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Introduction
Natural killer (NK) lymphocytes play a crucial role in antiviral 
and anticancer responses by killing infected or tumorigenic tar-
get cells and also by secreting inflammatory cytokines. They are 
activated by a diverse set of transmembrane receptors that rec-
ognize cell surface proteins characteristic of infected or trans-
formed tissue (Lanier, 2005). Ligand binding triggers the 
elevation of intracellular calcium (Ca2+), the up-regulation of 
integrin-mediated adhesion, and cytoskeletal reorganization 
leading to the formation of a radially symmetric cell–cell con-
tact called the cytolytic synapse (Burshtyn et al., 2000; Orange 
et al., 2003; Barber et al., 2004; Bryceson et al., 2005; Stinchcombe 
and Griffiths, 2007). Soluble cytotoxic agents, such as perforin 
and granzyme, are then secreted by the NK cell into the synapse 
to kill the target (Stinchcombe and Griffiths, 2007).

Activating NK receptors are opposed by a group of in
hibitory receptors that contain a cytoplasmic-signaling motif 
known as an immunotyrosine-based inhibitory motif (ITIM). 

Although ITIM receptors regulate multiple cell types, they are 
particularly important for the control of lymphocyte activity 
and the prevention of autoimmunity (Long, 2008). In NK cells, 
they block the cytolysis of normal healthy tissue by recognizing 
class I major histocompatibility complex (MHC), which is ex-
pressed on the surface of most cell types and serves as a marker 
for “self” (Lanier, 2005; Long, 2008). MHC binding induces 
ITIM phosphorylation and the subsequent recruitment of the  
tyrosine phosphatases SHP-1 and SHP-2 (Burshtyn et al., 1996; 
Olcese et al., 1996; Bruhns et al., 1999), which dephosphorylate 
signaling molecules required for activating responses (Binstadt 
et al., 1998; Stebbins et al., 2003).

Studies suggest that ITIM signaling in NK cells disrupts 
activating pathways at a level close to the activating receptor  
itself (Kaufman et al., 1995; Valiante et al., 1996; Guerra et al., 
2002; Krzewski et al., 2006; Masilamani et al., 2006). Precisely 
how inhibitory signals interface with their activating counterparts 
within a cell–cell contact, however, is not understood. In T cells 
and B cells, activated antigen receptors signal from plasma  
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and inhibitory pathways. To circumvent this problem, we devel-
oped a photochemical approach that enabled us to stimulate  
inhibitory signaling after the onset of activating signals in high-
resolution imaging experiments. We prepared a semisynthetic 
peptide–MHC complex that is nonstimulatory to the inhibitory 
NK receptor KIR2DL2 until it is irradiated with UV light. Photo
stimulation of KIR2DL2-expressing NK cells on surfaces 
containing this reagent triggered the formation of inhibitory re-
ceptor microclusters and suppressed the formation of new acti-
vating receptor microclusters. This was followed by rapid 
reorganization of the actin cytoskeleton and retraction of the 
cells from the stimulatory surface. These results establish a cell 
biological basis for ITIM receptor signaling and provide insight 
into the mechanisms of signal integration in NK cells.

Results
KIR2DL2 signaling blocks the initiation of 
activating responses
KIR2DL2 recognizes a subset of human class I MHC mole-
cules, including human leukocyte antigen (HLA)-Cw1, -Cw3,  
-Cw7, and -Cw8, and transduces inhibitory signals via two  
cytoplasmic ITIMs (Lanier, 2005). To analyze the effects of 
KIR2DL2 signaling on NK cell activation, we stably transduced 
the receptor into the human NK cell line NKL, which does not 
express any endogenous inhibitory KIR proteins (Robertson  
et al., 1996). To stimulate KIR2DL2 signaling, we used a mu-
tant form of HLA-Cw3 that binds to KIR2DL2 but does not 
bind to ILT2, another inhibitory receptor for MHC that is ex-
pressed by NKL cells (Fig. 1 A). This HLA-Cw3 mutant, which 

membrane microclusters that traffic centripetally toward the 
center of the synapse between the lymphocyte and the antigen- 
presenting cell (Harwood and Batista, 2010; Yokosuka and  
Saito, 2010). Given the similarities between NK cells and other 
lymphocytes, it is likely that activating NK receptors also form sig-
naling microclusters, which would presumably need to be neu-
tralized by inhibitory receptors to block activating responses.

In vivo, NK cells must eliminate rare target cells that are 
surrounded by healthy tissue expressing high levels of class I 
MHC. In this context, it would presumably be important to re-
strict the scope of inhibitory signals to avoid blocking activating 
responses against bona fide targets. In vitro experiments have 
shown that NK cells can form cytolytic synapses at one cell–cell 
interface while receiving inhibitory stimulation from other sites 
(Eriksson et al., 1999; Vyas et al., 2001), suggesting that they 
can indeed limit the extent of inhibitory signals. Furthermore, 
inhibitory killer Ig receptors (KIRs) have been observed to clus-
ter and undergo tyrosine phosphorylation exclusively at inter-
faces containing their cognate MHC ligands (Davis et al., 1999; 
Faure et al., 2003; Vyas et al., 2004; Treanor et al., 2006). How 
signals emanating from these receptors are also spatially con-
strained, however, is not known. Also unclear is how long NK 
cells remain sensitive to inhibitory stimulation from before they 
become committed to a killing response. Precise quantification 
of this window of responsiveness, if it exists, would provide in-
sight into the mechanisms that govern the integration of activat-
ing and inhibitory signals.

The analysis of signal integration in NK cells has been 
complicated by the speed and breadth of inhibitory responses, 
which make it difficult to observe interactions between activating 

Figure 1.  KIR2DL2 signaling blocks activating re-
sponses. (A) Control NKL cells (left) and NKL cells 
expressing KIR2DL2 (right) were stimulated with 
-NK and either wild-type (WT) HLA-Cw3 or HLA-
Cw3 containing the ILT2-binding mutation (IBM) as 
indicated. Both HLA-Cw3 proteins contained the  
importin- peptide with p8 Ala. IFN- secretion was 
quantified by ELISA. Two independent experiments 
are shown for each cell type. Although maximal 
IFN- secretion varied from day to day, the relative 
differences in cytokine production between different 
stimulus conditions were consistent. All other figures 
presented in this paper used HLA-Cw3 containing 
the ILT2-binding mutation. (B–D) NKL cells express-
ing wild-type KIR2DL2 (B–D) or KIR2DL2(mut) (D) 
were added to plastic wells containing immobilized 
-NK and the indicated HLA-Cw3 proteins. (B) IFN- 
secretion from NKL cells expressing KIR2DL2, mea-
sured by ELISA. Two independent experiments are 
shown. (C) Representative degranulation responses 
measured by surface expression of CD107a.  
Unstim., unstimulated. As with IFN- secretion, maxi
mal degranulation responses were quite variable. 
However, the relative differences between stimulus 
conditions were consistent. (D) Dose–response curves 
showing induced degranulation from NKL cells ex-
pressing either wild-type KIR2DL2 or KIR2DL2(mut) 
(both Tyr 302 and Tyr 332 mutated to Phe) as a 
function of the concentration of HLA-Cw3(Ala) used 
during protein immobilization. In A and B, error 
bars represent SEM between replicates, with n = 3. 
All data are representative of at least two indepen-
dent experiments. P-values were calculated using 
Student’s t test.
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Hence, we also prepared HLA-Cw3 containing importin- pep-
tides with Ser or Tyr in the p8 position.

To evaluate the potency of these HLA-Cw3 reagents, we 
determined whether they could inhibit responses triggered by 
the activating receptor NKG2D. Although previous studies had 

will be called HLA-Cw3 hereafter, was purified and complexed 
with a nonamer peptide derived from importin- (GAVDPLLAL). 
Previous experiments had demonstrated that the side chain in 
the p8 position of this peptide must be small (either Ala or Ser) 
to accommodate KIR2DL2 binding (Boyington et al., 2000). 

Figure 2.  KIR2DL2 signaling inhibits cell spreading and the initiation of Ca2+ flux. (A and B) NKL cells expressing KIR2DL2 were stained with PKH26 
and imaged using TIRF microscopy on lipid bilayers containing the indicated proteins. (A) Representative time-lapse montages (90-s intervals) under 
both activating (top) and inhibitory (bottom) conditions. (B) Bar graph representing the distribution of cell behavior on surfaces containing the indicated  
ligands. Only cells visible in the imaging field for ≥5 min were analyzed. Cells were described as spread if they formed a stationary footprint at least 10 µm 
in diameter (yellow arrow in A), collapsed if they engaged in minimal dynamic interactions with the membrane (magenta arrow in A), or motile if they 
exhibited directional migration (cyan arrow in A). Occasionally, cells would display two phenotypes during the imaging period. (C) NKL cells express-
ing KIR2DL2 (KIR-WT) or KIR2DL2(mut) (KIR-Mut) were loaded with Fura-2AM and imaged on lipid bilayers containing ULBP3, ICAM, and the indicated 
HLA-Cw3 proteins. (right) Representative time-lapse montages (4-min intervals) showing a pseudocolored Fura-2AM ratio (warmer colors indicate higher 
intracellular Ca2+ concentrations). (left) Background-corrected mean Fura-2AM ratios for all imaging fields are plotted versus time for each condition. Error 
bars show SEM. All data are representative of at least two independent experiments. Bars, 10 µm.
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(HLA-Cw3(cage)) had little to no effect on IFN- secretion and 
degranulation induced by activating ligands (Fig. 3, B and C). 
However, substantial inhibition was observed if the peptide–
MHC was exposed to UV light before NK cell stimulation  
(Fig. 3, B and C), indicating that HLA-Cw3(cage) is a photo
inducible ligand for KIR2DL2.

