence of degen-
eration of extra-motor and frontal gray matter in
patients with Amyotrophic Lateral Sclerosisw
(ALS) and of the corticospinal tract in the subset
of patients with bulbar-onset ALS.47

Published studies1,44,51 suggest that co-analysis of
segmented MR imaging data and functional MR
data can improve the accuracy of assessing the

burden of disease in patients with neurodegenera-
tive, inflammatory/infectious, and neurovascular dis-
orders. In these studies, segmented high-resolution
3-dimensional (3D) (or 2-dimensional) MR anatom-
ical images are co-analyzed with functional MR
data sets such as spectroscopic imaging, magnetiza-
tion transfer imaging, diffusion-weighted imaging,
perfusion imaging, other neuroimaging studies, e.g.,
positron emission tomography, or a coregistered
digital stereotaxic atlas of neuroanatomy.48 The goal
in these studies is usually to generate tissue-specific
or region-specific functional results, thereby improv-
ing sensitivity and accuracy of the functional
measurements. For example, variation of in vivo
metabolite distributions in the normal human
brain between gray and white matter and among
frontal, parietal, and occipital lobes,49,50 more
accurate discrimination between Alzheimer’s dis-
ease subjects and control subjects51 or neurode-
generative diseases such as ALS,53 atrophy
correction of positron emission tomography
(PET)-derived cerebral metabolic rate for glucose
consumption in Alzheimer’s disease patients and
controls,52 and improved understanding of the
course of multiple sclerosis and new prognostic
information regarding lesion formation based on
magnetization transfer histogram analysis of
segmented normal-appearing white matter.44

The evaluation of other central nervous system
(CNS) structures, especially cerebral or spinal
vessels, can also benefit from the application of
segmentation techniques to MRI data sets. Con-
trast-enhanced 3D MR angiography, using a
gadolinium-chelate contrast agent injected intrave-
nously, is a widely used method for noninvasive
evaluation of the carotid and vertebral arteries, and
to a lesser extent the intracranial circulation and
the spinal intradural vessels.54 High-resolution
steady state MR angiography images, suitable
for detection of millimeter-sized CNS vessels,
have simultaneous enhancement of both the artery
and vein blood pools. Consequently, separation of
arteries and veins is an emerging challenge in
magnetic resonance angiography (MRA) analy-
sis.55 Because of the complexity of the vascular
structure, manual approaches to cerebrospinal
vascular tree analysis are impractical, and highly
automated vessel segmentation and display meth-
odology have recently been proposed.56,57

In this paper, an Artificial Immune-Activated
Neural Network (AIANN) model is presented and
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applied to 3D MRI brain segmentation. The AIANN
model aims to perform biomedical imaging data
classification based on artificial immune functional
capabilities, due to their attractive discrimination,
robustness, and convergence characteristics. The
AIANN model builds on our previous work in
Boolean Neural Networks,64–73 which seek to
perform Boolean logic transformations and have
been applied for different applications.58–63 Like
other classification approaches, the AIANN model
aims to establish a robust mapping of the biomed-
ical imaging data sets into a domain where the
overlapping among the different classes or tissues
represented by the data is greatly reduced. What
differentiates the AIANN is the development of a
classification scheme that is conceptually based on
the biological immune system functions, which
enables dynamic learning, storage of domain
knowledge and robust discrimination among clas-
ses. The classification process is modeled after the
bonding process between receptors and epitopes
that is controlled through an energy function
measure to ensure accurate recognition. The artifi-
cial immunology fundamentals motivating the clas-
sification process in the AIANN model will be
presented in “Artificial Immunology” section. Then,
the AIANN model is introduced, along with the
theoretical foundation establishing its characteristics,
in “AIANN Model” section, including the context
for its application to MRI segmentation. This is
followed by the presentation of the preprocessing
steps of the 3D MRI data in “Preprocessing” section.
Experimental results involving the application of the
AIANN model to the 3D segmentation of both real
and simulated MRI data sets are provided in
“Experimental Results” section. This is followed
by the conclusion in “Conclusion” section.

ARTIFICIAL IMMUNOLOGY

In the past few years, several research efforts
have been devoted to biologically inspired sys-
tems, including artificial neural networks, evolu-
tionary computation, DNA computation, and
artificial immunology systems. The immune sys-
tem is a complex distributed structure, formed of
cells, molecules, and organs,86 whose main func-
tion is to defend the body against outsider cells
attacking the body, or from internal carcinogenic
cells. The distributed and logically multilayered
nature of the immune system is depicted in
Figure 1.
When a pathogen attempts to enter the body

from outside, the first line of defense is the skin. If
the pathogen was able to pass through the skin, it
is met with the harsh physiological conditions
inside the body caused by alkalinity of the mouth,
high acidity of the stomach, or higher raised
temperature of the body compared to the outside.
If the pathogen survives these conditions, it
encounters the innate immune system, which arms
human beings when born, where phagocytes,
which are large white blood cells capable of
swallowing the pathogen, can destroy the patho-
gen. If the pathogen penetrates the innate immune
system, it faces the adaptive or acquired immune
system. If the adaptive immune system was able to
recognize the pathogen, white blood cells, called
lymphocytes, secrete enzymes that cause lysis to
the cellular wall of the pathogen, rupturing them
and dispelling the cellular fluid, thus causing the
destruction of the pathogen. In the context of this
recognition process, the adaptive immune system
exhibits many desirable properties including dis-
crimination of pathogens with a very high accura-

Fig 1. Logically multi-layered biological immune system.
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cy, selection of a suitable response, information
retention or memory, and distributed processing.
Artificial Immunology is the field concerned with
developing computational models that mimic the
biological immune system, similar to Artificial
Neural Networks modeling biological neural net-
works. Based on biological immune principles, new
computational techniques have been developed for
tackling problems in various disciplines such as
optimization,75,76 pattern recognition,77,78 neural
network approaches,79–82 data clustering,83,84 clas-
sification on resource-limited basis,104–106 intrusion
detection,88 and many other fields.85

