
A Medical Imaging and Visualization Toolkit in Java

Su Huang, Rafail Baimouratov, Pengdong Xiao, Anand Ananthasubramaniam, and Wieslaw L. Nowinski

Medical imaging research and clinical applications usu-
ally require combination and integration of various
techniques ranging from image processing and analysis
to realistic visualization to user-friendly interaction.
Researchers with different backgrounds coming from
diverse areas have been using numerous types of
hardware, software, and environments to obtain their
results. We also observe that students often build their
tools from scratch resulting in redundant work. A
generic and flexible medical imaging and visualization
toolkit would be helpful in medical research and educa-
tional institutes to reduce redundant development work
and hence increase research efficiency. This paper
presents our experience in developing a Medical Imaging
and Visualization Toolkit (BIL-kit) that is a set of
comprehensive libraries as well as a number of interac-
tive tools. The BIL-kit covers a wide range of fundamen-
tal functions from image conversion and transformation,
image segmentation, and analysis to geometric model
generation and manipulation, all the way up to 3D
visualization and interactive simulation. The toolkit
design and implementation emphasize the reusability
and flexibility. BIL-kit is implemented in the Java
language so that it works in hybrid and dynamic
research and educational environments. This also allows
the toolkit to extend its usage for the development of
Web-based applications. Several BIL-kit-based tools and
applications are presented including image converter,
image processor, general anatomy model simulator,
vascular modeling environment, and volume viewer.
BIL-kit is a suitable platform for researchers and stu-
dents to develop visualization and simulation proto-
types, and it can also be used for the development of
clinical applications.

KEY WORDS: Medical imaging, visualization, toolkit,
Java, anatomy model

INTRODUCTION

T he capabilities of radiology equipment are

increasing dramatically, and three-dimensional

(generally n-dimensional) medical images are be-

coming important and critical in clinical diagnosis

and therapy. This situation drives the research

interest in medical image analysis and modeling.

This also elevates demands for suitable medical

imaging research and development platforms and

environments that can rapidly turn research ideas

into prototypes and clinical applications.

Medical images can be interpreted as n-dimen-

sional digitized signal sequences. Therefore, some

of the fundamental signal processing algorithms

are frequently being used in preprocessing and

advanced analysis. Because of historical reasons

and commercial competition as well as of

researchers’ personal customs and preferences,

images are created, communicated, and trans-

ferred in numerous formats. The diversity of

medical image formats has always been an

aggravating problem in our research experience.

During analysis of scans, various modeling algo-

rithms may be applied. Finally, the results of

analysis and modeling need to be validated or

verified by researchers and clinicians, which

requires these results to be presented in a user-

friendly and quantitative way. To achieve this

purpose, modeling and visualization techniques

are used frequently to show the investigation,

analysis, and modeling results in the most pre-

sentable way. Modeling and visualization are also

From the Biomedical Imaging Lab, Agency for Science,

Technology and Research, 30 Biopolis Street, #07-01 Matrix,

Singapore 138671, Singapore.

Correspondence to: Su Huang, Biomedical Imaging Lab,

Agency for Science, Technology and Research, 30 Biopolis Street,

#07-01 Matrix, Singapore 138671, Singapore; tel: +65-64788406;

fax: +65-64789050; e-mail: huangsu@sbic.a-star.edu.sg

Copyright * 2005 by SCAR (Society for Computer

Applications in Radiology)

Online publication 07 December 2005

doi: 10.1007/s10278-005-9247-6

Journal of Digital Imaging, Vol 19, No 1 (January), 2006: pp 17Y29 17



very important communication bridges between

researchers and clinicians.

Working in a research institute, we observed

that many students have been spending much time

doing redundant work because of their different

backgrounds and lack of suitable reusable source

code. This evokes us that a proper software

development and prototyping platform will be

useful and important to accelerate our research

work. On the other hand, sharing work and data

among heterogeneous computer systems is anoth-

er issue in our research environment. Researchers

are reluctant to give up using their favorite

computer systems, and they build tools on plat-

forms they are familiar with. Therefore, a cross-

platform toolkit certainly benefits the researchers,

the students, and the organization.

The goal of this work is to address these issues

to increase research efficiency. The emphasis of

toolkit design is concentrated on the following:

1. Portability: The libraries and tools should be

platform-independent, so that the toolkit can be

used in a heterogeneous computing environ-

ment with minimized redevelopment work.

2. Reusability: The design of the toolkit object

classes should follow the object-oriented prin-

ciple, so that the object classes are well self-

encapsulated, with high cohesion and minimum

coupling.1 Meanwhile, the object classes shall

be well tested and documented so that the users

will be able to use them without knowing much

about the implementation details.

3. Flexibility: The toolkit shall be a pool of

generalized object classes with the above

reusability features, and therefore, researchers

and students can select relevant object classes

to quickly assemble a tool or a prototype in

their research interests.

4. Extensibility: The new modules developed by

researchers and students shall easily be incor-

porated into the toolkit.

RELATED WORK AND OUR APPROACH

Existing Toolkits

There are several medical imaging toolkits

available either in the public domain or the

commercial market. One of the commercial pack-

ages, the de facto gold standard in medical image

analysis, is Analyze from Mayo.2 It is an

integrated suite of complementary tools for fully

interactive display, manipulation, and measure-

ment of multidimensional biomedical images. The

system is developed using C++ with Tcl/Tk.

VTK3,4 is a public domain software package

developed for 3D graphics and visualization. It is

developed in C++ and relies on Tcl/Tk or Java as

its cross-platform graphical user-interface (GUI)

support. VTK provides only basic image-process-

ing functionality. Besides, to the developers, they

have to master a second language, either Tcl/Tk or

Java. Another packaged under recent active

development is the Insight Segmentation and

Registration Toolkit (ITK).5 ITK is aiming to

implement the commonly used medical image

segmentation and registration algorithms. Similar-

ly, it is developed in C++, and therefore, to

overcome the cross-platform GUI issues, the

application developers also have to master a

second language such as Tcl/Tk, Java, etc. The

above-mentioned systems require a second lan-

guage or script to overcome the cross-platform

problem. Moreover, they are not as convenient as

Java when it comes to developing Web-based

applications.

There are also medical imaging packages

developed by using Java. One of them is

ImageJ—a medical imaging software developed

by Rasband6 at NIH. ImageJ provides a consider-

able number of basic image operations. However,

most of the image-processing operations are

actually 2D, sometimes with capabilities to pro-

cess image stacks. In addition, we found that its

3D modeling and visualization functions are not

sufficient enough to fully support our research

activities. Another Java-based medical imaging

package, NeatVision developed by the Vision

Systems Group of Dublin City University,7 pro-

vides an impressive visual image-processing flow

interface, with strong image-processing function-

ality. However, similar to ImageJ, they are

concentrating more on imaging rather than on

geometric modeling and manipulation.

We have observed that most of the similar

toolkits are more or less focused on either imaging

or visualization or at least inclined to either one

area. There are recent attempts8,9 to integrate

packages from both areas to provide more

comprehensive toolkits for medical imaging

researchers; however, they are facing problems

18 HUANG ET AL.



of various styles. The development of a compre-

hensive toolkit was also our objective when we

were starting our project a few years ago, with

imaging and visualization functionalities consid-

ered and implemented together consistently.

Java and Our Strategy

Our medical imaging and visualization toolkit

aims to provide a foundation infrastructure for

institutes conducting medical imaging researches.

Based on years of our medical imaging research

experience, both medical analysis ability as well

as strong visualization capability are required.