KIR2DL2 photostimulation induces 
receptor microcluster formation and 
cellular retraction
Having validated that HLA-Cw3(cage) could induce UV- 
dependent inhibitory signaling, we used this reagent in imaging 
experiments to stimulate KIR2DL2 during ongoing activating 
responses (Fig. S2 A). NKL cells expressing GFP-labeled 
KIR2DL2 were imaged by TIRF microscopy on bilayers con-
taining ULBP3, ICAM, and HLA-Cw3(cage). These bilayers 
induced symmetric cell spreading characteristic of activation, 
reflecting the fact that HLA-Cw3(cage) does not inhibit activat-
ing responses before UV exposure (Fig. 4 A and Video 3). Sub-
sequent UV irradiation of the surface induced the rapid (<3 s) 
formation of KIR2DL2 microclusters, particularly in an annular 
zone at the periphery of the contact (Figs. 4, A and B; and S2 B; 
and Video 3). This was followed, in most experiments, by the 
retraction of the cell from the bilayer. Retraction occurred pri-
marily in the peripheral region enriched in KIR2DL2 microclus-
ters, and the process tended to eliminate these clusters. In 
most experiments, we observed low levels of UV-independent 
KIR2DL2 clustering on membranes containing HLA-Cw3(cage) 
(Fig. 4 A), which was most likely a result of background levels 

indicated that NKG2D signaling alone was insufficient to trig-
ger NK cell activation (Bryceson et al., 2006, 2009), we found 
that the responsiveness of NKL cells to NKG2D was enhanced 
in the presence of interleukin-2 (IL-2). Under these conditions, 
incubation of NKL cells expressing KIR2DL2 in plastic wells 
coated with an antibody against NKG2D (-NK) induced both 
degranulation and the secretion of IFN- (Fig. 1, B and C). Co-
immobilization of HLA-Cw3(Ala) or HLA-Cw3(Ser) in the 
stimulatory wells inhibited these responses (Fig. 1, B and C). 
HLA-Cw3(Tyr) had no effect, confirming that a small residue in 
the p8 position is necessary for KIR2DL2 stimulation. NKL 
cells expressing a mutant of KIR2DL2 in which the crucial Tyr 
residues of both cytoplasmic ITIMs were replaced with Phe 
(called KIR2DL2(mut) hereafter) were markedly less sensitive 
to HLA-Cw3 (Fig. 1 D), indicating that the disruption of acti-
vating responses required ITIM signaling from KIR2DL2.

To examine the cell biological basis for this inhibition, we 
stained KIR2DL2-expressing NKL cells with the vital mem-
brane dye PKH26 and imaged them using total internal reflec-
tion fluorescence (TIRF) microscopy as they interacted with 
supported lipid bilayers containing activating and inhibitory li-
gands. Consistent with previous work (Culley et al., 2009; Liu 
et al., 2009), NKL cells formed stable, synapselike contacts on 
bilayers containing ULBP3 (an NKG2D ligand), the intercellu-
lar adhesion molecule (ICAM), and the nonfunctional HLA-
Cw3(Tyr) (Fig. 2, A and B; and Video 1). Substitution of 
HLA-Cw3(Tyr) with the functional HLA-Cw3(Ser) dramati-
cally altered this spreading behavior; most cells did not spread 
at all, instead forming small, dynamic contacts (Fig. 2, A and B; 
and Video 2). A subset of cells exhibited a highly mobile crawl-
ing phenotype (Fig. 2 A, cyan arrow), which was consistent 
with the notion that inhibitory receptors block the ability of ac-
tivating signals to arrest cell motility (Culley et al., 2009).

Activating bilayers also induced robust Ca2+ flux in 
KIR2DL2-expressing NKL cells. This response was blocked in 
the presence of HLA-Cw3(Ser) (Fig. 2 C). NKL cells express-
ing KIR2DL2(mut) were insensitive to HLA-Cw3(Ser), indi-
cating that inhibition required KIR2DL2 signaling (Fig. 2 C). 
Collectively, these data showed that KIR2DL2-mediated inhibi-
tion of cytokine secretion and degranulation was associated 
with a block in the initiation of cell spreading and Ca2+ flux.

A photocaged ligand for KIR2DL2
The lack of observable activating responses in the presence of in-
hibitory ligands (Figs. 1 and 2) complicated our attempts to analyze 
the cellular mechanisms of inhibitory signaling. To circumvent 
this issue, we developed a photochemical approach that allowed 
us to stimulate KIR2DL2 after activating signals had begun.

As stated in the previous section, the side chain in the p8 
position of the importin- peptide must be small to allow 
KIR2DL2 binding to HLA-Cw3 (Boyington et al., 2000). Ac-
cordingly, we synthesized a derivative of the peptide containing 
a photocaged Ser residue (Veldhuyzen et al., 2003) in the p8 
position (Figs. 3 A and S1), reasoning that the presence of a 
bulky caging group would sterically block KIR2DL2 binding 
to HLA-Cw3 and that UV irradiation would relieve this 
blockade. Indeed, HLA-Cw3 containing the photocaged peptide 

Figure 3.  Preparation of photocaged HLA-Cw3. (A) Photocaged Ser 
was synthesized and incorporated into the importin- peptide, which 
was then refolded with purified HLA-Cw3 and 2m. UV irradiation of 
HLA-Cw3(cage) yields stimulatory HLA-Cw3(Ser). (B and C) IFN- secre-
tion (B) and degranulation (C) of KIR2DL2-expressing NKL cells stimulated 
on plastic surfaces coated with the indicated activating and inhibitory 
molecules. HLA-Cw3(cage) was either UV irradiated or left untreated  
before immobilization on the stimulatory surfaces. Asterisks in B denote 
P < 0.001 (Student’s t test). Unstim, unstimulated. Error bars show SEM 
between replicates, with n = 3. Data are representative of at least three 
independent experiments.

http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
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is closely related to KIR2DL2 and shares the same ligand speci-
ficity (Lanier, 2005). These cells spread and fluxed Ca2+ on  
bilayers containing ULBP3 and ICAM as the sole activating  
ligands (unpublished data), which was consistent with previous 
studies showing that culturing NK cells in IL-2 enhances 
NKG2D expression and responsiveness (Bryceson et al., 2006; 
Decot et al., 2010). Importantly, UV irradiation on bilayers con-
taining HLA-Cw3(cage), but not HLA-Cw3(Tyr), induced cel-
lular retraction (Fig. 5). These responses were qualitatively 
similar to those observed with NKL cells but tended to be 
weaker quantitatively. This could be caused by differences in 
the inhibitory potency of KIR2DL3 relative to KIR2DL2. It is 
also possible that primary NK cells express a composition of 
cytoplasmic signaling regulators that makes them less respon-
sive to inhibitory stimulation than NKL cells. Nevertheless, 
these results indicate that the retraction response to inhibitory 
KIR stimulation is not unique to the NKL cell line.

ITIM signaling is required for retraction but 
not microcluster formation
To determine whether KIR2DL2 microcluster formation and 
cellular retraction required KIR2DL2 signaling, we photostimu-
lated NKL cells expressing KIR2DL2(mut)-GFP. KIR2DL2(mut) 
formed microclusters in response to photostimulation that were 
enriched in the periphery of the contact, similar to wild-type 

of decaging that were insufficient to promote retraction. Impor-
tantly, photostimulation on bilayers containing HLA-Cw3(Tyr) 
instead of HLA-Cw3(cage) induced neither KIR2DL2 cluster-
ing nor cellular retraction, indicating that both responses re-
quired HLA-Cw3(cage) (Fig. 4, C and D).

To better characterize the speed and prevalence of retrac-
tion after KIR2DL2 stimulation, we performed lower resolution 
TIRF experiments in which multiple cells were imaged simulta-
neously. PKH26-labeled NKL cells expressing KIR2DL2 were 
allowed to spread on bilayers containing ULBP3, ICAM, and 
either HLA-Cw3(Tyr) or HLA-Cw3(cage) for a defined period 
of time and then UV irradiated as a group. KIR2DL2-mediated 
retraction tended to be quite rapid. Of the cells that collapsed  
in response to photostimulation (65% of total cells), close to 
half did so within 5 min of UV exposure (Fig. 4 E). We also 
asked how the duration of activating signals before photostimu-
lation affected subsequent retraction responses to investigate 
whether there was a finite period of sensitivity to inhibitory sig-
nals. Our data, which included cells that landed up to 15 min 
before UV irradiation, revealed no evidence for a loss in respon-
siveness over time (Fig. 4 E). Hence, NK cells retract within 
minutes of KIR2DL2 stimulation, and they remain sensitive to 
inhibitory signals at least 15 min after initial activation.

Photostimulation experiments were also performed using 
cultured primary human NK cells expressing KIR2DL3, which 

Figure 4.  Photostimulation of KIR2DL2 induces receptor microclusters and cellular retraction. (A–D) NKL cells expressing KIR2DL2-GFP were imaged using 
TIRF microscopy and UV irradiated on bilayers containing ULBP3, ICAM, and either HLA-Cw3(Tyr) or HLA-Cw3(cage). (A and C) Representative time-lapse 
montages (25-s intervals) showing NKL cells responding to photostimulation on surfaces containing the indicated proteins. UV irradiation is denoted in 
magenta. (B) Graph showing the change in KIR2DL2 microclusters and cell contact area after photostimulation on bilayers containing HLA-Cw3(cage). Data 
were derived from seven cells. (D) Graph showing mean cell contact area before and after photostimulation on bilayers containing the indicated HLA-Cw3 
proteins. Each curve was derived from at least nine cells. (E) PKH26-stained NKL cells expressing KIR2DL2 were imaged on bilayers containing ULBP3, 
ICAM, and the indicated HLA-Cw3 proteins for up to 15 min before UV irradiation. Cells on the HLA-Cw3(cage) bilayer were grouped based on when they 
formed stable contacts with the bilayer (early, first 5 min; late, between 5 and 15 min) and how quickly they collapsed after UV (within 5 or 17.5 min).  
A timeline for the experiment is shown on the right in a gray box. Cells were defined as collapsed once their footprint on the bilayer shrank to <50% of its 
value before UV irradiation. Error bars represent SEM. Purple lines in graphs denote UV irradiation. All data are representative of at least two independent 
experiments. norm., normalized. Bars, 5 µm.
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Culley et al., 2009), where it is thought to be important for cell 
spreading and target cell adhesion.