The ability of the immune system to recognize
and differentiate between self cells, those belong-
ing to the body, and non-self cells, those that do
not belong to the body, results from a training
period taking place in the thymus where immune
cells that recognize self-proteins are killed.87 The
training period is termed the tolerization period
and the process is called negative selection.
Recognition of cells takes place through bonding
between the molecules on the surface of the
lymphocyte and those on the surface of the
pathogen.87 Bonding takes place through protein
structures on both surfaces that are called receptors
on the surface of the lymphocyte and epitopes on
the surface of the pathogen. During negative
selection, a large number of lymphocyte cells are
generated and kept for a certain amount of time
inside the lymph nodes. If during that time the
lymphocyte bonds to self-cells it is killed and never
allowed to flow into the blood stream. Recognition
takes place when enough bonds are created between
the lymphocyte and non-self cells, with the number
of bonds varying among different lymphocytes.
Several attractive properties of biological im-

munology lay the foundation of effective mecha-
nisms for handling computational and modeling
problems.75,88 In the context of this paper, the
following properties are of interest:

� Recognition: The ability of the immune system to
recognize, and differentiate between the self and
non-self cells, which enables the immune system
to attack cells that do not belong to the body.

� Memory: The ability of the immune system to
retain old knowledge while adding new infor-
mation about diseases and infections. The
adaptive immune system can learn through
vaccines and old infections and retain the

learned knowledge to be used later in the
generation of the correct lymphocytes.

� Specificity versus Generality: The immune
system cells can be specific to recognize a short
range of pathogens and initiate correct response.
On the other hand, some of cells can be generic
to recognize a wide range of pathogens, but
cannot initiate the correct response, leaving that
to other cells. The AIANN model is primarily
concerned with the identification of members of
a certain class or tissue, i.e., the interest is in
specificity rather than generality. In other words,
the model of the immune system must be
capable of identifying the class of a certain
member (identification of a cell as a specific
pathogen) rather than just identifying that a
member is known (generic identification of a
cell as a pathogen).

AIANN MODEL

The AIANN model presented in this paper
builds on the Boolean Neural Networks (BNN)
whose algorithm65,72 ensures the transformation
of any Boolean function to a threshold function
using simple integer weights with guaranteed
convergence characteristics. The BNN has since
been applied to a number of problems and has been
shown to be qualitatively equivalent to existing
neural networks while performing a given task at a
much faster rate. The simplicity of the network and
its integral weights have also enabled it to be easily
implemented in hardware.66,67 The BNN was suc-
cessfully used for feature recognition,64 supervised
classification using the Nearest to an Exemplar
(NTE) classifier,67 optimization,68,69 nonparametric
supervised classification using the Boolean K-
Nearest neighbors (BKNN) classifier,70 hierarchical
clustering,71 and MRI segmentation and labeling
using a Constraint Satisfaction Boolean Neural
Network (CSBNN).73

Definition of Classification Problem

The classification problem is informally defined
in terms of the ability to discriminate between
members of different joint or disjoint classes in a
given representation domain. Given a set of input
vectors νi, representing feature points in a specific
representation domain, classification can be for-
mally defined as the search for a transform, τc, that
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maps all the members of a class c among the input
vectors, to a one-dimensional domain λ, λ=τ c (νi),
where class c is completely or partially confined to
an interval [ac, bc] that minimizes the probability
of misclassification of that class. Meanwhile, the
transform τc would map the members of other
classes to anywhere outside the interval [ac, bc] so
that the members of class c can be separated by
applying τc and conditionally testing the result to be
inside [ac, bc]. Different artificial immune models
use different forms to represent that transformation
including Euclidean distance, Hamming distance,102

and other functions applied using a vector repre-
sentation of the center of the class and possibly a
radius. Selecting a particular transformation is
affected by how well it can tolerate noise, and
how well it can separate vectors from a certain class
that gets embedded in the range of another.
The recognition property of artificial immune

models enables the formulation of transformations
or neuron activation functions to differentiate
between different classes while the memory prop-
erty is important to the incremental learning
process. The term non-self set will be used to
describe the class to be recognized, and self set
will be used to describe members that belong to all
other classes to be rejected. If the transformation
can separate most of the self set leaving little
overlap between the self and the non-self sets,
this results in minimum false positives or non-self
vectors classified to the self set. For more than one
class, searching for more than one transformation
is required, with each separating the members of a
certain class from all other classes with the least
possible overlaps, thus, achieving the best possible
classification.
In AIANN, a logical model is developed for the

chemical reactions taking place between receptors
and epitopes. Then, the logical model is used as the
transformation needed to classify different input
vectors belonging to different classes. All artificial
immune models present similar logical models for
the chemical reaction between receptors and epi-
topes. The logical model is in the form of bitwise
exclusive-OR (XOR) functions between the binary
representations of the receptors and the epitopes.101

In artificial immune models, the output of the
logical reaction is usually a permutation of the
input vector that is intended to minimize the overlap
between the input vectors belonging to different
classes. After the permutation, a measure is utilized

to estimate the distance between the permuted input
and each class. A random number generator seeded
with the integer equivalent of the permuted input
vector may be used.101 Other models have used the
r-contiguous bits match102 and the hamming dis-
tance match to measure the distance between the
permuted input and each of the classes. However,
several concerns are not addressed in existing
artificial immune models. First, the mutual depen-
dence between different features used in constructing
the input vectors is ignored in the logical reaction or
permutation step. Second, the conversion to integer
or binary representations of the features results in a
loss of accuracy caused by the truncation of the
fractional portion of the features representing the
input vectors to be classified. Third, the measure-
ment of the distance between the input vector and
each class does not consider the codependence of the
different features in the input vectors. The AIANN
model involves a transformation to separate mem-
bers of the different classes that aims to address these
issues as detailed in the following section.