Medical image research tasks need generic image-

processing algorithms ranging from simple thresh-

olding, contrast enhancement, etc., up to advanced

sophisticated image analysis algorithms incorpo-

rating anatomical knowledge.10,11

The Java language was developed by Sun

Microsystems Inc.12,13 Its key feature is Bwrite

once and run everywhere.^ Working in a dynamic

and fast-pacing biomedical research environment,

we have acquired experience to deal with hetero-

geneous hardware and software platforms and

constructing research prototypes within minimum

time limits.

Java is designed to meet the challenges of

application development in the context of hetero-

geneous, network-wide distributed environments.

Paramount among these challenges is secure

delivery of applications that consume the mini-

mum of system resources, can run on any

hardware and software platform, and can be

extended dynamically.14

Besides the advanced design philosophy of Java

language, it has also brought the quality and

productivity to developers. In addition, Java

provides some optional packages that are very

helpful in the development of image processing

and visualization functions, namely, the Java

Advanced Imaging (JAI) components of Java

Media Framework (JMF) and the Java3D compo-

nent. The advantages of these components will

be addressed in The Toolkit Architecture and

Modules.

The Java3D15,16 component provides the visu-

alization developers with a set of higher-level APIs

compared to most graphics packages which many

developers are still using, such as OpenGL.17 This

feature will significantly reduce the heavy burden

of the toolkit developers and hence the further

application developers using our toolkit.

Network-based related medical imaging re-

search and applications are increasingly popular.

Java, as a language environment designed for hete-

rogeneous platforms and distributed computing,

is an ideal language in producing network-based

end-user applications.14 The recent developed tech-

nology of Java Web Start has delivered a very

convenient deployment solution to deploy Java

applications.18

These advanced features, the seamless compat-

ibility of Java optional components and the run-

everywhere promise, allow us to build a medical

imaging and visualization toolkit adapted to

dynamic and heterogeneous hardware and soft-

ware platforms of our research environment, such

as what is shown in Figure 1.

One of the questions debated is Java perfor-

mance. Indeed, the performance of Java is still not

as good as some optimized languages, such as

C++. However, the speed of Java has been

significantly improved in the recent years and is

almost comparable to C++.19 On the other hand,

the dramatic growth of hardware capacity and the

Fig 1. The BIL-kit development and application paradigm.

A MEDICAL IMAGING AND VISUALIZATION TOOLKIT IN JAVA 19



decreasing hardware price have enormously re-

duced the user concerns about the hardware

performance.

In view of software productivity and quality,

Java is observably better than C++. A detailed

investigation of Java vs. C++ comparison found

out Java to be certainly better in both software

quality and productivity.20 In addition, a toolkit

developed by using pure Java requires the devel-

opers to master only one language; those devel-

opers who use other packages need to know more

than one language, such as C++ with another

language or scripts, to overcome the cross-plat-

form problem.

THE TOOLKIT ARCHITECTURE AND MODULES

The Java Medical Imaging and Visualization

Toolkit called BIL-kit developed in our Biomed-

ical Imaging Lab (BIL) has been built on top of

the Java Software Development Kit (SDK), JAI,

and Java3D packages. The toolkit can be divided

into four major modules: foundation module,

medical image input/output (I/O) module, image-

processing module, and modeling and visualiza-

tion module (Figure 2). These modules form the

majority of the reusable libraries. On top of these

libraries, tools and applications can be built. By

using these tools as templates, and making use of

the reusable classes, more advanced specific

applications or prototypes can be built for

researchers and clinical users.

Foundation Classes Library

A comprehensive set of foundation classes has

to be built to form the base of any toolkit. Java

SDK has created a broad range of foundation

classes that can meet the requirements of medical

imaging and visualization in most cases. Howev-

er, as BIL-kit is specially designed for medical

imaging research and applications, some of the

frequently used foundation classes needed to be

extended from the standard Java SDK, such as

data structures used for presenting medical infor-

mation and some GUI widgets frequently used in

medical imaging.

Medical Image I/O Module

In our research experience, we have encoun-

tered numerous image formats from many sour-

ces. Besides the general photograph formats such

as JPG, GIF, and TIFF, the image formats used by

different computer platforms also vary, such as

RGB format for SGI and PNM format for X-

Windows. Medical images tend to carry patients

and diagnosis information as well as descriptive

information of acquisition procedure together.

These formats more or less depend on image

acquisition systems. We encountered problems in

dealing with image formats from different vendors

in the early days; for example, image formats

from GE scanners were different from Siemens.

Even different models from the same vendor had

variations.

Fig 2. The Java Medical Imaging and Visualization Toolkit (BIL-kit) architecture.

20 HUANG ET AL.



The American College of Radiologists (ACR)

and the National Electrical Manufacturers Asso-

ciation (NEMA) recognized the need for standards

to facilitate multivendor connectivity to promote

the development of PACS and networking more

than 20 years back. Digital Imaging and Commu-

nications in Medicine (DICOM)21 has been

released as the result of these standardization

efforts, and it has become prevalent nowadays.

DICOM is the ubiquitous standard in the

radiology for the exchange and management of

images and image-related information. This

makes the DICOM standard a huge, sophisticated,

and hard-to-read standard, which means it is also

difficult to interpret. DICOM Structured Report-

ing has recently become an interesting topic.22

Our toolkit also considered Structured Reporting

in its DICOM images encoding and decoding

functions. Because various user groups have

different expectations and requirements of the

Structured Report, the toolkit allows the users to

supply their own structured report definition in a

text format, which screens the user data and

instructs how the reports will be encoded and

decoded. Although this is a simple implementa-

tion to support structured reporting, it is also

practical to keep flexibility and extensibility and

to produce a more elegant document with an

appropriate structure for specific applications.

Currently, this feature is used in our DICOM

image converter, where the report structure is

simple. It will be enriched and extended to handle

real structured reports according to users’ require-

ments when the toolkit is used to develop patient-

specific medical image analysis applications.

The Java language not only provides the image

readers with generic network image formats but

also forms a framework for users to extend their

work in handling unusual image formats. Java

Image I/O component is part of the Java Standard

Edition. It is designed as a pluggable framework

into which any developer may add their own

Bplug-ins.^ A plug-in is defined as a set of Java

programming language classes that may be

loaded into the API at run time and that add

functionality to the API. In the context of the

Java Image I/O API, a plug-in may provide the

ability to read image data from a new file format,

to write image data in a new format, to Btranscode^
nonimage metadata between two formats, or to

read or write streaming data from or to a new

data source or sink. A plug-in may also provide

support for the same format as another plug-in,

perhaps providing better performance, with more

features, or a different view of the data stored by

the format.23

This mechanism provides a flexible and useful

interface for the developers to handle specific

medical image formats. It also provides a frame-

work for the additions of format-specific plug-ins.

The plug-ins are standard Java classes that are

loaded into the API at run time, adding function-

ality. These plug-ins can also be embedded in

Java archive files. Some of the standard format

plug-ins are available with the SDK itself,

whereas the developers add the plug-ins for

reading and writing specific image formats.

This operation of loading and instantiating a

plug-in may be expensive. To alleviate this

difficulty, another inexpensive class known as

the Service Provider Interface is made available to

provide information about a plug-in. The infor-

mation provided about the plug-in includes the

ability of the plug-in to decode a certain file

format. The developer also needs to specify the

nonstandard plug-ins developed in the form of a

text file. This information is utilized by the

registry of the Image I/O architecture to know

which image formats can be read or written and

selects the appropriate plug-in for each image

file.

Another advantage of the introduced architec-

ture is a powerful API available for handling

metadata. The metadata are converted into an

XML document, which can be handled using

standard XML tools. The presence of different

image readers and writers and the availability of

API for writing transcoder plug-ins make the

ability to transcode images available.