To investigate the effects of ITIM receptor signaling on 
actin structure, we transduced NKL cells with the Lifeact pep-
tide (Riedl et al., 2008), which binds specifically to filamentous 
actin. When cells expressing KIR2DL2-GFP and Lifeact-RFP 
contacted bilayers containing ULBP3, ICAM, and HLA-
Cw3(cage), the Lifeact-RFP probe accumulated in a ring at  
the periphery of the synapse, which is characteristic of an acti-
vated lymphocyte. Subsequent UV irradiation dramatically 
altered this configuration (Fig. 7 A and Video 5). As the con-
tact retracted, the actin ring “filled in” so that the intensity of 
the Lifeact-RFP probe became uniform over the entire inter-
face. UV-induced dissolution of the actin ring was far less 
frequent on bilayers containing HLA-Cw3(Tyr) instead of 
HLA-Cw3(cage) (Fig. 7 B). This remodeling response was also 
impaired by NSC87877 (Fig. 7 C). Hence, the reorganization of 
actin induced by KIR2DL2 requires both ITIM signaling and 
SHP-1/2 activity.

“Outside-in” signals from integrins play an important role 
in leukocyte adhesion and cell spreading by promoting the  
polymerization and stabilization of actin (Abram and Lowell, 
2009). To determine whether integrin signaling to the cytoskel-
eton could counteract the effects of KIR2DL2, we performed 
photostimulation experiments in the presence of manganese 
(Mn2+), a divalent cation that up-regulates integrin-mediated ad-
hesion and enhances outside-in signaling. Indeed, UV-induced 
retraction was diminished by Mn2+ treatment (Fig. S3), suggest-
ing that integrin and KIR2DL2 signals intersect at the level of 
actin. Interestingly, however, Mn2+ did not block the dissolution 
of the peripheral actin ring (Fig. 7 D). Hence, there are certain 
aspects of KIR2DL2-mediated actin remodeling that are not re-
versed by integrin signaling.

KIR2DL2 (Figs. 6, A and B; and S2 C; and Video 4). However, 
no significant retraction was observed, and peripheral micro
clusters tended to persist for the duration of the experiment. Hence, 
ITIM signaling is required for retraction but not for KIR2DL2 
microcluster formation.

In NK cells, ITIM-induced dephosphorylation of activat-
ing signaling proteins is mediated by SHP-1 and SHP-2 (Burshtyn 
et al., 1996; Olcese et al., 1996). To assess the role of these 
phosphatases downstream of KIR2DL2, photostimulation ex-
periments were performed in the presence of NSC87877, a 
SHP-1/2 inhibitor. NSC87877 substantially impaired retraction re-
sponses but did not affect KIR2DL2 microcluster formation 
(Figs. 6 C and S2 D), suggesting that recruitment and activation 
of SHP-1/2 is required for mediating ITIM-induced changes 
in synaptic structure.

The actin motor protein myosin II has been impli-
cated in retraction responses in several systems (Small and 
Resch, 2005). However, KIR2DL2-induced collapse of the 
contact region was unaffected by the myosin inhibitor blebbi
statin (Fig. S2 E), suggesting that it operates via a myosin- 
independent mechanism.

KIR2DL2 signaling induces remodeling of 
the actin cytoskeleton
The observation that KIR2DL2 photostimulation triggered re-
traction suggested that ITIM signaling might be altering the  
underlying actin cytoskeleton. Cytolytic synapse formation is 
accompanied by a burst of actin polymerization (Orange et al., 
2003), and agents that disrupt filamentous actin block killing 
and other activating responses (Watzl and Long, 2003; Barber  
et al., 2004; Endt et al., 2007). Previous studies have demon-
strated that actin accumulates in an annular zone at the periph-
ery of the synapse (Bunnell et al., 2001; Arana et al., 2008; 

Figure 5.  Photostimulation of KIR2DL3 triggers retraction in primary human NK cells. KIR2DL3+ NK cells were stained with PKH26 and photostimulated 
on bilayers containing ULBP3, ICAM, and either HLA-Cw3(cage) or HLA-Cw3(Tyr). (left) A time-lapse montage (25-s intervals) showing a representative 
photostimulation experiment on a bilayer containing HLA-Cw3(cage). UV irradiation is indicated in magenta. (right) A graph showing the mean cell contact 
area before and after photostimulation on bilayers containing the indicated HLA-Cw3 proteins. The purple line denotes UV irradiation. Each curve was 
derived from ≥15 cells. Error bars show SEM. Data are representative of two independent experiments. norm., normalized. Bars, 5 µm.

http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
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lipid bilayers containing ULBP3 and ICAM, microclusters of 
DAP10 formed that could be imaged by TIRF microscopy  
(Fig. 8 A and Video 6). These microclusters were not observed 
on bilayers containing ICAM alone (Fig. S4), indicating that 
they required NKG2D stimulation. Microclusters adopted 
one of two behaviors (Fig. 8 A). One group of clusters formed 
in the periphery and migrated centripetally toward the center of 
the contact. The second group was relatively immobile and 
tended to be distributed closer to the central region. The mobile 
clusters either vanished as they approached the center or merged 
with other clusters and became immobile (Video 6). Interest-
ingly, neither the immobile nor the mobile clusters fused into 
a single central accumulation over time. This distinguishes 
NKG2D-DAP10 microclusters from antigen receptor micro
clusters in T cells and B cells, which coalesce into a central supra-
molecular activation cluster as the synapse matures (Harwood 
and Batista, 2010; Yokosuka and Saito, 2010).

To determine which pool of DAP10 microclusters was ac-
tively engaged in signaling, we imaged DAP10-GFP–expressing 
NKL cells that were fixed on bilayers containing ULBP3 and 
ICAM and then stained with antibodies against phosphotyro-
sine. Although microclusters near the center of the contact tended 
to contain more DAP10, phosphotyrosine staining was enriched 
in the peripheral microclusters (Fig. 8, B–D). These results, 
which are similar to what has been observed for antigen recep-
tor clusters in T cells (Campi et al., 2005; Yokosuka et al., 2005; 
Varma et al., 2006), suggested that signaling is mediated pre-
dominantly by peripheral clusters containing NKG2D-DAP10.

KIR2DL2 signaling inhibits the formation of 
activating receptor microclusters
Next, we imaged DAP10-GFP and KIR2DL2-mCherry in the 
same cells to assess the interplay between the two receptors. As 
described in previous sections, photostimulation on bilayers 
containing ULBP3, ICAM, and HLA-Cw3(cage) induced the 
rapid formation of KIR2DL2 microclusters, particularly in the 
periphery of the contact. This ring of KIR2DL2 showed little 
overlap with the relatively stable immobile pool of DAP10 clus-
ters located in the central region (Fig. 9 A). Indeed, many of 
these immobile DAP10 clusters persisted for the duration of the 
retraction response, even as the annular zone of KIR2DL2 accu-
mulation collapsed inward. In contrast, KIR2DL2 stimulation 
dramatically affected the mobile pool of DAP10 microclusters 
in the periphery. Although these clusters were readily apparent 
before photostimulation (Fig. 9 A, arrows), they tended to be ab-
sent after UV irradiation, particularly in peripheral regions rich 
in KIR2DL2 (Fig. 9 A, brackets). Particle tracking revealed that 
the formation of peripheral DAP10 clusters was strongly inhib-
ited by UV irradiation (Fig. 9, B and C; and Video 7). Peripheral 
clusters were not suppressed by UV irradiation on surfaces con-
taining HLA-Cw3(Tyr) instead of HLA-Cw3(cage) (Fig. 9,  
B and C), indicating that the response required KIR2DL2 stimu
lation. Hence, the formation of KIR2DL2 microclusters at the 
periphery of the synapse is associated with the suppression of 
new DAP10 microclusters in the same domain.

Because we had also observed that KIR2DL2 photostimula-
tion alters actin structure (Fig. 7), we explored the possibility that 

The activating receptor NKG2D forms 
ligand-dependent microclusters
The aforementioned imaging experiments showed that KIR2DL2 
stimulation could reverse cell-spreading responses induced by 
the activating receptor NKG2D. To visualize NKG2D dynamics 
directly, we fluorescently labeled DAP10, a small signaling 
adaptor that constitutively associates with NKG2D (Lanier, 
2005). When NKL cells expressing DAP10-GFP were added to 

Figure 6.  ITIM signaling and SHP-1/2 activity are required for cellular 
retraction. (A and B) NKL cells expressing KIR2DL2(mut)-GFP were imaged 
using TIRF microscopy and UV irradiated on bilayers containing ULBP3, 
ICAM, and HLA-Cw3(cage). (A) Time-lapse montage (25-s intervals) 
showing a representative response UV irradiation, which is indicated in 
magenta. (B) Graph showing the cell contact area and the change in 
KIR2DL2 microcluster number after photostimulation. Data were derived 
from 12 cells. (C) NKL cells expressing wild-type KIR2DL2 were photostimu-
lated on bilayers containing ULBP3, ICAM, and the indicated HLA-Cw3 
proteins in the presence or absence of NSC87877. Mean cell contact area 
is graphed both before and after UV irradiation. Each curve was derived 
from at least seven cells. Throughout the figure, purple lines indicate UV  
irradiation. Error bars show SEM. All data are representative of at least 
two independent experiments. norm., normalized. Bars, 5 µm.

http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
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actin is necessary for NKG2D-DAP10 microcluster assembly and 
trafficking. These results are similar to what has been observed for 
antigen receptor microclusters in T cells (Varma et al., 2006). Col-
lectively, our data indicated that KIR2DL2 signaling inhibits acti-
vating receptor microcluster formation, possibly by influencing 
the underlying actin cytoskeleton.

actin is required for DAP10 microcluster dynamics. NKL cells 
expressing DAP10-GFP were imaged on bilayers containing 
ULBP3 and ICAM both before and after the addition of the actin-
depolymerizing agent latrunculin. Treatment with latrunculin 
abolished the formation and centripetal migration of peripheral 
DAP10 microclusters (Fig. 9, C and D), indicating that filamentous 

Figure 7.  KIR2DL2 photostimulation induces actin remodeling. (A–D) NKL cells expressing KIR2DL2 and Lifeact-RFP were imaged using TIRF microscopy 
and UV irradiated on bilayers containing ULBP3, ICAM, and either HLA-Cw3(cage) (A, C, and D) or HLA-Cw3(Tyr) (B). Photostimulation was performed 
using cells left untreated (A and B) or treated with NSC87877 (C) or Mn2+ (D). For each panel, a time-lapse montage (75-s intervals) is shown (top) along 
with an associated kymograph. UV irradiation is indicated by magenta text in the time lapse and by a magenta line in the kymograph. Kymographs were 
generated using the yellow line in the first image of each time lapse. Shown on the bottom in each panel, normalized mean fluorescence intensity of Lifeact-
RFP in the center of the contact is graphed as a function of time together with cell area. The contact center is indicated by a cyan ellipse in each time lapse. 
Data are representative of at least two independent experiments. F/F, normalized fluorescence intensity. Bars, 5 µm.
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on both surfaces after UV irradiation were essentially super
imposable (Fig. 10 C).