Modeling the Biochemical Reactions
between Epitopes and Receptors

The term detector will be used to refer to the
mathematical model of the receptor. Recognition
takes place when the number of bonds between the
epitopes and the detectors is large enough to
warrant detection, i.e., larger than a threshold
specific to each lymphocyte. Bonds take place
between the atoms of molecules by sharing
electrons in covalent bonds or moving electrons
in ionic bonds. The bonding either results in
releasing energy out of the pair of molecules, i.e.,
exothermic reactions, or requires adding energy to
the pair of molecules, i.e., endothermic reactions.
Most of the reactions have initial conditions in the
form of sufficient heat being available in the
medium or some form of catalyst being present
to lower the starting energy conditions of the
reaction. Similar to these natural immune con-
cepts, an analogous logical reaction is modeled, in
which logical molecules are composed of binary
vectors constructed from strings of ones and zeroes
rather than atoms. The energy is modeled through
intrinsic energies assigned to the ones and zeroes
at every position within the molecule to distinguish
variations of energy among the atoms. Assuming
that the intrinsic energies of a 1 and a 0 at bit
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position i of the molecule are w1i and w0i,
respectively, the energy of a logical molecule M
composed of L atoms can be expressed as:

E Mð Þ ¼
XL
i¼1

w1i Mi þ w0i 1�Mið Þ ð1Þ

For a pair of bonding molecules D and P,
through an endothermic reaction, the energy after
the reaction is higher than the energy before the
reaction, as follows:

E Dð Þ þ E Pð Þ½ �after reaction >
E Dð Þ þ E Pð Þ½ �before reaction

ð2Þ

The reverse relationship is true in the case of an
exothermic reaction. However, for a chemical
reaction to occur, corresponding atoms in a pair
of molecules form a bond if certain initial
conditions are met. Similarly, a logical function
is utilized in the artificial immune model to
determine whether a pair of bits (or atoms) in
two logical molecules can form a bond. The
logical bonding function B(Di, Pi) between
corresponding bits is true, i.e., is equal to 1, if
the two bits can bond and is false, i.e., is equal to
0, when the two bits cannot bond. During chemical
bonding, the exchange or sharing of an electron or
more will change the energies of both atoms
involved in the reaction. This is modeled in the
logical reactions by changing both corresponding
bits that will bond to the pattern of higher energy
in case of endothermic reaction or the pattern of
lower energy in case of an exothermic reaction.
In summary, bonding between two logical mol-

ecules D and P proceeds, depending on the nature
of the chemical reaction, i.e., endothermic or
exothermic, according to the following sequence:

� For each corresponding pair of bitsDi and Pi in
the two molecules, evaluate the bonding
function

B Di; Pi

� � 8i 1 � i � Lj ð3Þ
� If B(Di, Pi) is equal to one at any bit position i:

In case of endothermic bonding :

if w1i > w0i ) Dn
i ¼ Pn

i ¼ 1

if w1i G w0i ) Dn
i ¼ Pn

i ¼ 0

ð4Þ

In case of exothermic bonding :

if w1i > w0i ) Dx
i ¼ Px

i ¼ 0

if w1i G w0i ) Dx
i ¼ Px

i ¼ 1

ð5Þ

The change of the atoms is performed towards the
bit pattern of higher or lower intrinsic energy
depending on whether the reaction is endothermic
or exothermic, respectively. For the purpose of
classification, the two molecules involved in the
reaction will represent the detector and the epitope.

AIANN Classification

In the context of the biological immune system,
recognition is accomplished through a lymphocyte
realizing that a cell in contact does not belong to
the body when the number of bonds between the
receptors and epitopes is larger than a threshold
specific to each lymphocyte. In the artificial
immune model, the purpose is to recognize the
input feature vectors (or epitopes) of multiple
classes. Hence, multiple detectors are generated
for each class during the training (or tolerization)
stage, where the goal is to enhance the recognition
of vectors belonging to a class by detectors
belonging to that specific class while dampening
the ability of detectors belonging to other classes
for recognizing the same vectors. Since the input
feature vectors representing the classification do-
main should be generic enough to enable tackling
of various problem domains, the above described
artificial immune model needs to be extended
beyond binary input vectors to address floating
point data. This entails the utilization of a
continuous differentiable parameter model, which
leads to greater accuracy by allowing the model
parameters to attain continuous values and to
faster training through the generalized probabi-
listic descent.
The extension of the model starts with the

formulation of the bonding function B that repre-
sents one of the 16 possible Boolean functions of
two variables that represent bonding of
corresponding atoms or bits of the detector
molecule D and the epitope molecule P, which
can be expressed as:

B ai; bi; ci; di; Di; Pið Þ ¼ 1� 2dið Þ
ai � bi � cið ÞDiPi þ biDi þ ciPi½ � þ di

ð6Þ
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In this Boolean function, the restriction of
binary parameters ai, bi, ci, di, Di, Pi, can be
relaxed to allow the use of real-valued parameters
if the comparison operator that results in a true
or false value is modeled by a value of 1 to rep-
resent the true condition and a value of 0 to
represent the false condition. In this context, a
sigmoid function S(aYb) can be used to model the
comparison operator or the Boolean condition
since S approaches 1 when a 99 b and approaches
0 when a GG b. Alternatively, the sigmoid function
can be viewed as the continuous approximation of
a unit step and the continuous and differentiable
approximation of the comparison operator. Hence,
the if conditions comparing w1i and w0i can be
expressed as:

C0i ¼ S w0i � w1ið Þ
C1i ¼ S w1i � w0ið Þ ð7Þ

where Cxi is the comparison indicating that
wxi 9w 1�xð Þi . Based on this representation of the
comparison operator, the corresponding bits (or
atoms) of the detector and epitope molecules after
bonding can be expressed as follows for an
endothermic reaction:

Dn
i ¼ 1� Bið Þþ 1� C0ið Þ 1� C1ið Þ½ �Diþ C1i 1� C0ið ÞBi

Pn
i ¼ 1� Bið Þ þ 1� C0ið Þ 1� C1ið Þ½ �Pi þ C1i 1� C0ið ÞBi

ð8Þ
Meanwhile, the corresponding bits of the detec-

tor and epitope molecules after bonding can be
expressed as follows for an exothermic reaction:

Dx
i ¼ 1� Bið Þ þ 1� C0ið Þ 1� C1ið Þ½ �Di þ C0i 1� C1ið ÞBi

Px
i ¼ 1� Bið Þ þ 1� C0ið Þ 1� C1ið Þ½ �Pi þ C0i 1� C1ið ÞBi

ð9Þ
In the proposed AIANN model, more accurate

classifications may be attainable when a mixture of
both endothermic and exothermic reactions is
assumed, i.e., better classification is generated if
the transformation involves a mixture of endother-
mic and exothermic reactions. The mixture bond-
ing reaction model involves the following
normalized representation of the corresponding
atoms after bonding:

Dm
i ¼ 1

R2
niþR2

xi
R2
niD

n
i þ R2

xiD
x
i

� �
Pm
i ¼ 1

R2
niþR2

xi
R2
niP

n
i þ R2

xiP
x
i

� � ð10Þ

where Rni and Rxi are the relative mixture weighing
parameters.

Consequently, the change in energy due to
bonding for bit i can be derived by substituting
Eqs. (8) and (9) into Eq. (10), formulating the
energy after bonding for the detector and epitope
based on Eq. (1) and subtracting the energy before
bonding formulated for Di and Pi based on the
same Eq. (1). The change in energy for bit i,
denoted %Ei, can be expressed as:

�Ei ¼ w1i � w0ið Þ� 1� C0ið Þ 1� C1ið Þ � Bif g DiþPif g

þ 2Bi

R2
niþR2

xi

fR2
niC0i 1� C1ið ÞþR2

xiC1i 1� C0ið Þg�
ð11Þ

The overall change in energy for all the atoms as
a result of bonding between the epitope and
detector j of class k of the artificial immune
classification model can be expressed as:

�E j; kð Þ ¼
XL
i¼1

�Ei ð12Þ

To arrive at an accurate classification, the class
to which the input vector or epitope belongs
should show a change of energy that exceeds the
largest change achieved by any of the detectors of
all the other classes. To mathematically represent
this relationship in a differentiable form that
facilitates the derivation of the training algorithm
for generating detectors, the maximum (or max)
operator must be represented in a differentiable
form as follows:

Gk ¼ 1

N

XN
j¼1

�E j; kð Þ�
" #1=�

ð13Þ

Gk approaches max[%E(j, k)] as ηYV, where N
is the number of detectors for class k. To enhance
the detection of class k to which the epitope
belongs and weaken the ability of other classes'
detectors to bond with the epitope, a decision
function dk is formulated to express the separation
between the highest energy change resulting from
bonding with any of the class k detectors and the
highest change of energy resulting from bonding
with any of the detectors of all other classes. The
decision function dk is expressed as follows:

dk ¼ �Gk þ 1

C � 1

X
j¼1;j6¼k

G�
j

" #1=�
ð14Þ
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where C denotes the total number of classes and
the second term in dk is the continuous represen-
tation of the max operator of all the detectors of all
the other classes. The decision function acquires a
more negative value as the classification is more
accurate since the separation in this case is
maximized.

Model Stability and Convergence

Based on the decision function, a corresponding
loss function lk can be formulated that approaches
zero the more negative the decision function
becomes, i.e., lk approaches zero as the classifica-
tion becomes more accurate. The loss function lk is
defined as follows:

lk ¼ S dkð Þ ð15Þ
where S is the sigmoid function.
The training of the artificial immune computa-

tional model for classification involves searching
for the model parameters that lead to robust
classification that minimizes the classification
errors of the input feature vectors representing
epitopes among the classes. It was shown that a
local minimization criterion of the following form:

�þ ¼ �� "rlk ; ð16Þ
where 0 is the set of model parameters that
describe the current state of the classifier and ( is
the learning rate, will reach a local minimum for
the loss function lk , described by state 0*, with a
probability of one. This minimization criterion has
a high probability of reaching the global minimum
for low values of the slope of the sigmoid function
used in computing the loss. The convergence is
conditional on the learning rate ( having an infinite
integration and the squared value of the learning
rate (2 having a finite integration over time (or
across iterations), which can be expressed as
follows:

Z1
t¼0

" tð Þ dt ¼ 1;

Z1
t¼0

"2 tð Þ dt G1 ð17Þ

A time decreasing learning rate is more advan-
tageous since a lower learning rate enables fine
tuning the parameters around local/global minima
as time grows, i.e., as more iterations are involved.
The learning rate utilized in the context of the

artificial immune computational model is defined
as follows to satisfy both conditions:

" tð Þ ¼ 1

1þ �t
ð18Þ

Z1
t¼0

" tð Þdt ¼ 1

�
log 1þ �tð Þ

����1
t¼0

¼ 1;