This Image I/O module uses JAI framework

and extends a number of plug-ins that handle

generic image formats, e.g., JPG, GIF, TIFF,

BMP, PNG, including the latest compression

format JPEG2000. It is also able to decode image

formats used in specific computer systems, e.g.,

RGB format used by SGI workstation, PNM and

XBM formats used by X-Windows-based systems,

and some other formats used in other platforms.

Most importantly, it also supports popular medical

image formats, such as DICOM and ACR/NEMA

1.0 and 2.0 (the predecessor of the DICOM

formats), as well as some image formats that are

A MEDICAL IMAGING AND VISUALIZATION TOOLKIT IN JAVA 21



available in commercial products, such as Ana-

lyze AVW and Analyze 7.5.

By extending the Java Image I/O framework,

the BIL-kit offers support to most of medical

image formats, and more importantly, it is highly

extensible. It can be easily extended by simply

upgrading or adding codec (coder/decoder) in the

form of plug-ins to handle new medical image

formats in the future or keep paced with the

standards upgrade. This implementation signifi-

cantly saves the researchers and developers of

doing redundant and tedious work and brings

great convenience to the users.

Medical Image Processing and Analysis
Module

Typical medical image analysis requires vari-

ous generic image-processing algorithms; thus,

most of them need to be implemented in the

toolkit. However, there are some specific require-

ments to be taken care of. For instance, image

transformation algorithms are frequently required

to be performed not just in 2D but also in 3D.

Meanwhile, some parameters such as pixel size,

image acquisition modality, etc., have to be taken

as parameters in image transformation. These

requirements are also considered in the design of

the image-processing component in our toolkit.

JAI is a set of comprehensive API supplied as

an extension package of the standard edition of

the Java platform. JAI provides imaging function-

ality beyond that of the Java Foundation Classes,

although it is compatible with those classes in

most cases.24,25

JAI is intended to support image processing

using the Java programming language as generally

as possible. At the same time, JAI presents a

simple programming model that can be readily

used in applications without a substantial mechan-

ical programming overhead or the requirement that

the programmer has to be expert in all phases of

the API’s design. JAI encapsulates image data

formats and remote method invocations within a

reusable image data object, allowing an image file,

a network image object, or a real-time data stream

to be processed identically. Thus, JAI represents a

simple programming model while concealing the

complexity of the internal mechanisms.

JAI offers several advantages for application

developers compared to other imaging solutions,

e.g., distributed imaging API, which means it is

well suited for clientYserver imaging by means of

the Java platform’s networking architecture and

remote execution technologies. It is also interop-

erable, which means that it is integrated with the

rest of the JMF APIs, enabling media-rich

applications to be deployed on the Java platform.

However, the JAI package only provides 2D

image operations, which do not utilize full

information contained in 3D medical images. A

helpful and practical medical imaging toolkit

needs to implement 3D imaging algorithms to

take advantage of the latest radiology technology.

Image processing in 3D is often considered as a

natural extension of 2D image processing, but this

is not exactly correct. Implementation of 3D

image processing needs to consider the spatial

relation of voxels carefully; sometimes, the

algorithms need to be redesigned to achieve the

optimized result.26 As JAI was designed for

general-purpose image processing, it does not

support the acquisition of medical images. How-

ever, as a medical imaging toolkit, it must be able

to capture and keep acquisition information, so it

can be used in certain automatic image-processing

operations.

The initial image-processing algorithms imple-

mented in our toolkit are the following:

Y image arithmetic functions, including addition,

subtraction, multiplication and scaling, divi-

sion, and blending;

Y image algebra transformation, including image

AND, OR, XOR, INVERT, and bit-shift oper-

ations;

Y image geometrical transformation, namely, ro-

tate or adjust geometric size and position of

image volumes by resampling 3D image voxels

with different interpolation functions;

Y spatial domain transformations, including sin-

gle- and multiple-range thresholding, region

growing (incremental and adaptive), histogram

stretch and histogram equalization, mean and

median filtering, and distance transformation;

Y frequency domain transformations, including

Fourier transformation, convolution filtering,

which includes a cluster of enhance operations,

such as Gaussian and Laplacian filtering,

sharpening and smoothing, as well as Sobel

and zero-crossing edge detection operations;

22 HUANG ET AL.



Y nonlinear spatial transformations, such as math-

ematical morphology including dilation, ero-

sion, opening, and closing.

The development of image processing is still in

process. We are adding more image-processing

functionalities. Some more advanced algorithms

are on our roadmap of development, including

wavelet transformation, color image processing,

and knowledge-based segmentation. All the oper-

ations implemented are both in 2D and 3D and are

optimized by our best efforts. Most of the

algorithmic details are covered by Refs. [26,27].

Modeling and Visualization Module

The modeling and visualization component of

our toolkit is built on top of Java3D component.

Java3D is a 3D scene graph based on the graphics

programming API for the Java language. It is an

optional package of the Java standard edition.

Java3D API provides routines for the creation of

3D geometries in a scene graph structure that is

independent of the underlying hardware imple-

mentation for real-time programming. The API

provides scene graph compilation and other opti-

mization techniques. It is heavily optimized

toward the requirements of real-time 3D rendering.

Java3D is an implementation of the scene graph

concepts, which is one level above elementary

computer graphics packages, such as OpenGL.

The scene graph is used extensively in visualiza-

tion development platforms.25 More and more

programmers choose to use the existing scene

graph programming platforms, such as Java3D

and Open Inventor,28 to reduce development

efforts and costs. Java3D used in our development

also uses the scene graph.

The existing visualization languages and pack-

ages provide some useful support to build visual-

ization environments for biomedical simulation

and education. The popular languages and pack-

ages used are Java3D, VRML,29 and Open

Inventor. These development environments have

their advantages and disadvantages.

We chose Java3D as the foundation of our

visualization module because of its several advan-

tages: making use of the scene graph concept,

seamless integration with Java SDK, and cross-

platform features. Although there are some dis-

putes about the future of Java3D, still, Sun

Microsystems announced its plan recently to

release the Java3D source code through some

form of public source license in the very near

future.30 An expert group under the Java Com-

munity Process will be formed to define and

implement new features for the new version of

Java3D API. The open-source strategy is a good

sign that it will allow users to contribute bug fixes

and utilities, which will increase the availability

and accelerate its pace of development.

Java3D has a rich set of APIs, which provides

powerful and flexibly interactive functions useful

for building educational and simulation systems.

It is suitable for building elegantly 3D models and

virtual reality environments. However, to achieve

the best results of Java3D rendering and interac-

tive effects, visualization professional knowledge

is required to make use of the Java3D advanced

features. To researchers and students working on

medical imaging and without sufficient visualiza-

tion knowledge and experience, certain simplifi-

cation and abstraction to the Java3D classes would

make their work much easier. Nevertheless, some

comprehensive and abstract objects need to be

designed and developed to present multimodal

anatomy models.

In Java3D, the visualization scenario is created

as a virtual universe; objects that impact the visual

effect of the virtual universe, such as geometry,

lights, location, orientation, appearance, etc., are

formed by nodes and arcs. A node is a data

element, and an arc is a relationship between

nodes. The scene graph is an organization of the

nodes and arcs in the form of tree structure. Nodes

are categorized into groups and leafs, where

groups contain transformation and control infor-

mation, and leafs contain geometrical information

and visual property of visual objects. Groups are

further subclassified into transform group, branch

group, shared group, ordered group, and switch

group. Leafs are further subclassified into shapes

that contain geometric information, lights that

represent light source, and many others represent-

ing the elementary information of visualization

scenes. The details of Java3D are beyond the

scope of this paper and are too detailed for

medical image researchers who are not visualiza-

tion professionals.