That KIR2DL2 photostimulation did not inhibit ongoing 
Ca2+ responses was surprising, given that KIR2DL2 did block 
the initiation of Ca2+ flux when triggered concurrently with ac-
tivating receptors (Fig. 2 C). We sought to confirm this ob-
servation using a flow cytometry–based approach. NKL cells 
expressing KIR2DL2 were preincubated with biotinylated mouse 
antibodies against two activating receptors, NKG2D and 2B4, 
either in the presence or absence of an unbiotinylated mouse 
antibody against KIR2DL2. Streptavidin (SA) was then used to 
trigger activating signals and an anti–mouse secondary antibody 
(-Mouse) to induce inhibition (Fig. S5). Consistent with previous 

KIR2DL2 signaling does not block ongoing 
calcium responses
We also examined the ability of KIR2DL2 photostimulation to 
inhibit ongoing Ca2+ responses. NKL cells expressing KIR2DL2 
displayed robust Ca2+ flux upon contact with bilayers containing 
ULBP3, ICAM, and either HLA-Cw3(Tyr) or HLA-Cw3(cage) 
(Fig. 10 A). Intracellular Ca2+ concentrations typically peaked 
in the first few minutes of the response before entering a phase 
of sustained Ca2+ elevation (Fig. 10 B). UV irradiation, which 
we delivered during the sustained phase in some cells and the 
early phase in others, did not significantly affect the intensity 
of Ca2+ responses on HLA-Cw3(cage) surfaces relative to  
HLA-Cw3(Tyr) controls (Fig. 10, A and B). Mean Ca2+ levels 

Figure 8.  NKG2D stimulation induces the forma-
tion of activating receptor microclusters. (A) NKL cells 
expressing DAP10-mCherry were imaged using TIRF 
microscopy on bilayers containing ULBP3 and ICAM. 
(left) A kymograph showing centripetally mobile and 
stationary DAP10 clusters, indicated by the cyan  
arrow and arrowhead, respectively. The line used to gen-
erate the kymograph is shown on the right. (B–D) NKL 
cells expressing DAP10-GFP were fixed and stained 
with antibodies against phosphotyrosine (pY) on bilay-
ers containing ULBP3 and ICAM. (B) Representative 
images showing DAP10 fluorescence (left), phospho-
tyrosine fluorescence (right), and the overlay (center). 
(C) Linescans depicting DAP10 and phosphotyrosine 
fluorescence (yellow and blue, respectively) in specific 
microclusters within the contact region. The lines used 
for each linescan are shown in the central image in B. 
(D, left) Schematic showing how images were divided 
into central and peripheral zones for quantification. 
(right) Before and after graph showing the ratio of nor-
malized phosphotyrosine fluorescence intensity (FpY) to 
normalized DAP10-GFP fluorescence intensity (FDAP10) 
for peripheral and central regions. Ratios calculated 
from the same cell are connected by lines. All data 
are representative of at least two independent experi-
ments. arb., arbitrary. Bars, 5 µm.

http://www.jcb.org/cgi/content/full/jcb.201009135/DC1
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Figure 9.  KIR2DL2 photostimulation blocks the formation of activating receptor microclusters. (A) NKL cells expressing DAP10-GFP and KIR2DL2-mCherry 
were imaged in TIRF mode and photostimulated on bilayers containing ULBP3, ICAM, and HLA-Cw3(cage). (top) A representative time-lapse montage 
(80-s intervals), with UV irradiation indicated by magenta text. (bottom) Two single-cell kymographs showing KIR2DL2-mCherry and DAP10-GFP clusters 
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Varma et al., 2006). Thus, sustained signaling is dependent on 
the continuous formation of new peripheral microclusters. Using 
DAP10 as a probe, we observed that the NKG2D receptor com-
plex forms two kinds of clusters, a mobile variety that is gener-
ated in the periphery and migrates centripetally and an immobile 
variety that accumulates closer to the center. Interestingly, 
NKG2D-DAP10 does not coalesce into a central supramolecu-
lar activation cluster over time, possibly because NKG2D sig-
naling is mediated by Tyr-Ile-Met-Asn motifs in DAP10 rather 
than the immunotyrosine-based activation motifs contained in 
antigen receptors. Nevertheless, peripheral DAP10 microclus-
ters contain higher levels of phosphotyrosine, suggesting that 
they mediate most of the NKG2D-dependent signaling. Strik-
ingly, it is in this peripheral zone that we observed UV-induced 
accumulation of KIR2DL2 microclusters, suppression of DAP10 
microclusters, and actin remodeling.

It is well established that filamentous actin at the synapse 
is required for receptor-proximal activating signals in NK cells 
(Orange et al., 2003; Watzl and Long, 2003; Barber et al., 2004; 
Endt et al., 2007). Consistent with these studies, we observed 
that disrupting synaptic actin with latrunculin blocked DAP10 
microcluster formation and movement. Interestingly, when 
cells were subjected to KIR2DL2 photostimulation, suppres-
sion of activating microclusters occurred within seconds, before 
the dissolution of the peripheral actin ring, indicating that 
cytoskeletal retraction per se is not responsible for micro
cluster suppression. It is possible, however, that the dramatic actin 
reorganization induced by KIR2DL2 signaling is preceded by a 
period of actin destabilization that is more difficult to detect and 
that this initial actin destabilization is sufficient to suppress ac-
tivating microclusters.

The pathway linking inhibitory receptors to actin remod-
eling remains unclear but is likely to involve Vav-1, a guanine 
nucleotide exchange factor that is phosphorylated and activated 
during synapse formation (Bustelo, 2000; Riteau et al., 2003). 
Vav-1 stimulates the Rho family GTPase Rac1, which is thought 
to promote cytolytic function and target cell adhesion by trig-
gering actin polymerization and the up-regulation of integrins 
(Billadeau et al., 1998; Galandrini et al., 1999; Riteau et al., 
2003; Nolz et al., 2008). It is known that SHP-1 directly de-
phosphorylates Vav-1 downstream of ITIM receptors (Stebbins 
et al., 2003), which could conceivably lead to the actin remodel-
ing we have observed.

Integrins play a critical role in NK cell function by pro-
moting synapse formation and the polarization of cytolytic 
granules (Barber et al., 2004; Bryceson et al., 2005). Our obser-
vations that KIR2DL2 signaling induced retraction and that 

studies (Binstadt et al., 1996; Bléry et al., 1997; Bruhns et al., 
1999; Bryceson et al., 2006), clustering of NKG2D and 2B4 
with SA induced rapid Ca2+ flux (Fig. 10 D). This response was 
inhibited by simultaneous co–cross-linking of KIR2DL2, but 
not KIR2DL2(mut), with -Mouse, indicating that KIR2DL2 
signaling impairs the initiation of Ca2+ responses (Fig. 10 D, 
top). To test whether KIR2DL2 could inhibit ongoing Ca2+ re-
sponses, -Mouse was added either 75 or 150 s after initial 
NKG2D and 2B4 cross-linking. Only weak inhibition was 
observed relative to control cells in both of these experiments 
(Fig. 10 D, bottom). These data confirmed that whereas 
KIR2DL2 can inhibit the induction of Ca2+ flux, it is substan-
tially less effective at curtailing ongoing Ca2+ responses.

Discussion
The cell biological basis of ITIM receptor signaling in NK cells 
has remained largely unexplored because of difficulties in visu-
alizing inhibitory and activating signals simultaneously. Using a 
photoinducible ligand for KIR2DL2, we were able to separate 
the stimulation of activating and inhibitory pathways in time 
and establish a spatial and temporal window of sufficient size to 
actually observe interactions between them. Our work provides 
insight into the mechanisms of ITIM receptor signaling and  
signal integration in NK cells.

Photostimulation of KIR2DL2 during ongoing activating 
responses is admittedly an imperfect model for the simultane-
ous triggering of activating and inhibitory receptors that presum-
ably occurs in many NK cell–target cell synapses. Nevertheless, 
we feel that our results reflect a biologically relevant mecha-
nism for ITIM receptor signaling for the following reasons. 
First, the retraction response we observe requires ITIM signal-
ing and SHP-1/2 activity, the same molecular determinants nec-
essary for KIR-mediated inhibition in other systems. Second, 
our observation that NK cells remain responsive to inhibitory 
stimulation well after the onset of activating signals is consis-
tent with previous experiments showing that NK cells modify 
the morphology of a growing synapse upon encountering ITIM 
receptor ligands (Culley et al., 2009). In vivo, the ability to re-
spond to fresh inhibitory stimulation in this manner is likely 
important for keeping growing cytolytic synapses with bona 
fide targets from spilling over onto adjacent bystander cells.