Z1
t¼0

"2 tð Þdt ¼ � 1

�
1þ �tð Þ�1

����1
t¼0

¼ 1

�

ð19Þ

This learning procedure is one of the discrimi-
native training algorithms that is commonly called
MCE (Minimum Classification Error) and has been
widely used for training Hidden Markov Models
(HMM). Discriminative training algorithms are
primarily concerned with training the classifier to
recognize specific data sets while rejecting other
datasets. When a given epitope vector is presented
to the classifier for training, the parameters of the
detectors belonging to the corresponding class and
the parameters of the detectors of all the other
classes are updated. This, in turn, enhances the
recognition of the epitope by the detectors of the
class to which it belongs and amplifies the rejection
by the detectors of all other classes. Moreover,
discriminative training is widely recognized for its
speed and convergence and is the least affected by
non–infinite training sets111,112.
The artificial immune classifier parameters that

are to be updated per bit for each detector during
the learning process are ai, bi, ci, di, Di,w1i ,w0i ,
Rxi, Rni. Each parameter v from this set of
parameters is updated by calculating llk, which
in turn requires the evaluation of the partial
derivative of the loss function li with respect to
the parameter v. If v is a parameter of bit i of
detector j for class k to which the training epitope
vector belongs, llk is given by:

rlk ¼ @lk
@dk

@dk
@Gk

@Gk

@E j; kð Þ
@E j; kð Þ
@Ei

@Ei

@�
ð20Þ

while if the training epitope vector does not belong
to class k, llk is given by:

rlk ¼ @lk
@dk

@dk
@Gl

����
l 6¼k

@Gl

@E j; lð Þ
@E j; lð Þ
@Ei

@Ei

@v
ð21Þ
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The partial derivatives in Eqs. (20) and (21) can
be expressed independent of the parameter v,
except for the last one in each equation, as follows:

@lk
@dk

¼ �lk 1� lkð Þ ð22Þ

@dk
@Gk

¼ �1 ð23Þ

@dk
@Gl

����
l 6¼k

¼ G��1
l

C � 1

1

C � 1

XC
�¼1;� 6¼k

G�
�

" #1
��1

ð24Þ

@Gk

@E j; kð Þ ¼
E��1 j; kð Þ

N

1

N

XN
j¼1

E� j; kð Þ
" #1

��1

ð25Þ

@E j; kð Þ
@Ei

¼ 1 ð26Þ

The last partial derivative @Ei
@v in Eqs. (20) and

(21) is dependent on the parameter v being updated.
For example, this partial derivative for the detector
bit Di is expressed as:

@Ei

@Di
¼ ðw1i � w0iÞ ð1� C0iÞð1� C1iÞ � Bi½ � þ @Bi

@Di
�

� �
;

ð27Þ

where

�¼ 2

R2
ni þ R2

xi

R2
niC0ið1�C1iÞþR2

xiC1ið1�C0iÞ
� ��ðDiþPiÞ

and
@Bi

@Di
¼ð1�2diÞ ðai � bi � ciÞPi þ bi½ �

Based on this foundation for the training process,
the procedure involved in the training of an AIANN
for C classes, which are known a priori, involving
N detectors per class proceeds as follows:

1. Average Loss = Any value greater than 1
2. Total Loss = 0
3. Iterations = 0

4. WHILE Iterations G Maximum AND Average
Loss > Minimum_Required

a. Find the learning rate using Eq. (18)
b. Loop through all the training vectors

i. Select randomly a training vector V
ii. Find the derivative @lk

@v for every parameter
v in 0 using Eqs. (20) and (21)

iii. Save all derivatives @lk
@v

iv. Update all the parameters in 0 together to
avoid mutual dependencies using Eq. (16)

v. Total Loss = Total Loss + Last values of lk

c. Iterations = Iterations + 1
d. IF Iterations modulus N = 0 THEN Average

Loss = Total Loss/(C * N), Total Loss = 0

5. END

Modeling Immune System Recognition

In the context of the immune system, recog-
nition is accomplished through a lymphocyte,
realizing that a cell in contact does not belong to
the body when the number of bonds between the
receptors and epitopes is larger than a threshold
specific to each lymphocyte. In the AIANN,
recognition is modeled by creating detectors for
each class. Each of the detectors is implemented
as the activation function of one of the neurons
in the classification layer (or hidden layer) of the
AIANN, as shown in Figure 2. The outputs of
the detectors of each class are connected to a
neuron in the output layer representing the class.
If the number of detectors bonding with an input
vector, i.e., recognizing the input as non-self and
causing their corresponding neurons to fire, is
larger than the threshold of the corresponding
class output neuron, the output neuron fires
indicating recognition of the input vector. The
ambiguity node fires by generating an output
equal to 1 if more than one class neuron declares
the input vector belongs to the corresponding
class, in which case the output layer neurons are
ignored.

AIANN-based MRI segmentation

The AIANN model was applied to the segmen-
tation of brain 3D MRI data. The MR images are
T1-weighted brain scans of 8-bit grayscale resolu-

(28)
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tion, with the skull removed and the background
voxels set exactly to 0s. In this context, the classes
represent the tissue types of the different voxels in
the 3D MRI brain data set, which are white matter,
grey matter and CSF in the case of normal brain
cases. In cases involving abnormal (disease affect-
ed) data that includes other tissues, e.g., multiple
sclerosis lesions, additional classes corresponding
to these tissues are added. Since the intensity
distributions of white matter, gray matter, and CSF
as well as other tissue of the brain may overlap, it
would be insufficient to classify each voxel based
on its grayscale intensity only. Instead, additional
information about the grayscale intensities of the
voxel’s neighbors is required to aid in the segmen-
tation process. For that purpose, a n×n×n neigh-
borhood centered at the voxel to be segmented (or
classified according to its tissue type) is used to
construct the input vector of features representing
the voxel. The larger the value of n, the larger the
size of the neighborhood affecting the voxel
segmentation becomes. Considering the MRI fine

resolution utilized for 3D acquisitions of 1-mm
slice thickness, utilizing a large neighborhood
renders the effect of distant (non-adjacent) voxels
on the tissue type of a voxel more pronounced. For
example, a value of n equal to 7 would result in
voxels that are up to 5.2 mm away to affect the
segmentation of a voxel, which is not conducive
to efficient segmentation for most brain voxels
based on the small anatomical structures including
their position in the brain. In addition, the mar-
ginal gain for some brain voxels when utilizing
a large neighborhood is offset by the additional
time and complexity involved in a larger AIANN
to handle such neighborhood. Consequently, the
neighborhood utilized is based on a 3×3×3
volume surrounding the voxel, i.e., n is equal
to 3, to account for local correlation of tissue
types affected by adjacent voxels while avoiding
the unnecessary influence of distant voxels. In
other words, the neighborhood is composed of
27 voxels (voxel to be segmented and its 26
neighbors). The input vector of features repre-