Therefore, simplification and comprehensive

wrapping to Java3D is useful and necessary to

provide tools with friendly and convenient inter-

A MEDICAL IMAGING AND VISUALIZATION TOOLKIT IN JAVA 23



actions for medical background users. In our

toolkit, the scene graph concept is inherited,

although it has been enhanced to adapt to the

anatomical model presentation requirements. We

call it the anatomy scene graph. A number of

comprehensive hierarchical object classes have

been designed for building the foundation of virtual

anatomy models for biomedical simulation and

education. These are enhancement of the Java3D

scene graph objects, which give more abstracted

and simplified generic medical object models.

Some of sophisticated operations and attributes

are hidden to the users to have a friendlier user

interface, so that users can concentrate on medical

research rather than to deal with visualization

techniques. Besides the general geometric ele-

ments and surface models, the geometrical shape

node in the scene graph has been extended to store

and interpret more complex models, e.g., tubular

models and volumetric mesh models. These mod-

els will be very useful in the visualization, medical

image-based analysis, and simulation applications.

Figure 3 shows an example of an anatomy model

that can be used in visualization and simulation and

its representation of the anatomy scene graph. The

group node is an extension to the Java3D scene

graph transform group node, with some features of

switch group and links to an anatomy model

incorporated, which allows the visibility of sub-

models to be manipulated easily. The shape nodes

are elements of anatomy models composed of the

geometry node in Java3D with some functions and

attributes extended for presenting more complex

anatomy modal data.

Integration with Anatomical Knowledge

When developing applications or prototypes,

anatomical knowledge is often referred, and

sometimes, it may also be critically needed, e.g.,

when building anatomy atlases from various

sources of data. Our toolkit contains the official

international guide of anatomical terminology—

Terminologia Anatomica—released by the Feder-

ative Committee of Anatomical Terminology.31

Its hierarchy structure is constructed in the XML

format, and a simple built-in database stores the

anatomical names. This feature supports research-

ers and developers to label their models with

anatomy terminology.

Anatomy Scene Graph Data Schema

The anatomy scene graph model is used for

presenting medical anatomy models being pro-

cessed or extracted from medical images, so

that they can be rendered and manipulated by

the toolkit. Somehow there is no straightforward

data format for storing this data model because

of the complexity of anatomy model presenta-

tion and the requirement of catering anatomy

information. The more important thing is the

Fig 3. Visualization modeling of the toolkit: (a) anatomy data model; (b) corresponding anatomy scene graph model of (a).

24 HUANG ET AL.



data format defined should be also flexible and

extensible to handle demands from researchers

with different research interests and the variety

of applications. We choose XML for this

purpose as it is designed to describe data in a

simple, flexible, and extensible way.32 We have

designed an XML schema33 according to the

anatomy scene graph model described above,

which incorporates the anatomical terminology

along with the XML definitions mentioned above

in the Image I/O module. This schema allows us

to store the anatomy models and image data in

XML files that are understood by the toolkit, so

that they are exchangeable in the tools shown in

Figure 2.

BIL-KIT-BASED TOOLS AND APPLICATIONS

We have developed several tools and applica-

tions built on the toolkit, including DICOM

extractor, image converter, image processor, gen-

eral anatomy model simulator, vascular modeling

environment, segmentation validator, and volume

viewer.

Figures 4Y9 present screen snapshots of some

of our tools and applications built on the toolkit.

Figure 4 shows the image converter supporting a

wide range of image formats to be decoded and

encoded. It also provides several useful operations

to do simple conversion, e.g., changing data type

of pixel representation or orientation of images.

Figure 5 illustrates the image processor that can

be used for image analysis; many common image

transformations can be performed in 2D and 3D

interactively by using this tool. Figure 6 shows the

model simulator where the 3D anatomy scene

graph model can be visualized and manipulated.

The user can interactively manipulate the hierar-

chy relationships of the model objects, their

spatial positions, and rendering effects. Figure 7

is a vascular centerline model editing environment

where the vascular model can be created and

manipulated. Figure 8 shows an angiographic

image anatomy labeling tool with the Terminolo-

gia Anatomica-based index integrated. A 3D

cerebrovascular atlas34 is used to label angiogra-

phy images. Figure 9 is a volumetric view

combined with a surface-rendered model; the

toolkit provides suitable functionality for hybrid

volume and surface rendering. These tools have

been developed successfully in a quick manner by

using BIL-kit, which demonstrates its capacity

and potential.

Utilizing the Toolkit

Similar to other medical imaging and modeling

toolkits, BIL-kit supports two levels of user

interfaces: the developer level and the end-user

Fig 4. A medical image conversion tool built based on BIL-kit.

A MEDICAL IMAGING AND VISUALIZATION TOOLKIT IN JAVA 25



level. For professionals with software engineering

background, they can make use of the APIs of the

reusable Java class libraries, with their preferred

Java development environments, to prototype new

algorithms and develop advanced tools and appli-

cations. For the users with medical background

and no programming skills, they can make use of

the tools built on top of the BIL-kit libraries to

Fig 5. A medical image processor built based on BIL-kit.

Fig 6. An anatomical modeling tool built based on BIL-kit for manipulating anatomical models.

26 HUANG ET AL.



manipulate medical imaging data as well as to

build 3D models, visualize them, and interact with

them.

SUMMARY AND FUTURE WORK

This paper shares our experience and features

our work in progress on building a medical

imaging and visualization toolkit, which is a

useful development and prototyping platform in

our lab. It helps researchers and students to

conduct their research work much more efficiently

by providing a set of reusable libraries to reduce

their redundant and tedious development efforts.

Comparing BIL-kit to the similar packages

mentioned in Related Work and Our Approach,

their scopes of functionality are slightly different;

therefore, it is not easy to make a quantitative

comparison. Our toolkit design has considered the

imaging and visualization requirement from the

beginning. This ensures that the two areas are

combined seamlessly, which is an explicit advan-

tage for developing medical imaging and model-

ing tools. This consistent design enriched the

reusability and flexibility compared to other

packages. The portability is achieved by using

the Java language. This is much better compared

to the packages that required a multiple language

combination; similarly, the extensibility is also

much better. In view of about 2-year development

history (and a long-term experience in tool devel-

opment), BIL-kit is still immature. However, the

affluent functionality and several useful tools we

developed in such a short period illustrate the

benefits contributed by the reusability and flexi-

bility of BIL-kit.

Fig 7. The anatomy simulator and vascular centerline model-
ing environment.

Fig 8. An angiographic image labeling tool with the Terminologia Anatomica index integrated.

A MEDICAL IMAGING AND VISUALIZATION TOOLKIT IN JAVA 27



The major objective of researchers and students

is to conduct research on their favorite domain;

therefore, requesting them to learn several differ-

ent languages is not cost effective. Comparing to

those packages requiring various languages to

take care of either algorithm codes or GUIs on

different platforms, the use of a single language

(Java) for both GUI and algorithms on all plat-

forms is a more efficient approach. The advantage

of portability is obvious: our tools are able to

work on various platforms, such as MS Windows,

Linux, Sun OS, Mac OS, and others, without any

modification and even without recompiling.

The toolkit is being used in our institute from

image formats conversion to image segmentation

and analysis, and further to model presentation

and visualization. A number of tools for image

processing and 3D modeling have been con-

structed rapidly using the same group of classes,

which demonstrated the toolkit’s reusability and

flexibility. Researchers and students use the

reusable object classes to accelerate their research

and development. More applications to integrate

the latest medical imaging and modeling research

results are under development. This demonstrates

its potential as a useful infrastructure in medical

imaging research and its extensibility. The object-

oriented feature of the Java language also plays an

important part in promoting its reusability.