Pioneering imaging studies in T cells have indicated that 
activating signals are initiated by antigen receptor microclusters 
at the periphery of the synapse and that, in most cases, signaling 
is down-regulated as these clusters approach the center (Campi 
et al., 2005; Mossman et al., 2005; Yokosuka et al., 2005;  

both before and after UV irradiation, which is indicated by the magenta line. Mobile clusters of DAP10 are denoted by arrows. Brackets indicate areas of 
the kymographs showing peripheral regions rich in KIR2DL2 microclusters but devoid of mobile DAP10 microclusters. Lines used for kymographs are shown 
in the first image of the time lapse. (B and D) Tracks of DAP10 microclusters in representative single cells. (B) Cells were imaged and UV irradiated on bilay-
ers containing ULBP3, ICAM, and either HLA-Cw3(Tyr) (left) or HLA-Cw3(cage) (right). Paths traveled before UV irradiation are shown in red, and paths 
after UV irradiation are shown in blue. (D) Cells were treated with latrunculin (Lat) on bilayers containing ULBP3 and ICAM. Paths traveled before latrunculin 
addition are shown in red, and paths after latrunculin addition are shown in blue. (C) Bar graphs showing the relative amounts of mobile versus immobile 
DAP10 microclusters. (left and center) Cells were photostimulated on bilayers containing either HLA-Cw3(Tyr) (left) or HLA-Cw3(cage) (center). (right) Cells 
were treated with latrunculin on bilayers containing ULBP3 and ICAM. The total number of analyzed microclusters is indicated above each bar, and the 
number of analyzed cells for each experiment is shown between bars. The mean starting ratio of mobile to immobile microclusters differed from experiment 
to experiment. Hence, two independent experiments, each derived from cells imaged the same day, are shown for each condition. Bars, 5 µm.
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previously suggested (Barber et al., 2004). This result also im-
plies that there is at least some down-regulation of integrin  
affinity taking place in response to ITIM signaling. That Mn2+ 
does not block the dissolution of the actin ring, however, indi-
cates that outside-in signaling alone is insufficient to counteract 
the effects of KIR2DL2.

Actin remodeling and concomitant retraction are well 
suited as mechanisms for NK cell inhibition for two reasons. 
First, by targeting the integrity of the synapse, which is required 
by most, if not all, activating receptors, actin remodeling pro-
vides an elegant way to block effector responses that is indepen-
dent of the specific activating pathways involved. Second, because 
retraction breaks cell–cell contact and hence the receptor– 
ligand interactions that drive the response, it is self-limiting 

Mn2+ blocked this response are consistent with previous work 
suggesting a direct link between ITIM-dependent signaling and 
the regulation of integrins (Burshtyn et al., 2000; Bryceson  
et al., 2009). The formation and maintenance of integrin- 
mediated cell–cell contacts require Vav and the Rho family  
GTPases, and also depend on a strong physical linkage between 
ligand-bound integrins and the underlying actin cytoskeleton 
(Swat and Fujikawa, 2005; Abram and Lowell, 2009). KIR2DL2- 
induced actin remodeling would presumably weaken this adhe-
sive network either by breaking contacts between integrins and 
the cytoskeleton or by somehow inducing affinity down-regulation 
of integrins. That Mn2+ treatment preserves the contact area 
in photostimulation experiments is consistent with the notion 
that outside-in signaling is affected by ITIM receptors, as 

Figure 10.  Photostimulation of KIR2DL2 does 
not block ongoing Ca2+ responses. Fluo-4AM–
loaded NKL cells expressing KIR2DL2 were 
imaged and UV irradiated on bilayers con-
taining the indicated proteins. (A) Time-lapse 
montages (4-min intervals) showing Fluo-4AM 
responses before and after UV irradiation. Fluo-
4AM fluorescence is proportional to intracellu-
lar Ca2+ concentration. (B) Ca2+ responses of 
two individual cells, which are indicated by 
asterisks in A. (C) Mean calcium responses for 
the entire population of cells. Each curve was 
derived from ≥30 cells. Error bars show SEM. 
In B and C, shaded purple bars denote UV ir-
radiation. (D) Antibody cross-linking of KIR2DL2 
does not inhibit ongoing Ca2+ responses. Fluo-
4AM–loaded NKL cells expressing either wild-
type KIR2DL2 or KIR2DL2(mut) were incubated 
with the indicated antibodies and subjected to 
flow cytometry. (top) SA (to cross-link -NK and 
-2B4) and -Mouse (to cross-link -KIR with  
-NK and -2B4) were added simultaneously as 
indicated. (bottom) -Mouse was added after 
SA as indicated. All data are representative of 
at least two independent experiments. Norm., 
normalized. Bars, 10 µm.
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the Fmoc-Ser(DMNB)-OH was further purified over a cartridge (Sep-Pak 
C18; Waters) using a reversed-phase solvent system: 0.1% aqueous trifluoro
acetic acid (solvent A) versus 90% acetonitrile plus 0.1% trifluoroacetic 
acid (solvent B). Purified Fmoc-Ser(DMNB)-OH was validated by electro-
spray mass spectrometry and nuclear magnetic resonance, and it was then 
incorporated into a modified importin- peptide at the p8 position by solid-
phase peptide synthesis. After trifluoroacetic acid–mediated cleavage from 
the resin, the caged peptide was purified by reversed-phase HPLC using a 
C18 column in the absence of UV detection. Other peptides were synthe-
sized by Fmoc chemistry either by our laboratory or by the Microchemistry 
and Proteomics Core Facility at the Memorial Sloan-Kettering Cancer Cen-
ter. To assess UV decaging, the caged importin- peptide was irradiated 
for 20 min with a 365-nm light using a handheld UV lamp (UVGL-25; 
Thermo Fisher Scientific). The irradiated peptide was then compared with 
the unirradiated peptide as well as the importin- peptide with Ser in the 
p8 position by analytical reversed-phase HPLC (Fig. S1).

Proteins
HLA-Cw3, 2m, and ULBP3 were isolated from inclusion bodies under  
denaturing conditions. HLA-Cw3 was refolded together with 2m and  
importin- peptide by rapid dilution into buffer containing 100-mM Tris,  
pH 8.0, 400-mM arginine, 5-mM reduced glutathione, 0.5-mM oxidized  
glutathione, and protease inhibitors. ULBP3 was refolded by rapid dilution into  
buffer containing 100-mM Tris, pH 8.0, 500-mM arginine, 5-mM reduced 
glutathione, 2.5-mM oxidized glutathione, and protease inhibitors. After 
refolding, HLA-Cw3 and ULBP3 were biotinylated using the BirA enzyme 
and purified by size exclusion chromatography. The extracellular domain 
of ICAM fused to a C-terminal histidine tag and a BirA recognition sequence 
was expressed in SF9 cells by baculoviral transduction and purified by 
Ni2+ affinity and anion-exchange chromatography followed by BirA-mediated 
biotinylation and size exclusion chromatography. In general, purified pro-
teins were stored at 20°C in the presence of 50% glycerol. It was found, 
however, that prolonged storage of HLA-Cw3(cage) under these conditions 
increased its inhibitory activity in the absence of UV light, presumably the 
result of slow cleavage of the DMNB group. Hence, subsequent prepara-
tions were snap frozen in liquid nitrogen and stored at 80°C.

DNA constructs
cDNAs encoding full-length KIR2DL2 (gift from L. Lanier, University of Cali-
fornia, San Francisco, San Francisco, CA) and DAP10 were subcloned 
into an murine stem cell virus (MSCV) retroviral plasmid (Quann et al., 
2009) upstream of either GFP, mCherry, or a Myc epitope tag. The pres-
ence of these tags on the C termini of either KIR2DL2 or DAP10 did not  
affect their inhibitory or activating functions, respectively. Lifeact fused to RFP 
(gift from R. Wedlich-Soldner, International Max Planck Research School 
for Molecular and Cellular Life Sciences, Munich, Germany) was sub-
cloned as a single fragment into pMSCV. HLA-Cw3 (gift from P. Parham, 
Stanford University, Stanford, CA) and ULBP3, both containing C-terminal 
BirA recognition sequences, were expressed in Escherichia coli using 
pET28 and pET30 expression plasmids, respectively. Mutagenesis of the 
ITIM Tyr residues of KIR2DL2 and the ILT2 binding site of HLA-Cw3 was 
performed by PCR using the Quikchange protocol (Agilent Technologies). 
The ILT2 binding site mutation replaces amino acid residues 194VSDHE198 
of wild-type HLA-Cw3 with 194RSPGF198. The baculoviral expression con-
struct for ICAM containing a C-terminal BirA recognition sequence has 
been previously described (Lillemeier et al., 2010), as has the human 2m 
expression vector (Garboczi et al., 1992).

Cell lines and retroviral transduction
NKL cells were maintained in complete RPMI 1640 (RPMI 1640 with 10% 
FCS) supplemented with 200 IU/ml IL-2. Retrovirus was generated using 
amphotropic Phoenix cells, which were grown in DME containing 10% 
FCS. Phoenix cells were transfected with MSCV vectors and supplementary 
plasmids encoding retroviral gag and pol using either calcium phosphate 
or transfection reagent (FuGENE; Roche). Viral supernatants were col-
lected after 48 h at 37°C and concentrated using centrifugal filter devices 
(Amicon Ultra; Millipore) with a 105-kD molecular mass cutoff. The virus 
was then mixed with 106 NKL cells in 2 ml complete RPMI 1640 and cen-
trifuged at 1,400 g for 2 h in the presence of 8 µg/ml polybrene at 30°C. 
After 48 h, transduction efficiency was assessed by flow cytometry (LSR II; 
BD) using either the transduced fluorescent protein label or an antibody 
against KIR2DL2/3 (clone DX27; BD) for detection. NKL cells expressing 
the transduced protein (typically representing 2–10% of the total popula-
tion) were isolated by FACS 1–2 wk after transduction and maintained as 
stable cell lines.

and more easily constrained in space and time. This would pre-
sumably facilitate efficient scanning of potential target cells in 
vivo. In this context, retraction from inhibitory cells would not 
only prevent inappropriate killing responses but also play an im-
portant role in directing those responses to the correct targets.