Fig 2. Artificial Immune-Activated Neural Network (AIANN) Model.
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senting the voxel is composed of the grayscale
intensities of the 27 voxels and, hence, consists
of 216 bits (27 voxels × 8 bits/voxel). The input
vectors representing the voxels in the 3D MRI
data set are presented to the AIANN as con-
tiguous 216-bit binary strings and the classifica-
tion results of the AIANN determine the tissue
types of the voxels at the center of the corre-
sponding neighborhoods.

PREPROCESSING

Since the segmentation is based on the grayscale
intensities, it is sensitive to intensity level varia-
tions. Figure 3a–b demonstrates two slices from
two different MRI data sets, obtained from the
IBSR website, where the differences in brain data
histogram are large as evident from Figure 3d.
If one data set is used for training, better

histogram matching of the data set to be segment-
ed and the training data set will lead to error
reduction. Nonparametric histogram correction
algorithms, e.g., histogram equalization and histo-
gram stretching, do not guarantee good matching
between a pair of histograms because there is no
control on how the shape of the histogram will be
modified. Moreover, histogram equalization moves

voxels among bins in an effort to equalize the
histogram distribution, which entails changing the
intensity levels of a set of voxels irrelevant of what
tissue those voxels originally represented, and what
tissue will that final bin to which they are moved
represent.
To address these concerns while matching

against the training data set, contrast–brightness
correction is first applied to maximize the inter-
section between the histograms of the two data sets
based on the following:

I 0 i; jð Þ ¼ �I i; jð Þ þ �; ð29Þ
where α is the contrast and β is the brightness.
After modifying the brightness/contrast, empty

bins appear in the brain volume histogram, an
example of which is shown in Figure 4, depicting
the histogram of data set 15_3 after contrast
modification. Empty bins result in errors during
histogram intersections if not corrected. To avoid
those errors, the data set is filtered using a spatial
anisotropic filter after the brightness/contrast cor-
rection. The 3D anisotropic filter that was previous-
ly discussed in the context of MRI conditioning74

was used for that purpose. The parameters used for
filtering were κ=5 for 10 iterations.
As the brain volumes vary from one MRI study

to another, calculating the histogram intersections

Fig 3. Intensity level correction: (a) sample slice from data set 1_24 (training data set); (b) and (c) sample slice from data set 15_3
before and after intensity correction, respectively; and (d) original histograms of 1_24 and 15_3 data sets.
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of large and small brain volumes is unreasonable.
This necessitates that the histograms be normalized
against the total number of voxels in their
corresponding data sets.
Given two data sets IA and IB, the histogram of

data set Ix at intensity level v is given by H(Ix, v).
Let bH Ix ; vð Þ be the normalized histogram of data
set Ix at intensity v, where the histogram is
normalized against the total number of voxels in
the brain as follows:

bH lA; vð Þ ¼ H lA; vð ÞRvmax
v¼0

H lA; vð Þdv
ð30Þ

As maximizing the histogram intersection
means maximizing the integral under the histo-
gram intersection, then

bHint ¼
Zvmax
v¼0

bH lA; vð Þ \ bH lB; vð Þ dv; ð31Þ

where Ĥ(IA, v) ∩ Ĥ(IB, v) = min(Ĥ(IA, v), Ĥ(IB, v)).
If IA is the data set used for training and IB is the

data set to be segmented, the brightness/contrast of
IB needs to be adjusted to maximize the intersec-
tion expressed in Eq. (31). Since the data set will
be segmented after filtering with the anisotropic
filter, the brightness/contrast adjustment needs to
be maximized after applying the filter. However,

the anisotropic filter depends on the spatial dis-
tribution of grayscale intensities of the voxels,
which are used to calculate the filter gradients, and
changing the brightness/contrast alters those gra-
dients. Recursive adjustment of both brightness
and contrast was evaluated through varying the
brightness till bH int is maximized and then varying
the contrast till bH int is maximized in a repetitive
fashion. Results showed that the recursive adjust-
ment method got trapped in local maxima and was
not able to achieve better histogram intersection
than 0.85.
As a result, searching for the values of α and β

that maximize Eq. (31) after anisotropic filtering is
carried out using genetic algorithms. The genetic
algorithm has a population of chromosomes,
each with one floating-point value for brightness
and another for contrast. The population was
initialized randomly with contrast values ranging
from zero to three, and brightness values ranging
from −64 to +64. The initialization ranges were
empirically chosen to encompass a wide range of
intensity variations. Mutation was carried out by
multiplying each parameter in the new offspring
by a random number from 0.999 to 1.001, which
corresponds to a mutation of ±0.1%. The
number of chromosomes in the population was
100, and the crossover ratio was 20%. Fitness of
each individual chromosome was found by
calculating the corresponding bH int . The compu-
tation of the fitness involves applying the bright-
ness/contrast to the data set and then filtering using
the anisotropic filter with κ=12 for one iteration
only. Although the filter will be applied during

Fig 4. Histogram of data set 15_3 after contrast modification.
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segmentation with different parameters (κ=5 and
10 iterations), setting those parameters during
brightness/contrast adjustment dramatically in-
creased the search time.
Figure 3c shows a slice from data set 15_3 after

intensity level correction and Figure 5 demon-
strates how the histogram intersection between the
two data sets has changed.