More work will be performed in implementing

advanced image-processing algorithms, such as

wavelet transformation and color image process-

ing, complicated image analysis and recognition

functions, and so on, as well as advanced

algorithms that are closely related to medical

domain knowledge, e.g., segmentation of anatom-

ical structures.10,11 Modeling behaviors and prop-

erties of anatomical structures are also a potential

area to be explored because the toolkit is

extensible to support the data models for physical

deformation modeling. Combination of the multi-

modal virtual anatomy models with knowledge-

based and semantic ontology will be an interesting

idea to produce genuine and useful virtual models

for medical education and simulation. There is

still much space to enhance the functionality to

make BIL-kit a fully useful medical imaging and

visualization toolkit, acceptable by the research

and clinical communities.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Biomedical

Research Council, Agency for Science, Technology and

Research, Singapore, for this research.

REFERENCES

1. Budd T: Understanding Object-Oriented Programming

with Java. Reading, MA: Addison-Wesley, 1998

2. Analyze Software, Biomedical Imaging Resource, Mayo

Foundation: http://www.mayo.edu/bir/Software/Analyze/Ana-

lyze.html, accessed March 17 2005

3. Schroeder WJ, Martin KM, Lorensen WE: The design

and implementation of an object-oriented toolkit for 3d graph-

ics and visualization. IEEE Visualization ’96, pp 93Y100, 1996

4. Schroeder WJ, Martin KM, Lorensen B: The Visualiza-

tion Toolkit: An Object-Oriented Approach to 3D Graphics.

Upper Saddle River, NJ: Prentice-Hall Inc., 1998

5. NLM Insight Segmentation and Registration Toolkit,

http://www.itk.org/, accessed March 17 2005

6. Rasband W: ImageJ Introduction, http://rsb.info.nih.gov/

ij/docs/intro.html, accessed March 17 2005

7. Whelan PF, Sadleir RJT, Ghita O: NeatVision: visual

programming for computer-aided diagnostic applications.

Radiographics 24:1779Y1789, 2004

8. Zhao M, Tian J, Zhu X, Xue J, Cheng Z, Zhao H: The

design and implementation of a C++ toolkit for integrated

medical image processing and analyzing. In: Galloway RL Jr

(Ed). Proc. SPIE Vol. 5367, Medical Imaging 2004, SPIE The

International Society for Optical Engineering, Bellingham,

May 2004, pp 39Y47

9. Wolf I, Vetter M, Wegner I, Nolden M, Bottger T,

Hastenteufel M, Schobinger M, Kunert T, Meinzer HP:

The medical imaging interaction toolkit (MITK): a toolkit

facilitating the creation of interactive software by extending

VTK and ITK. In: Galloway RL Jr (Ed). Proc. SPIE Vol. 5367,

Medical Imaging 2004, SPIE The International Society for

Optical Engineering, Bellingham, May 2004, pp 16Y27

Fig 9. A volumetric viewer for rendering multimodal models,
including hybrid volume and surface models.

28 HUANG ET AL.



10. Xia Y, Hu Q, Aziz A, Nowinski WL: A knowledge-

driven algorithm for a rapid and automatic extraction of the

human cerebral ventricular system from MR neuroimages.

NeuroImage 21(1):269Y282, 2004

11. Hu Q, Nowinski WL: A rapid algorithm for robust and

automatic extraction of the midsagittal plane of the human

cerebrum from neuroimages based on local symmetry and

outlier removal. NeuroImage 20(4):2154Y2166, 2003

12. Lindholm T, Yellin F: The Java Virtual Machine

Specification. Reading, MA: Addison-Wesley, 1996

13. Gosling J, Joy B, Steele G: The Java Language

Specification

14. Gosling J, McGilton H: The Java language environment.

White paper, May 1996. Sun Microsystems, Inc., http://

java.sun.com/docs/white/langenv/

15. Bouvier DJ: Getting Started with the Java3D API, Sun

Microsystems, 1999, http://java.sun.com/products/java-media/

3D/collateral/

16. Selman D: Java3D Programming. Greenwich, CT:

Manning Publications Co, 2000

17. Wood M, et. al: OpenGL Programming Guide: The

Official Guide to Learning OpenGL. Reading, MA: Addison-

Wesley, 1999

18. Marinilli M: Java Deployment. Indianapolis, IN: Sams,

2002

19. Mangione C: Performance Tests Show Java as Fast as

C++. JavaWorld, February 1998

20. Phipps G: Comparing observed bug and productivity

rates for Java and C++. Softw Pract Exp 29(4):345Y358, 1999

21. The Dicom Standard. National Electrical Manufactures

Association, http://medical.nema.org

22. Clunie DA: DICOM Structured Reporting. Bangor, PA:

PixelMed Publishing, 2001

23. Race P, Rice D, Vera R: Java Image I/O API Guide.

Santa Clara, CA: Sun Microsystems Inc., April 2001

24. Programming in Java Advanced Imaging. SUN Micro-

systems, Inc. 1999, http://java.sun.com/products/java-media/

jai/forDevelopers/jai1_0_1guide-unc/JAITOC.fm.html,

accessed March 17, 2005

25. Rodrigues LH: Building Imaging Applications with

Java(TM) Technology: Using AWT Imaging, Java 2D(TM),

and Java(TM) Advanced Imaging (JAI). Reading, MA:

Addison-Wesley, 2001

26. Nikolaidis N, Pitas I: 3-D Image Processing Algorithms.

New York, NY: John Wiley & Sons, Inc., 2001

27. Gonzalez RC, Woods RE: Digital Image Processing.

Upper Saddle River, NJ: Prentice-Hall Inc., 2002

28. Wernecke J: The Inventor Mentor: Programming object-

oriented 3D Graphics with Open Inventor, Release 2. Reading,

MA: Addison-Wesley Publishing, 1993, pp 79Y93

29. Hartman J, Wernecke J: The VRML 2.0 Handbook :

Building Moving Worlds on the Web. Reading, MA: Addison-

Wesley, 1996, pp 79Y93

30. Twilleager D: http://archives.java.sun.com/cgi-bin/

wa?A2=ind0403&L=java3d-interest&F=&S=&P=21949,

accessed March 17 2005

31. International Anatomical Terminology (FCAT): Termi-

nologia Anatomica. Stuttgart: Thieme, 1999

32. Extensible Markup Language (XML), http://www.w3.

org/XML/, accessed March 17 2005

33. XML Schema, http://www.w3.org/XML/Schema,

accessed March 17 2005

34. Nowinski WL, Thirunavuukarasuu A, Volkau I, Baimur-

atov R, Hu Q, Aziz A, Huang S: Three-dimensional brain atlas

of anatomy and vasculature. Radiographics 25(1):263Y271,

2005

A MEDICAL IMAGING AND VISUALIZATION TOOLKIT IN JAVA 29



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AardvarkPSMT
    /AceBinghamSH
    /AddisonLibbySH
    /AGaramond-Italic
    /AGaramond-Regular
    /AkbarPlain
    /Albertus-Bold
    /AlbertusExtraBold-Regular
    /AlbertusMedium-Italic
    /AlbertusMedium-Regular
    /AlfonsoWhiteheadSH
    /Algerian
    /AllegroBT-Regular
    /AmarilloUSAF
    /AmazoneBT-Regular
    /AmeliaBT-Regular
    /AmerigoBT-BoldA
    /AmerTypewriterITCbyBT-Medium
    /AndaleMono
    /AndyMacarthurSH
    /Animals
    /AnneBoleynSH
    /Annifont
    /AntiqueOlive-Bold
    /AntiqueOliveCompact-Regular
    /AntiqueOlive-Italic
    /AntiqueOlive-Regular
    /AntonioMountbattenSH
    /ArabiaPSMT
    /AradLevelVI
    /ArchitecturePlain
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMTBlack-Regular
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeLight
    /ArialUnicodeLight-Bold
    /ArialUnicodeLight-BoldItalic
    /ArialUnicodeLight-Italic
    /ArrowsAPlentySH
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /Asiana
    /AssadSadatSH
    /AvalonPSMT
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /BankGothicBT-Light
    /BankGothicBT-Medium
    /Baskerville-Bold
    /Baskerville-Normal
    /Baskerville-Normal-Italic
    /BaskOldFace
    /Bauhaus93
    /Bavand
    /BazookaRegular
    /BeauTerrySH
    /BECROSS
    /BedrockPlain
    /BeeskneesITC
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /BennieGoetheSH
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /Bethel
    /BibiGodivaSH
    /BibiNehruSH
    /BKenwood-Regular
    /BlackadderITC-Regular
    /BlondieBurtonSH
    /BodoniBlack-Regular
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /BodoniBT-Bold
    /BodoniBT-BoldItalic
    /BodoniBT-Italic
    /BodoniBT-Roman
    /Bodoni-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Regular
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolFive
    /BookshelfSymbolFour
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /BookwomanDemiItalicSH
    /BookwomanDemiSH
    /BookwomanExptLightSH
    /BookwomanLightItalicSH
    /BookwomanLightSH
    /BookwomanMonoLightSH
    /BookwomanSwashDemiSH
    /BookwomanSwashLightSH
    /BoulderRegular
    /BradleyHandITC
    /Braggadocio
    /BrailleSH
    /BRectangular
    /BremenBT-Bold
    /BritannicBold
    /Broadview
    /Broadway
    /BroadwayBT-Regular
    /BRubber
    /Brush445BT-Regular
    /BrushScriptMT
    /BSorbonna
    /BStranger
    /BTriumph
    /BuckyMerlinSH
    /BusoramaITCbyBT-Medium
    /Caesar
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-Italic
    /CalligrapherRegular
    /CameronStendahlSH
    /Candy
    /CandyCaneUnregistered
    /CankerSore
    /CarlTellerSH
    /CarrieCattSH
    /CaslonOpenfaceBT-Regular
    /CassTaylorSH
    /CDOT
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturyOldStyle-BoldItalic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Cezanne
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGOmega-Regular
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /Charting
    /ChartreuseParsonsSH
    /ChaseCallasSH
    /ChasThirdSH
    /ChaucerRegular
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /ChildBonaparteSH
    /Chiller-Regular
    /ChuckWarrenChiselSH
    /ChuckWarrenDesignSH
    /CityBlueprint
    /Clarendon-Bold
    /Clarendon-Book
    /ClarendonCondensedBold
    /ClarendonCondensed-Bold
    /ClarendonExtended-Bold
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /ClaudeCaesarSH
    /CLI
    /Clocks
    /ClosetoMe
    /CluKennedySH
    /CMBX10
    /CMBX5
    /CMBX7
    /CMEX10
    /CMMI10
    /CMMI5
    /CMMI7
    /CMMIB10
    /CMR10
    /CMR5
    /CMR7
    /CMSL10
    /CMSY10
    /CMSY5
    /CMSY7
    /CMTI10
    /CMTT10
    /CoffeeCamusInitialsSH
    /ColetteColeridgeSH
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CommercialPiBT-Regular
    /CommercialScriptBT-Regular
    /Complex
    /CooperBlack
    /CooperBT-BlackHeadline
    /CooperBT-BlackItalic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Medium
    /CooperBT-MediumItalic
    /CooperPlanck2LightSH
    /CooperPlanck4SH
    /CooperPlanck6BoldSH
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /CopticLS
    /Cornerstone
    /Coronet
    /CoronetItalic
    /Cotillion
    /CountryBlueprint
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CSSubscript
    /CSSubscriptBold
    /CSSubscriptItalic
    /CSSuperscript
    /CSSuperscriptBold
    /Cuckoo
    /CurlzMT
    /CybilListzSH
    /CzarBold
    /CzarBoldItalic
    /CzarItalic
    /CzarNormal
    /DauphinPlain
    /DawnCastleBold
    /DawnCastlePlain
    /Dekker
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Denmark
    /Desdemona
    /Diploma
    /DizzyDomingoSH
    /DizzyFeiningerSH
    /DocTermanBoldSH
    /DodgenburnA
    /DodoCasalsSH
    /DodoDiogenesSH
    /DomCasualBT-Regular
    /Durian-Republik
    /Dutch801BT-Bold
    /Dutch801BT-BoldItalic
    /Dutch801BT-ExtraBold
    /Dutch801BT-Italic
    /Dutch801BT-Roman
    /EBT's-cmbx10
    /EBT's-cmex10
    /EBT's-cmmi10
    /EBT's-cmmi5
    /EBT's-cmmi7
    /EBT's-cmr10
    /EBT's-cmr5
    /EBT's-cmr7
    /EBT's-cmsy10
    /EBT's-cmsy5
    /EBT's-cmsy7
    /EdithDaySH
    /Elephant-Italic
    /Elephant-Regular
    /EmGravesSH
    /EngelEinsteinSH
    /English111VivaceBT-Regular
    /English157BT-Regular
    /EngraversGothicBT-Regular
    /EngraversOldEnglishBT-Bold
    /EngraversOldEnglishBT-Regular
    /EngraversRomanBT-Bold
    /EngraversRomanBT-Regular
    /EnviroD
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErasITC-Ultra
    /ErnestBlochSH
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EuroRoman
    /EuroRomanOblique
    /ExxPresleySH