Using photostimulation as well as antibody-mediated re-
ceptor cross-linking, we found that KIR2DL2 only weakly in-
hibits ongoing Ca2+ responses despite the fact that it blocks the 
initiation of Ca2+ flux when triggered concurrently with activat-
ing receptors. This result is intriguing, particularly because 
KIR2DL2-induced retraction was not diminished, in our hands, 
by prolonged exposure to activating signals. Collectively, our 
data suggest that strong adhesion to the target cell is required 
for the initiation, but not the maintenance, of Ca2+ signals. Pre-
cisely why KIR2DL2 stimulation does not block ongoing Ca2+ 
responses is unclear. It is possible that ITIM receptor signaling 
disrupts early events, such as the activation of phospholipase C, 
that are required for the initiation of Ca2+ flux but has less of an 
effect on store-operated calcium channels or other downstream 
components that have been implicated in the sustained phase of 
the response (Lewis, 2001). Further studies will be required to 
explore this issue. From a functional perspective, however, lim-
iting the scope of KIR2DL2 action could facilitate target cell 
killing in vivo. Elevated cytoplasmic Ca2+ is required for the se-
cretion of lytic granules (Ostergaard et al., 1987; Takayama and 
Sitkovsky, 1987; Esser et al., 1998). The insensitivity of on
going Ca2+ responses to ITIM receptor signals would presumably 
allow NK cells to mount a cytolytic response at one cell–cell  
interface while receiving inhibitory signals at a distal contact site. 
This model is consistent not only with our data but also with re-
cent experiments indicating that ITIM receptors are more effec-
tive at blocking lytic granule polarization toward the synapse 
than at disrupting degranulation (Das and Long, 2010).

The extent to which the cellular consequences of KIR2DL2 
signaling will apply to related signaling pathways in other cell 
types remains to be seen. It is worth noting, however, that the 
effectors of phosphorylated ITIMs, SHP-1 and particularly 
SHP-2, are broadly expressed, as is the tyrosine kinase Ableson, 
which is also required for inhibitory KIR function in NK cells 
(Peterson and Long, 2008). Conceptually, localized retraction is 
an elegant mechanism for the inhibition of signals delivered by 
membrane-bound ligands, and it is conceivable that this mecha-
nism would be useful in processes such as cell migration and 
neuronal path finding. In that regard, it is intriguing that the 
ITIM receptor PirB was recently shown to promote axonal col-
lapse in sensory neurons (Atwal et al., 2008). Future mechanis-
tic studies will be required to determine whether or not cursory 
similarities like these reflect a shared mechanism for the inhibi-
tory regulation of cell–cell interactions.

Materials and methods
Peptides
9-fluorenylmethoxycarbonyl (Fmoc)–protected dimethoxy-nitrobenzyl (DMNB) 
Ser was synthesized essentially as previously described (Veldhuyzen et al., 
2003). In brief, Fmoc-Ser allyl ester was reacted with 4,5-dimethoxy-2-
nitrobenzyl trichloroacetimidate using catalytic triflic acid under anhydrous 
conditions to generate the DMNB-protected Ser derivative. After allyl de-
protection with palladium and purification by silica gel chromatography, 
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blebbistatin (Sigma-Aldrich) and 25-µM NSC87877 (Tocris), respectively, 
were added to the imaging medium. 1–2-µM latrunculin and 1-mM MnCl2 
(both obtained from Sigma-Aldrich) were used to disrupt actin and up-regulate 
integrins, respectively. Mn2+ treatment was performed without depleting 
Ca2+ and Mg2+. Live-imaging experiments used an inverted fluorescence 
video microscope (IX-81; Olympus) attached to an EM charge-coupled de-
vice camera (ImagEM; Hamamatsu). 488- and 561-nm lasers (CVI Melles 
Griot) were used for TIRF imaging of GFP and mCherry/RFP, respectively, 
and a Xe lamp (DG-4; Sutter Instrument Co.) was used for epifluorescence 
imaging. TIRF experiments used 150 or 60× objective lenses, 1.45 NA, 
and Ca2+ imaging experiments used a 20× epifluorescence objective, 
0.75 NA (all objectives were obtained from Olympus). Time-lapse record-
ings were made using Slidebook software (Intelligent Imaging Innovations). 
All live imaging was performed at 37°C.

For high-resolution (150×) imaging of receptor dynamics, images 
were acquired every 3 or 5 s for a total of 4 min. Photostimulation was  
implemented using a digital diaphragm apparatus (Mosaic; Photonic Instru-
ments) attached to a mercury lamp (HBO; Olympus). Light from the HBO 
lamp was filtered through a 350/50-nm bandpass to reduce photo
damage. Cells were typically photostimulated during either the 25th or the 
35th interval in the time lapse using a 2-s exposure.

For lower resolution TIRF imaging of cell spreading and Ca2+ imag-
ing, cells were stained with PKH26 (Sigma-Aldrich; using the manufacturer’s 
protocol) or loaded with calcium dyes (5 µg/ml Fura-2AM or Fluo-4AM), 
respectively. Fluo-4 loading and imaging were performed in the presence of 
2.5-mM probenecid. Images were acquired every 30 or 60 s for 20–30 min 
after cells had been added to the bilayer. Photostimulation, when neces-
sary, was performed using a handheld UV lamp positioned just above the 
chamber slide. Cells were typically photostimulated after 5–15 min using 
a 2-min exposure.

Image analysis
Data analysis was performed using Slidebook, Matlab (MathWorks), Prism 
(GraphPad Software, Inc.), and Excel (Microsoft). To quantify cell contact 
area, intensity thresholding was used to define the cell boundaries for every 
frame or every other frame in the time lapse. Only cells that formed stable 
symmetric contacts before UV irradiation were used for the analysis. The 
quantification of actin remodeling shown in Fig. 7 was performed by cal-
culating the mean intensity of Lifeact-RFP within a central elliptical region 
over the length of the time lapse. For graphical representation of area and 
intensity data, values were normalized using images taken before UV irra-
diation. Microclusters of DAP10 and KIR2DL2 were traced and counted, 
respectively, using Matlab scripts from D. Blair (Georgetown University, 
Washington, DC) and E. Dufresne (Yale, New Haven, CT) based on code 
from E. Weeks (Emory University, Atlanta, GA), J. Crocker (University of 
Pennsylvania, Philadelphia, PA), and D. Grier (New York University, New 
York, NY). Only particles that appeared in at least four consecutive frames 
were used for tracing analysis. Mean microcluster velocity was derived 
from particle traces using Matlab. Clusters with a mean velocity  
<0.03 µm/s were classified as immobile, and the rest were classified as 
mobile. Analysis of single-cell Ca2+ flux in Fluo-4–loaded cells was per-
formed by normalizing the fluorescence intensity of each cell using the last 
image before the initial rise in Ca2+. The ensemble mean graph shown in 
Fig. 2 C was computed using all cells in the imaging field. The curves shown 
in Fig. 10 C were calculated using only cells that bound to the surface and 
fluxed Ca2+ before UV irradiation.

Staining and imaging of fixed cells
NKL cells expressing DAP10-GFP were added to bilayers containing 
ULBP3 and ICAM and incubated at 37°C for 15 min before fixation with 
2% paraformaldehyde. After permeabilization with Triton X-100 and 
blocking with bovine serum albumin, the cells were stained with 1 µg/ml 
antiphosphotyrosine antibody (clone 4G10; Millipore) followed by 1 µg/ml 
Alexa Fluor 555–conjugated F(ab)2 goat anti–mouse IgG (Invitrogen). 
After staining, the cells were imaged by TIRF microscopy at 150× magni-
fication. Single-cell images were divided into a central region containing 
40% of the contact area and a peripheral region containing the remain-
ing 60%. Phosphotyrosine fluorescence per unit DAP10-GFP fluorescence 
(FpY/FDAP10) was determined for both regions, and the ratio of periphery/
center was calculated. The mean value of this ratio for a dataset of  
20 cells was 5.0 ± 1.4.

Online supplemental material
Fig. S1 shows the chemical validation of the photocaged importin- pep-
tide. Fig. S2 shows a schematic diagram of a typical KIR2DL2 photostimu-
lation experiment and some additional analyses of KIR2DL2 clustering  

Primary human NK cells were isolated from peripheral blood from a 
healthy donor by negative selection (Miltenyi Biotec). NK cells were resus-
pended in stem cell growth media (CellGro; CellGenix) supplemented with 
10% human serum and 200 IU/ml IL-2, and they were split periodically to 
maintain a density of 106 cells/ml. After ≥8 d at culture, KIR2DL3+ NK cells 
were isolated by cell sorting using antibodies against CD3 (clone S4.1; In-
vitrogen), CD56 (clone B159; BD), and KIR2DL2/3. This procedure typi-
cally yielded >95% CD3CD56+KIR2DL3+ cells.

Functional assays
Stimulatory plastic surfaces for IFN- secretion and degranulation assays were 
prepared using 96-well plates (Maxisorp; Thermo Fisher Scientific). First, a 
layer of SA (Prozyme) was immobilized on the surfaces followed by incuba-
tion with biotinylated anti-NKG2D antibody (-NK, clone 1D11; Abcam) and 
HLA-Cw3 protein. In general, -NK was used at 1 µg/ml, and HLA-Cw3 was 
used at 1 µg/ml. In cases in which one or more of these constituents was left 
out, a nonstimulatory biotinylated mouse MHC molecule (either I-Ek or H2-Db) 
was added to bring the total protein concentration to 2 µg/ml. After protein 
immobilization, 2–3 × 105 NKL cells were added to each well, and the plate 
was incubated at 37°C for 30 min (for degranulation) or 16 h (for IFN- secre-
tion). For degranulation experiments, we found that a 30-min incubation time 
in the absence of monensin or brefeldin yielded optimal responses. All func-
tional assays were performed in the presence of 200 IU/ml IL-2. IFN- secre-
tion experiments were performed in triplicate and quantified by ELISA using  
a mouse monoclonal antibody (clone K3.53; R&D Systems) for capture and  
a biotinylated affinity-purified goat IgG (R&D Systems) for detection. For  
degranulation experiments, 5 µg/ml phycoerythrin-Cy5–conjugated anti-
CD107a antibody (clone H4A3; BD) was included at the start of the 37°C in-
cubation. After washing, CD107a staining was quantified by flow cytometry. 
For the analysis shown in Fig. 1 D, the level of activation-induced degranula-
tion was determined by subtracting the percentage of CD107a+ cells in un-
stimulated samples. UV irradiation of HLA-Cw3(cage) was performed using a 
handheld UV lamp for 20 min before protein immobilization. All flow cyto
metric data were analyzed using FlowJo software (Tree Star, Inc.).