EXPERIMENTAL RESULTS AND DISCUSSION

Segmentation of Real 3D MRI Brain Scans

A set of experiments was performed using real
MRI brain scans to evaluate the segmentation
performance of the AIANN model and compare
with published techniques. This comparison is
typically difficult to perform since most of the
published techniques are applied to different MRI
data sets that are not readily available. To perform
the comparison, 20 real MRI brain data sets, which
are publicly available on the Internet at the web
site of the Center for Morphometric Analysis at
Massachusetts General Hospital107 were used. The
20 real MRI data sets are T1-weighted normal
cases that were created, analyzed, and manually
segmented as part of the Internet Brain Segmenta-
tion Repository (IBSR), an NIH-funded project.
The IBSR data sets were selected for the compar-
ison since they establish a common basis for the
results of published techniques. The data sets also
involve different levels of difficulty including low
contrast scans, relatively smaller brain volumes,

sudden intensity variations, and large spatial
inhomogeneities, which enable the evaluation of
the effect of signal-to-noise ratio, contrast-to-noise
ratio, shape complexity and size variations on the
segmentation results of the AIANN model. The
results of the manual segmentation and five
automated segmentation techniques are compared
and published on the IBSR website using the
Tanimoto coefficient T given by:

T X ; Yð Þ ¼ X \ Yj j
X [ Yj j ; ð32Þ

where |r| represents the number of voxels in region
r, X and Y are the segmentations obtained for a
tissue type using the manual and automated
techniques, respectively. The Tanimoto coefficient
is computed for both gray matter and white matter.
The training of the AIANN model was per-

formed using all the slices of the 3D MRI data set
1_24. Then, segmentation of the other 19 data sets
was performed using the trained model. Before
segmenting each data set, the data set was filtered
using the anisotropic filter with κ=5 and for 10
iterations and then intensity level correction was
applied. Table 1 shows the effect of intensity level
correction on the histogram intersection of the 19
data sets with the training data set 1_24, where it is
clear that some of the data sets had very low initial
histogram intersection, and if segmentation was
attempted without intensity level correction, worse
results would have been obtained.
The AIANN segmentation results obtained, in

terms of the Tanimoto coefficient, for the 19 MRI

Fig 5. Histogram intersection of 1_24 and 15_3 after intensity levels correction.
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data sets are shown in Table 2 for two experi-
ments. Experiment 1 involves obtaining the results
without intensity correction to increase the histo-
gram intersection with the training data set,
whereas Experiment 2 includes the intensity
correction. The results clearly demonstrate that

intensity correction has a positive impact on the
accuracy as the effect of contrast variation between
the training data set and the data sets to be
segmented was reduced.
Then, the average Tanimoto coefficient obtained

for the AIANN segmentation results of IBSR data
sets was compared to results for the same data sets
obtained using other techniques that were either
registered at the IBSR website or recently reported
using the same data sets96 as shown in Table 3. It
is clear from Table 3, which also includes the
average Tanimoto coefficient between manual
segmentations of different experts to represent the
ground truth, that the segmentation results
obtained using the AIANN model exhibited
improvement in the objective measure of segmen-
tation accuracy over published methods. In the case
of the MPM-MAP method,96 AIANN matched the
performance for white matter while providing an
advantage for gray matter. Figure 6 shows sample
slices from the IBSR data sets along with the
segmentation results of the AIANN model and the
manually segmented results obtained by a human
expert.
The sensitivity of the segmentation results of the

AIANN model to the choice of training data set
was evaluated by varying the training data set

Table 2. AIANN Segmentation Results of IBSR Data in Terms of Tanimoto Coefficient

Experiment #1 (Without Intensity Correction) Experiment #2 (With Intensity Correction)

Data set White Gray White Gray

100_23 0.694 0.817 0.709 0.824
11_3 0.718 0.822 0.727 0.826
110_3 0.648 0.798 0.671 0.807
111_2 0.667 0.788 0.686 0.798
112_3 0.675 0.804 0.690 0.813
12_3 0.731 0.832 0.732 0.830
191_3 0.710 0.817 0.701 0.812
13_3 0.695 0.815 0.693 0.810
202_3 0.706 0.809 0.708 0.809
205_3 0.720 0.805 0.720 0.803
7_8 0.618 0.765 0.691 0.807
8_4 0.608 0.742 0.679 0.789
17_3 0.575 0.735 0.660 0.786
4_8 0.454 0.666 0.561 0.720
15_3 0.523 0.701 0.538 0.711
5_8 0.127 0.553 0.641 0.778
16_3 0.579 0.745 0.603 0.757
2_4 0.455 0.662 0.523 0.693
6_10 0.230 0.539 0.648 0.771
Average 0.586 0.748 0.662 0.787

Table 1. H

)

int for Each Data Set Before and After Intensity
Correction Against 1_24

Data set Before Correction After Correction

100_23 0.92 0.93
11_3 0.88 0.93
110_3 0.85 0.93
111_2 0.89 0.95
112_3 0.82 0.95
12_3 0.79 0.93
191_3 0.81 0.93
13_3 0.82 0.89
202_3 0.86 0.93
205_3 0.90 0.94
7_8 0.94 0.95
8_4 0.92 0.96
17_3 0.78 0.94
4_8 0.67 0.91
15_3 0.12 0.92
5_8 0.23 0.82
16_3 0.12 0.93
2_4 0.53 0.90
6_10 0.41 0.76
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among 1_24, 100_23, 11_3, 12_3, and 13_3. An
accelerated version of the training algorithm was
utilized in this evaluation, which involves a
reduced number of iterations to provide a rapid
feedback about the effect of training data set. For
each training data set, the trained AIANN model
was used to segment the other 19 data sets after
intensity correction to increase the intersection
with the training data set and anisotropic filtering
(κ=5 and 10 iterations). The average Tanimoto
coefficient for the other 19 data sets is shown in
Table 4 for each training data set, where the

variation is clearly limited, indicating that the
effect of the training set on the AIANN segmen-
tation results is relatively low.