    /FencesPlain
    /Fences-Regular
    /FifthAvenue
    /FigurineCrrCB
    /FigurineCrrCBBold
    /FigurineCrrCBBoldItalic
    /FigurineCrrCBItalic
    /FigurineTmsCB
    /FigurineTmsCBBold
    /FigurineTmsCBBoldItalic
    /FigurineTmsCBItalic
    /FillmoreRegular
    /Fitzgerald
    /Flareserif821BT-Roman
    /FleurFordSH
    /Fontdinerdotcom
    /FontdinerdotcomSparkly
    /FootlightMTLight
    /ForefrontBookObliqueSH
    /ForefrontBookSH
    /ForefrontDemiObliqueSH
    /ForefrontDemiSH
    /Fortress
    /FractionsAPlentySH
    /FrakturPlain
    /Franciscan
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FranklinUnic
    /FredFlahertySH
    /Freehand575BT-RegularB
    /Freehand591BT-RegularA
    /FreestyleScript-Regular
    /Frutiger-Roman
    /FTPMultinational
    /FTPMultinational-Bold
    /FujiyamaPSMT
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /GabbyGauguinSH
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garcia
    /GarryMondrian3LightItalicSH
    /GarryMondrian3LightSH
    /GarryMondrian4BookItalicSH
    /GarryMondrian4BookSH
    /GarryMondrian5SBldItalicSH
    /GarryMondrian5SBldSH
    /GarryMondrian6BoldItalicSH
    /GarryMondrian6BoldSH
    /GarryMondrian7ExtraBoldSH
    /GarryMondrian8UltraSH
    /GarryMondrianCond3LightSH
    /GarryMondrianCond4BookSH
    /GarryMondrianCond5SBldSH
    /GarryMondrianCond6BoldSH
    /GarryMondrianCond7ExtraBoldSH
    /GarryMondrianCond8UltraSH
    /GarryMondrianExpt3LightSH
    /GarryMondrianExpt4BookSH
    /GarryMondrianExpt5SBldSH
    /GarryMondrianExpt6BoldSH
    /GarryMondrianSwashSH
    /Gaslight
    /GatineauPSMT
    /GDT
    /Geometric231BT-BoldC
    /Geometric231BT-LightC
    /Geometric231BT-RomanC
    /GeometricSlab703BT-Bold
    /GeometricSlab703BT-BoldCond
    /GeometricSlab703BT-BoldItalic
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /GeometricSlab703BT-Medium
    /GeometricSlab703BT-MediumCond
    /GeometricSlab703BT-MediumItalic
    /GeometricSlab703BT-XtraBold
    /GeorgeMelvilleSH
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansBC
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSansCondensed-Bold
    /GillSansCondensed-Regular
    /GillSansExtraBold-Regular
    /GillSans-Italic
    /GillSansLight-Italic
    /GillSansLight-Regular
    /GillSans-Regular
    /GoldMinePlain
    /Gonzo
    /GothicE
    /GothicG
    /GothicI
    /GoudyHandtooledBT-Regular
    /GoudyOldStyle-Bold
    /GoudyOldStyle-BoldItalic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleExtrabold-Regular
    /GoudyOldStyle-Italic
    /GoudyOldStyle-Regular
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GraceAdonisSH
    /Graeca
    /Graeca-Bold
    /Graeca-BoldItalic
    /Graeca-Italic
    /Graphos-Bold
    /Graphos-BoldItalic
    /Graphos-Italic
    /Graphos-Regular
    /GreekC
    /GreekS
    /GreekSans
    /GreekSans-Bold
    /GreekSans-BoldOblique
    /GreekSans-Oblique
    /Griffin
    /GrungeUpdate
    /Haettenschweiler
    /HankKhrushchevSH
    /HarlowSolid
    /HarpoonPlain
    /Harrington
    /HeatherRegular
    /Hebraica
    /HeleneHissBlackSH
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HenryPatrickSH
    /Herald
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HogBold-HMK
    /HogBook-HMK
    /HomePlanning
    /HomePlanning2
    /HomewardBoundPSMT
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /IBMPCDOS
    /IceAgeD
    /Impact
    /Incised901BT-Bold
    /Incised901BT-Light
    /Incised901BT-Roman
    /Industrial736BT-Italic
    /Informal011BT-Roman
    /InformalRoman-Regular
    /Intrepid
    /IntrepidBold
    /IntrepidOblique
    /Invitation
    /IPAExtras
    /IPAExtras-Bold
    /IPAHighLow
    /IPAHighLow-Bold
    /IPAKiel
    /IPAKiel-Bold
    /IPAKielSeven
    /IPAKielSeven-Bold
    /IPAsans
    /ISOCP
    /ISOCP2
    /ISOCP3
    /ISOCT
    /ISOCT2
    /ISOCT3
    /Italic
    /ItalicC
    /ItalicT
    /JesterRegular
    /Jokerman-Regular
    /JotMedium-HMK
    /JuiceITC-Regular
    /JupiterPSMT
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /KarlaJohnson5CursiveSH
    /KarlaJohnson5RegularSH
    /KarlaJohnson6BoldCursiveSH
    /KarlaJohnson6BoldSH
    /KarlaJohnson7ExtraBoldCursiveSH
    /KarlaJohnson7ExtraBoldSH
    /KarlKhayyamSH
    /Karnack
    /Kashmir
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KeplerStd-Black
    /KeplerStd-BlackIt
    /KeplerStd-Bold
    /KeplerStd-BoldIt
    /KeplerStd-Italic
    /KeplerStd-Light
    /KeplerStd-LightIt
    /KeplerStd-Medium
    /KeplerStd-MediumIt
    /KeplerStd-Regular
    /KeplerStd-Semibold
    /KeplerStd-SemiboldIt
    /KeystrokeNormal
    /Kidnap
    /KidsPlain
    /Kindergarten
    /KinoMT
    /KissMeKissMeKissMe
    /KoalaPSMT
    /KorinnaITCbyBT-Bold
    /KorinnaITCbyBT-KursivBold
    /KorinnaITCbyBT-KursivRegular
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /Kristin
    /KunstlerScript
    /KyotoSong
    /LainieDaySH
    /LandscapePlanning
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /LatinoPal3LightItalicSH
    /LatinoPal3LightSH
    /LatinoPal4ItalicSH
    /LatinoPal4RomanSH
    /LatinoPal5DemiItalicSH
    /LatinoPal5DemiSH
    /LatinoPal6BoldItalicSH
    /LatinoPal6BoldSH
    /LatinoPal7ExtraBoldSH
    /LatinoPal8BlackSH
    /LatinoPalCond4RomanSH
    /LatinoPalCond5DemiSH
    /LatinoPalCond6BoldSH
    /LatinoPalExptRomanSH
    /LatinoPalSwashSH
    /LatinWidD
    /LatinWide
    /LeeToscanini3LightSH
    /LeeToscanini5RegularSH
    /LeeToscanini7BoldSH
    /LeeToscanini9BlackSH
    /LeeToscaniniInlineSH
    /LetterGothic12PitchBT-Bold
    /LetterGothic12PitchBT-BoldItal
    /LetterGothic12PitchBT-Italic
    /LetterGothic12PitchBT-Roman
    /LetterGothic-Bold
    /LetterGothic-BoldItalic
    /LetterGothic-Italic
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Regular
    /LibrarianRegular
    /LinusPSMT
    /Lithograph-Bold
    /LithographLight
    /LongIsland
    /LubalinGraphMdITCTT
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /LydianCursiveBT-Regular
    /Magneto-Bold
    /Map-Symbols
    /MarcusHobbesSH
    /Mariah
    /Marigold
    /MaritaMedium-HMK
    /MaritaScript-HMK
    /Market
    /MartinMaxxieSH
    /MathTypeMed
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /MaudeMeadSH
    /MemorandumPSMT
    /Metro
    /Metrostyle-Bold
    /MetrostyleExtended-Bold
    /MetrostyleExtended-Regular
    /Metrostyle-Regular
    /MicrogrammaD-BoldExte
    /MicrosoftSansSerif
    /MikePicassoSH
    /MiniPicsLilEdibles
    /MiniPicsLilFolks
    /MiniPicsLilStuff
    /MischstabPopanz
    /MisterEarlBT-Regular
    /Mistral
    /ModerneDemi
    /ModerneDemiOblique
    /ModerneOblique
    /ModerneRegular
    /Modern-Regular
    /MonaLisaRecutITC-Normal
    /Monospace821BT-Bold
    /Monospace821BT-BoldItalic
    /Monospace821BT-Italic
    /Monospace821BT-Roman
    /Monotxt
    /MonotypeCorsiva
    /MonotypeSorts