Flow cytometric analysis of Ca2+ signaling
Stimulation by antibody cross-linking was performed using -NK, biotinylated 
anti-2B4 (-2B4, clone C1.7; eBioscience), and anti-KIR2DL2 (-KIR, clone 
GL183; Beckman Coulter). -KIR was cross-linked with -NK and -2B4 using 
F(ab)2 goat anti–mouse IgG (-Mouse; Jackson Immunoresearch Laborato-
ries, Inc.). For Ca2+ flux assays, 2–3 × 105 NKL cells were loaded with 5 µg/ml  
Fluo-4AM (Invitrogen) and incubated in 50 µl of complete RPMI 1640 on  
ice in the presence or absence of 10 µg/ml -NK, 10 µg/ml -2B4, and  
20 µg/ml -KIR. After ≥15 min, cells were diluted in 500 µl of warm complete 
RPMI 1640 and incubated at 37°C for 2 min followed immediately by flow 
cytometric analysis. -NK and -2B4 were cross-linked by the addition of  
20 µg/ml SA 1 min after the start of the flow cytometry experiment. -KIR 
was cross-linked to -NK and -2B4 by the addition of 20 µg/ml -Mouse. 
Data were collected for a total of 10 min. Fluo-4AM loading and flow cytom
etry were performed in the presence of 2.5-mM probenecid (Invitrogen).

Supported lipid bilayers
A 10:1 mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine and biotinyl 
cap phosphoethanolamine (both obtained from Avanti Polar Lipids, Inc.) 
was resuspended in PBS and emulsified into small unilamellar vesicles  
using a lipid extruder (Avanti Polar Lipids, Inc.). 8-well glass-chamber slides 
(Thermo Fisher Scientific) were cleaned by sonication in 2% Hellmanex 
(Helma Analytics) at 50°C followed by extensive washing in deionized 
water. Small unilamellar vesicle suspensions were added to the cleaned 
glass surfaces and allowed to form supported bilayers followed by a  
30-min incubation with 20 µg/ml SA in PBS. After further washing in PBS, 
a mixture of biotinylated NK receptor ligands was applied for 45 min. For 
experiments examining KIR2DL2-mediated inhibition, ULBP3 was used at 
0.5 µg/ml, ICAM was used at 1 µg/ml, and HLA-Cw3 was used at 2 µg/ml. 
For experiments characterizing DAP10 clustering in response to activat-
ing stimulation alone, ULBP3 was added at 0.5 µg/ml, and ICAM was 
added at 2 µg/ml. For phosphotyrosine-staining experiments, ULBP3 was 
added at 2 µg/ml, and ICAM was added at 2 µg/ml. In cases in which 
one or more of these constituents was left out, a nonstimulatory biotinylated 
mouse MHC molecule (either I-Ek or H2-Db) was added to keep the total 
protein concentration constant. After protein loading, bilayers were stored 
at room temperature for ≤4 h before use.

Live imaging
Before imaging, cells were transferred into RPMI 1640 supplemented with 
5% FCS and lacking phenol red. To inhibit myosin II and SHP-1/2, 50-µM 
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and cellular retraction in photostimulated cells. Fig. S3 shows that Mn2+ 
impairs KIR2DL2-induced retraction. Fig. S4 shows that the formation of 
DAP10 microclusters requires stimulation of NKG2D. Fig. S5 schematizes 
the strategy used to cross-link activating and inhibitory receptors for flow 
cytometry–based Ca2+ experiments. Videos 1 and 2 show the spreading 
behavior of KIR2DL2-expressing NKL cells on activating and inhibitory bi-
layers, respectively. Videos 3 and 4 show NKL cells expressing KIR2DL2-GFP 
and KIR2DL2(mut)-GFP, respectively, responding to KIR2DL2 photostimula-
tion. Video 5 illustrates the actin remodeling that takes place in response  
to KIR2DL2 photostimulation. Video 6 shows the formation of DAP10 micro
clusters in response to NKG2D stimulation. Video 7 demonstrates how 
photostimulation of KIR2DL2 suppresses the formation of new DAP10 micro-
clusters in the periphery of the contact. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.201009135/DC1.

We thank D. Tan and members of his laboratory for help with synthetic proto-
cols, reagents, and equipment; G. Altan-Bonnet for assistance with Matlab;  
L. Lanier, P. Parham, and R. Wedlich-Soldner for constructs; B. Dupont, A. Hall, 
F. Giancotti, and members of their laboratories for advice; B. Driscoll for techni-
cal assistance; S.S. Yi and the Memorial Sloan-Kettering Cancer Center Micro-
chemistry Core Facility for peptide synthesis; H. Hang, K. Pham, J. Sun,  
T. Muir, and A. Hall for critical reading of the manuscript; and members of the 
M. Huse and M.O. Li laboratories for advice and encouragement.

This study was supported by a T32 postdoctoral training grant from the 
National Institutes of Health (T.P. Abeyweera), the Spanish Ministry of Science 
and Innovation (E. Merino), the Searle Scholars Program (M. Huse), and the 
Cancer Research Institute (M. Huse).

Submitted: 28 September 2010
Accepted: 25 January 2011

References
Abram, C.L., and C.A. Lowell. 2009. The ins and outs of leukocyte integrin 

signaling. Annu. Rev. Immunol. 27:339–362. doi:10.1146/annurev 
.immunol.021908.132554

Arana, E., A. Vehlow, N.E. Harwood, E. Vigorito, R. Henderson, M. Turner, 
V.L. Tybulewicz, and F.D. Batista. 2008. Activation of the small 
GTPase Rac2 via the B cell receptor regulates B cell adhesion and 
immunological-synapse formation. Immunity. 28:88–99. doi:10.1016/ 
j.immuni.2007.12.003

Atwal, J.K., J. Pinkston-Gosse, J. Syken, S. Stawicki, Y. Wu, C. Shatz, and M. 
Tessier-Lavigne. 2008. PirB is a functional receptor for myelin inhibitors of 
axonal regeneration. Science. 322:967–970. doi:10.1126/science.1161151

Barber, D.F., M. Faure, and E.O. Long. 2004. LFA-1 contributes an early signal 
for NK cell cytotoxicity. J. Immunol. 173:3653–3659.

Billadeau, D.D., K.M. Brumbaugh, C.J. Dick, R.A. Schoon, X.R. Bustelo, and 
P.J. Leibson. 1998. The Vav–Rac1 pathway in cytotoxic lymphocytes reg-
ulates the generation of cell-mediated killing. J. Exp. Med. 188:549–559. 
doi:10.1084/jem.188.3.549

Binstadt, B.A., K.M. Brumbaugh, C.J. Dick, A.M. Scharenberg, B.L. Williams, 
M. Colonna, L.L. Lanier, J.P. Kinet, R.T. Abraham, and P.J. Leibson. 
1996. Sequential involvement of Lck and SHP-1 with MHC-recognizing 
receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. 
Immunity. 5:629–638. doi:10.1016/S1074-7613(00)80276-9

Binstadt, B.A., D.D. Billadeau, D. Jevremović, B.L. Williams, N. Fang, T. Yi, 
G.A. Koretzky, R.T. Abraham, and P.J. Leibson. 1998. SLP-76 is a direct 
substrate of SHP-1 recruited to killer cell inhibitory receptors. J. Biol. 
Chem. 273:27518–27523. doi:10.1074/jbc.273.42.27518

Bléry, M., J. Delon, A. Trautmann, A. Cambiaggi, L. Olcese, R. Biassoni, L. 
Moretta, P. Chavrier, A. Moretta, M. Daëron, and E. Vivier. 1997. 
Reconstituted killer cell inhibitory receptors for major histocompatibility  
complex class I molecules control mast cell activation induced via  
immunoreceptor tyrosine-based activation motifs. J. Biol. Chem. 272: 
8989–8996. doi:10.1074/jbc.272.14.8989

Boyington, J.C., S.A. Motyka, P. Schuck, A.G. Brooks, and P.D. Sun. 2000. Crystal 
structure of an NK cell immunoglobulin-like receptor in complex with its 
class I MHC ligand. Nature. 405:537–543. doi:10.1038/35014520

Bruhns, P., P. Marchetti, W.H. Fridman, E. Vivier, and M. Daëron. 1999. 
Differential roles of N- and C-terminal immunoreceptor tyrosine-based 
inhibition motifs during inhibition of cell activation by killer cell inhibi-
tory receptors. J. Immunol. 162:3168–3175.

Bryceson, Y.T., M.E. March, D.F. Barber, H.G. Ljunggren, and E.O. Long. 
2005. Cytolytic granule polarization and degranulation controlled by 
different receptors in resting NK cells. J. Exp. Med. 202:1001–1012. 
doi:10.1084/jem.20051143

dx.doi.org/10.1182/blood-2005-04-1351
dx.doi.org/10.1016/S1074-7613(01)00112-1
dx.doi.org/10.1016/S1074-7613(00)80300-3
dx.doi.org/10.1016/S0960-9822(00)00568-6
dx.doi.org/10.1128/MCB.20.5.1461-1477.2000
dx.doi.org/10.1084/jem.20051182
dx.doi.org/10.1371/journal.pbio.1000159
dx.doi.org/10.4049/jimmunol.1001220
dx.doi.org/10.1073/pnas.96.26.15062
dx.doi.org/10.1016/j.exphem.2010.02.006
dx.doi.org/10.1084/jem.190.7.1005
dx.doi.org/10.1084/jem.187.7.1057
dx.doi.org/10.1073/pnas.89.8.3429
dx.doi.org/10.1182/blood-2002-02-0643
dx.doi.org/10.1146/annurev-immunol-030409-101216
dx.doi.org/10.1073/pnas.92.14.6484
dx.doi.org/10.1083/jcb.200509076
dx.doi.org/10.1146/annurev.immunol.23.021704.115526
dx.doi.org/10.1146/annurev.immunol.19.1.497
dx.doi.org/10.1146/annurev.immunol.021908.132554
dx.doi.org/10.1146/annurev.immunol.021908.132554
dx.doi.org/10.1016/j.immuni.2007.12.003
dx.doi.org/10.1016/j.immuni.2007.12.003
dx.doi.org/10.1126/science.1161151
dx.doi.org/10.1084/jem.188.3.549
dx.doi.org/10.1016/S1074-7613(00)80276-9
dx.doi.org/10.1074/jbc.273.42.27518
dx.doi.org/10.1074/jbc.272.14.8989
dx.doi.org/10.1038/35014520
dx.doi.org/10.1084/jem.20051143


JCB • VOLUME 192 • NUMBER 4 • 2011� 690

Veldhuyzen, W.F., Q. Nguyen, G. McMaster, and D.S. Lawrence. 2003. A light-
activated probe of intracellular protein kinase activity. J. Am. Chem. Soc. 
125:13358–13359. doi:10.1021/ja037801x

Vyas, Y.M., K.M. Mehta, M. Morgan, H. Maniar, L. Butros, S. Jung, J.K. 
Burkhardt, and B. Dupont. 2001. Spatial organization of signal trans-
duction molecules in the NK cell immune synapses during MHC class 
I-regulated noncytolytic and cytolytic interactions. J. Immunol. 167: 
4358–4367.