Segmentation of Simulated 3D MRI Data

In this set of experiments, the AIANN model
was evaluated for the segmentation of simulated
MRI brain data sets generated using the BrainWeb
MRI simulator,108 which enables the creation of
high-quality simulated MRI data sets from known
anatomical models or ground truths for different
levels of noise and spatial inhomogeneities. The

Table 4. AIANN Segmentation Results in Terms of Tanimoto
Coefficient

Training Data Set

Average Tanimoto Coefficient for Other 19 Data Sets

White Gray

1_24 0.627 0.710
100_23 0.643 0.725
11_3 0.629 0.717
12_3 0.654 0.728
13_3 0.638 0.718

Table 3. IBSR Results

White Gray Method

0.567 0.564 Adaptive MAP
0.562 0.558 Biased MAP
0.567 0.473 Fuzzy c-means
0.554 0.55 Maximum Aposteriori Probability (MAP)
0.551 0.535 Maximum-Likelihood
0.571 0.477 Tree-structure k-means
0.662 0.683 MPM-MAP 0
0.662 0.787 AIANN Model
0.832 0.876 Manual (4 brains averaged over 2 experts)

Fig 6. Sample slices from IBSR data sets: (a) 100_23, (b) 11_3, and their AIANN and manual segmentations.
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MRI parameters utilized for the generation of the
simulated MRI brain data sets are repetition time
(TR) of 18 ms, echo time (TE) of 10 ms, and flip
angle of 30°, which are identical to the parameters
used in other published methods97,98 to establish a
common basis for comparison. The simulated MRI
data sets were generated for varying levels of noise
from 0% to 9% and no spatial inhomogeneities. The
noiseless data set was used in the training of the
AIANN model. Then, the trained AIANN model
was applied to the segmentation of the other data
sets after they were filtered using the anisotropic
spatial filter for 10 iterations, with the κ parameter
matched to the noise level (κ=1.5σ)110, where σ is
the noise standard deviation that is estimated as
percent noise multiplied by the mean of the white
matter,109 according to the definition of the percent
noise in the BrainWeb simulated MRI data sets.

For nonsimulated real MRI data, the anisotropic
filter can be similarly applied with an estimate of
noise standard deviation in any small region of
uniform intensity in the background of real MRI
data. The segmentation results of the AIANN
model are shown in Figure 7 for white matter
and gray matter in terms of the Dice coefficient,
which was previously used to report the results of
published methods for the same data and is defined
as:

D X ; Yð Þ ¼ 2 X \ Yj j
Xj þj Yj j : ð33Þ

Figure 7 also includes the reported results of
published methods involving Hidden Markov
Measure Field (HMMF)97 and the Automated

Fig 7. Dice coefficient for BrainWeb-simulated MRI data sets: (a) White matter and (b) gray matter. Segmentation performed using the
AIANN model, HMMF,99 and ATCM100.
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Tissue Classification Model (ATCM)98 that use
the same simulated data from BrainWeb for
comparison. The results of the other two techniques,
i.e., HMMF97 and ATCM98, were extracted from
the respective publications that report the segmen-
tation results of the same datasets generated through
the BrainWeb MR simulator. In this manner, the
comparison does include the parameters’ tuning of
these techniques as reported in the respective
publications97,98. Comparison of the segmentation
results in Figure 7 indicates that the presented
AIANN model performed better than the automated
tissue classification model98 when applied to the
BrainWeb simulated MRI data at all noise levels,
with the advantage increasing at higher noise levels
caused by the deterioration in performance of the
ATCM. In comparison with the method based on
HMMF97, the AIANN performed marginally better
than the HMMF based method at lower noise levels
(1% and 5%), with the advantage decreasing for
higher noise levels (7% and 9%). The decrease is
caused by the reliance of the HMMF on prior
probabilities, or a brain model/atlas, to influence the
decision about individual brain voxels, which aids
the segmentation process especially when higher
levels of noise are affecting the MRI data. On the
other hand, AIANN only relies on the anisotropic
diffusion filter to reduce the effect of noise and as
the noise level increases the potential for affecting
regions of sharp intensity variations increases and
the filter influence on such regions is inherently
throttled based on the filter diffusion function that
aims to preserve the sharp intensity variations, or
edges, in the filtered image data.

CONCLUSION

In this paper, a novel MRI brain segmentation
approach was presented based on an Artificial
Immune-Activated Neural Network (AIANN)
model. The AIANN model is based on an
artificial immune activation function that concep-
tually mimics the biological adaptive immune
system, which enables dynamic learning, storage
of domain knowledge, and robust discrimination
among classes. The classification process is
modeled after the bonding process between
receptors and epitopes in the immune system
that is controlled through an energy function/
measure to ensure accurate recognition. The

artificial immunology fundamentals motivating
the classification process in the AIANN model
were presented. The AIANN model was detailed
and the theoretical foundation establishing its
characteristics was developed.
The contextual formulation of the problem of

3D MRI segmentation of the brain was developed
and tackled using the AIANN model including the
preprocessing steps involved in conditioning the
3D MRI data. The AIANN was evaluated based
on the segmentation of both real MRI data,
obtained from the MGH IBSR repository, and
simulated MRI data generated from the BrainWeb
MRI simulator. The comparison of the segmenta-
tion results obtained using the AIANN to those
obtained using published methods has demonstrat-
ed its advantage for real MRI data and simulated
MRI data, especially at low levels of noise. Future
work will address the effect of including other MR
contrasts, such as T2-weighted and FLAIR, on the
segmentation results of the AIANN model, espe-
cially in the context of brain data for patients with
brain lesions, e.g., due to Multiple Sclerosis (MS)
or Stroke.
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