    /MorrisonMedium
    /MorseCode
    /MotorPSMT
    /MSAM10
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MSReference1
    /MSReference2
    /MTEX
    /MTEXB
    /MTEXH
    /MT-Extra
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MTSYN
    /Music
    /MysticalPSMT
    /NagHammadiLS
    /NealCurieRuledSH
    /NealCurieSH
    /NebraskaPSMT
    /Neuropol-Medium
    /NevisonCasD
    /NewMilleniumSchlbkBoldItalicSH
    /NewMilleniumSchlbkBoldSH
    /NewMilleniumSchlbkExptSH
    /NewMilleniumSchlbkItalicSH
    /NewMilleniumSchlbkRomanSH
    /News702BT-Bold
    /News702BT-Italic
    /News702BT-Roman
    /Newton
    /NewZuricaBold
    /NewZuricaItalic
    /NewZuricaRegular
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NigelSadeSH
    /Nirvana
    /NuptialBT-Regular
    /OCRAbyBT-Regular
    /OfficePlanning
    /OldCentury
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OpenSymbol
    /OttawaPSMT
    /OttoMasonSH
    /OzHandicraftBT-Roman
    /OzzieBlack-Italic
    /OzzieBlack-Regular
    /PalatiaBold
    /PalatiaItalic
    /PalatiaRegular
    /PalmSpringsPSMT
    /Pamela
    /PanRoman
    /ParadisePSMT
    /ParagonPSMT
    /ParamountBold
    /ParamountItalic
    /ParamountRegular
    /Parchment-Regular
    /ParisianBT-Regular
    /ParkAvenueBT-Regular
    /Patrick
    /Patriot
    /PaulPutnamSH
    /PcEncodingLowerSH
    /PcEncodingSH
    /Pegasus
    /PenguinLightPSMT
    /PennSilvaSH
    /Percival
    /PerfectRegular
    /Pfn2BlackItalic
    /Phantom
    /PhilSimmonsSH
    /Pickwick
    /PipelinePlain
    /Playbill
    /PoorRichard-Regular
    /Poster
    /PosterBodoniBT-Italic
    /PosterBodoniBT-Roman
    /Pristina-Regular
    /Proxy1
    /Proxy2
    /Proxy3
    /Proxy4
    /Proxy5
    /Proxy6
    /Proxy7
    /Proxy8
    /Proxy9
    /Prx1
    /Prx2
    /Prx3
    /Prx4
    /Prx5
    /Prx6
    /Prx7
    /Prx8
    /Prx9
    /Pythagoras
    /Ranegund
    /Ravie
    /Ribbon131BT-Bold
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RobWebsterExtraBoldSH
    /Rockwell
    /Rockwell-Bold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /RomanC
    /RomanD
    /RomanS
    /RomanT
    /Romantic
    /RomanticBold
    /RomanticItalic
    /Sahara
    /SalTintorettoSH
    /SamBarberInitialsSH
    /SamPlimsollSH
    /SansSerif
    /SansSerifBold
    /SansSerifBoldOblique
    /SansSerifOblique
    /Sceptre
    /ScribbleRegular
    /ScriptC
    /ScriptHebrew
    /ScriptS
    /Semaphore
    /SerifaBT-Black
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Sfn2Bold
    /Sfn3Italic
    /ShelleyAllegroBT-Regular
    /ShelleyVolanteBT-Regular
    /ShellyMarisSH
    /SherwoodRegular
    /ShlomoAleichemSH
    /ShotgunBT-Regular
    /ShowcardGothic-Reg
    /SignatureRegular
    /Signboard
    /SignetRoundhandATT-Italic
    /SignetRoundhand-Italic
    /SignLanguage
    /Signs
    /Simplex
    /SissyRomeoSH
    /SlimStravinskySH
    /SnapITC-Regular
    /SnellBT-Bold
    /Socket
    /Sonate
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /SpruceByingtonSH
    /SPSFont1Medium
    /SPSFont2Medium
    /SPSFont3Medium
    /SPSFont4Medium
    /SpsFont4Medium
    /SPSFont5Normal
    /SPSScript
    /SRegular
    /Staccato222BT-Regular
    /StageCoachRegular
    /StandoutRegular
    /StarTrekNextBT-ExtraBold
    /StarTrekNextPiBT-Regular
    /SteamerRegular
    /Stencil
    /StencilBT-Regular
    /Stewardson
    /Stonehenge
    /StopD
    /Storybook
    /Strict
    /Strider-Regular
    /StuyvesantBT-Regular
    /StylusBT
    /StylusRegular
    /SubwayRegular
    /SueVermeer4LightItalicSH
    /SueVermeer4LightSH
    /SueVermeer5MedItalicSH
    /SueVermeer5MediumSH
    /SueVermeer6DemiItalicSH
    /SueVermeer6DemiSH
    /SueVermeer7BoldItalicSH
    /SueVermeer7BoldSH
    /SunYatsenSH
    /SuperFrench
    /SuzanneQuillSH
    /Swiss721-BlackObliqueSWA
    /Swiss721-BlackSWA
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721-LightObliqueSWA
    /Swiss721-LightSWA
    /Swiss911BT-ExtraCompressed
    /Swiss921BT-RegularA
    /Syastro
    /Symap
    /Symath
    /SymbolGreek
    /SymbolGreek-Bold
    /SymbolGreek-BoldItalic
    /SymbolGreek-Italic
    /SymbolGreekP
    /SymbolGreekP-Bold
    /SymbolGreekP-BoldItalic
    /SymbolGreekP-Italic
    /SymbolGreekPMono
    /SymbolMT
    /SymbolProportionalBT-Regular
    /SymbolsAPlentySH
    /Symeteo
    /Symusic
    /Tahoma
    /Tahoma-Bold
    /TahomaItalic
    /TamFlanahanSH
    /Technic
    /TechnicalItalic
    /TechnicalPlain
    /TechnicBold
    /TechnicLite
    /Tekton-Bold
    /Teletype
    /TempsExptBoldSH
    /TempsExptItalicSH
    /TempsExptRomanSH
    /TempsSwashSH
    /TempusSansITC
    /TessHoustonSH
    /TexCatlinObliqueSH
    /TexCatlinSH
    /Thrust
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-ExtraBold
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Times-Semibold
    /Times-SemiboldItalic
    /TimesUnic-Bold
    /TimesUnic-BoldItalic
    /TimesUnic-Italic
    /TimesUnic-Regular
    /TonyWhiteSH
    /TransCyrillic
    /TransCyrillic-Bold
    /TransCyrillic-BoldItalic
    /TransCyrillic-Italic
    /Transistor
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /TranslitLS
    /TranslitLS-Bold
    /TranslitLS-BoldItalic
    /TranslitLS-Italic
    /TransRoman
    /TransRoman-Bold
    /TransRoman-BoldItalic
    /TransRoman-Italic
    /TransSlavic
    /TransSlavic-Bold
    /TransSlavic-BoldItalic
    /TransSlavic-Italic
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TribuneBold
    /TribuneItalic
    /TribuneRegular
    /Tristan
    /TrotsLight-HMK
    /TrotsMedium-HMK
    /TubularRegular
    /Txt
    /TypoUprightBT-Regular
    /UmbraBT-Regular
    /UmbrellaPSMT
    /UncialLS
    /Unicorn
    /UnicornPSMT
    /Univers
    /UniversalMath1BT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Italic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-CondensedOblique
    /UniversExtended-Bold
    /UniversExtended-BoldItalic
    /UniversExtended-Medium
    /UniversExtended-MediumItalic
    /Univers-Italic
    /UniversityRomanBT-Regular
    /UniversLightCondensed-Italic
    /UniversLightCondensed-Regular
    /Univers-Medium
    /Univers-MediumItalic
    /URWWoodTypD
    /USABlackPSMT
    /USALightPSMT
    /Vagabond
    /Venetian301BT-Demi
    /Venetian301BT-DemiItalic
    /Venetian301BT-Italic
    /Venetian301BT-Roman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /VinetaBT-Regular
    /Vivaldii
    /VladimirScript
    /VoguePSMT
    /WaldoIconsNormalA
    /WaltHarringtonSH
    /Webdings
    /Weiland
    /WesHollidaySH
    /Wingdings-Regular
    /WP-HebrewDavid
    /XavierPlatoSH
    /YuriKaySH
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Medium
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZappedChancellorMedItalicSH
    /ZurichBT-BlackExtended
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