Vyas, Y.M., H. Maniar, C.E. Lyddane, M. Sadelain, and B. Dupont. 2004. 
Ligand binding to inhibitory killer cell Ig-like receptors induce colocal-
ization with Src homology domain 2-containing protein tyrosine phos-
phatase 1 and interruption of ongoing activation signals. J. Immunol. 
173:1571–1578.

Watzl, C., and E.O. Long. 2003. Natural killer cell inhibitory receptors block 
actin cytoskeleton-dependent recruitment of 2B4 (CD244) to lipid rafts. 
J. Exp. Med. 197:77–85. doi:10.1084/jem.20020427

Yokosuka, T., and T. Saito. 2010. The immunological synapse, TCR micro
clusters, and T cell activation. Curr. Top. Microbiol. Immunol. 340:81–
107. doi:10.1007/978-3-642-03858-7_5

Yokosuka, T., K. Sakata-Sogawa, W. Kobayashi, M. Hiroshima, A. Hashimoto-
Tane, M. Tokunaga, M.L. Dustin, and T. Saito. 2005. Newly gener-
ated T cell receptor microclusters initiate and sustain T cell activation 
by recruitment of Zap70 and SLP-76. Nat. Immunol. 6:1253–1262. 
doi:10.1038/ni1272

Lillemeier, B.F., M.A. Mörtelmaier, M.B. Forstner, J.B. Huppa, J.T. Groves, and 
M.M. Davis. 2010. TCR and Lat are expressed on separate protein islands 
on T cell membranes and concatenate during activation. Nat. Immunol. 
11:90–96. doi:10.1038/ni.1832

Liu, D., Y.T. Bryceson, T. Meckel, G. Vasiliver-Shamis, M.L. Dustin, and 
E.O. Long. 2009. Integrin-dependent organization and bidirectional 
vesicular traffic at cytotoxic immune synapses. Immunity. 31:99–109. 
doi:10.1016/j.immuni.2009.05.009

Long, E.O. 2008. Negative signaling by inhibitory receptors: the NK cell 
paradigm. Immunol. Rev. 224:70–84. doi:10.1111/j.1600-065X.2008 
.00660.x

Masilamani, M., C. Nguyen, J. Kabat, F. Borrego, and J.E. Coligan. 2006. CD94/
NKG2A inhibits NK cell activation by disrupting the actin network at the 
immunological synapse. J. Immunol. 177:3590–3596.

Mossman, K.D., G. Campi, J.T. Groves, and M.L. Dustin. 2005. Altered TCR sig-
naling from geometrically repatterned immunological synapses. Science.  
310:1191–1193. doi:10.1126/science.1119238

Nolz, J.C., L.P. Nacusi, C.M. Segovis, R.B. Medeiros, J.S. Mitchell, Y. Shimizu, 
and D.D. Billadeau. 2008. The WAVE2 complex regulates T cell recep-
tor signaling to integrins via Abl- and CrkL–C3G-mediated activation of 
Rap1. J. Cell Biol. 182:1231–1244. doi:10.1083/jcb.200801121

Olcese, L., P. Lang, F. Vély, A. Cambiaggi, D. Marguet, M. Bléry, K.L. Hippen, 
R. Biassoni, A. Moretta, L. Moretta, et al. 1996. Human and mouse killer-
cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phos-
phatases. J. Immunol. 156:4531–4534.

Orange, J.S., K.E. Harris, M.M. Andzelm, M.M. Valter, R.S. Geha, and J.L. 
Strominger. 2003. The mature activating natural killer cell immuno-
logic synapse is formed in distinct stages. Proc. Natl. Acad. Sci. USA. 
100:14151–14156. doi:10.1073/pnas.1835830100

Ostergaard, H.L., K.P. Kane, M.F. Mescher, and W.R. Clark. 1987. Cytotoxic 
T lymphocyte mediated lysis without release of serine esterase. Nature. 
330:71–72. doi:10.1038/330071a0

Peterson, M.E., and E.O. Long. 2008. Inhibitory receptor signaling via  
tyrosine phosphorylation of the adaptor Crk. Immunity. 29:578–588. 
doi:10.1016/j.immuni.2008.07.014

Quann, E.J., E. Merino, T. Furuta, and M. Huse. 2009. Localized diacylglycerol 
drives the polarization of the microtubule-organizing center in T cells. 
Nat. Immunol. 10:627–635. doi:10.1038/ni.1734

Riedl, J., A.H. Crevenna, K. Kessenbrock, J.H. Yu, D. Neukirchen, M. Bista, 
F. Bradke, D. Jenne, T.A. Holak, Z. Werb, et al. 2008. Lifeact: a  
versatile marker to visualize F-actin. Nat. Methods. 5:605–607. doi: 
10.1038/nmeth.1220

Riteau, B., D.F. Barber, and E.O. Long. 2003. Vav1 phosphorylation is induced 
by 2 integrin engagement on natural killer cells upstream of actin  
cytoskeleton and lipid raft reorganization. J. Exp. Med. 198:469–474. 
doi:10.1084/jem.20021995

Robertson, M.J., K.J. Cochran, C. Cameron, J.M. Le, R. Tantravahi, and J. Ritz. 
1996. Characterization of a cell line, NKL, derived from an aggressive 
human natural killer cell leukemia. Exp. Hematol. 24:406–415.

Small, J.V., and G.P. Resch. 2005. The comings and goings of actin: coupling 
protrusion and retraction in cell motility. Curr. Opin. Cell Biol. 17:517–
523. doi:10.1016/j.ceb.2005.08.004

Stebbins, C.C., C. Watzl, D.D. Billadeau, P.J. Leibson, D.N. Burshtyn, and E.O. 
Long. 2003. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 
as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell. Biol. 
23:6291–6299. doi:10.1128/MCB.23.17.6291-6299.2003

Stinchcombe, J.C., and G.M. Griffiths. 2007. Secretory mechanisms in cell- 
mediated cytotoxicity. Annu. Rev. Cell Dev. Biol. 23:495–517. doi: 
10.1146/annurev.cellbio.23.090506.123521

Swat, W., and K. Fujikawa. 2005. The Vav family: at the crossroads of signaling 
pathways. Immunol. Res. 32:259–265. doi:10.1385/IR:32:1-3:259

Takayama, H., and M.V. Sitkovsky. 1987. Antigen receptor-regulated exocytosis 
in cytotoxic T lymphocytes. J. Exp. Med. 166:725–743. doi:10.1084/ 
jem.166.3.725

Treanor, B., P.M. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F.J. 
Culley, M.A. Purbhoo, D. Phillips, M.A. Neil, et al. 2006. Microclusters 
of inhibitory killer immunoglobulin–like receptor signaling at natural 
killer cell immunological synapses. J. Cell Biol. 174:153–161. doi:10 
.1083/jcb.200601108

Valiante, N.M., J.H. Phillips, L.L. Lanier, and P. Parham. 1996. Killer cell inhibi-
tory receptor recognition of human leukocyte antigen (HLA) class I blocks 
formation of a pp36/PLC- signaling complex in human natural killer 
(NK) cells. J. Exp. Med. 184:2243–2250. doi:10.1084/jem.184.6.2243

Varma, R., G. Campi, T. Yokosuka, T. Saito, and M.L. Dustin. 2006. T cell re-
ceptor-proximal signals are sustained in peripheral microclusters and 
terminated in the central supramolecular activation cluster. Immunity. 
25:117–127. doi:10.1016/j.immuni.2006.04.010

dx.doi.org/10.1021/ja037801x
dx.doi.org/10.1084/jem.20020427
dx.doi.org/10.1007/978-3-642-03858-7_5
dx.doi.org/10.1038/ni1272
dx.doi.org/10.1038/ni.1832
dx.doi.org/10.1016/j.immuni.2009.05.009
dx.doi.org/10.1111/j.1600-065X.2008.00660.x
dx.doi.org/10.1111/j.1600-065X.2008.00660.x
dx.doi.org/10.1126/science.1119238
dx.doi.org/10.1083/jcb.200801121
dx.doi.org/10.1073/pnas.1835830100
dx.doi.org/10.1038/330071a0
dx.doi.org/10.1016/j.immuni.2008.07.014
dx.doi.org/10.1038/ni.1734
dx.doi.org/10.1038/nmeth.1220
dx.doi.org/10.1038/nmeth.1220
dx.doi.org/10.1084/jem.20021995
dx.doi.org/10.1016/j.ceb.2005.08.004
dx.doi.org/10.1128/MCB.23.17.6291-6299.2003
dx.doi.org/10.1146/annurev.cellbio.23.090506.123521
dx.doi.org/10.1146/annurev.cellbio.23.090506.123521
dx.doi.org/10.1385/IR:32:1-3:259
dx.doi.org/10.1084/jem.166.3.725
dx.doi.org/10.1084/jem.166.3.725
dx.doi.org/10.1083/jcb.200601108
dx.doi.org/10.1083/jcb.200601108
dx.doi.org/10.1084/jem.184.6.2243
dx.doi.org/10.1016/j.immuni.2006.04.010

