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Adenylate Cyclase Toxin Promotes Internalisation of
Integrins and Raft Components and Decreases
Macrophage Adhesion Capacity
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Abstract

Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be
post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the
CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid
increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces
calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show
evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages
in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different
routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe
acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our
results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in
Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-
like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of
the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the
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leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.
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Introduction

Adenylate cyclase toxin (ACT) is an essential virulence factor
secreted by Bordetella pertussis, the bacterium that causes whooping
cough [l]. This severe childhood disease remains endemic
worldwide despite extensive vaccination programmes [2]. ACT
is a =200 kDa calmodulin-activated adenylyl cyclase toxin [3-5]
that behaves as an anti-inflammatory and anti-phagocytic factor,
facilitating colonization of the respiratory tract by B. pertussis [2,6].
Upon binding to its cell surface receptor, the onPy integrin [7],
ACT becomes an integral membrane protein and inserts its N-
terminal adenylyl cyclase domain (AC domain) into the cytosol of
the target cell. After binding to calmodulin, ACT-AC raises the
intracellular ¢cAMP concentration in host cells cAMP to a
pathological level [8,9]. In addition, ACT can form cation-
selective small pores, independent of AC domain translocation,
which permeabilise cell membranes at high toxin concentrations
[10,11].

More recently, the toxin has been shown to induce rises in
intracellular  [Ca®*] in target cells [12,13]. Elevation and
modulation of free cytosolic calcium concentrations by bacterial
toxins has been described as one of the basic strategies of host cell
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manipulation by pathogens. By inducing Ca®" signalling, some
bacterial toxins can induce the expression and secretion of pro-
inflammatory mediators. Bacteria can also induce Ca®* responses
that play a role in the cytoskeletal rearrangements required for cell
binding and for internalisation of the microorganism [14].

ACT is a member of the RTX (Repeats-in-Toxin) family of
proteins that share a characteristic calcium-binding motif of Gly-
and Asp-rich nonapeptide repeats, and marked cytolytic or
cytotoxic activity [9,15]. Like other members of this family, the
mature form of ACT is fatty-acylated. First produced as an
inactive protoxin, pro-ACT, it is then converted to an active toxin
by post-translational palmitoylation of an internal lysine (Lys 983),
a process catalyzed by a dedicated acyltransferase, CyaC [16].
Acylation, especially covalent linking of saturated fatty acids,
represents a targeting signal for many proteins that interact with
membrane microdomains [17]. The requirement of lipid micro-
domains for the cytotoxity induced by various RTX toxins,
particularly leukotoxins from Mannheimia haemolytica and Actinoba-
ctllus actinomycetemeomitans, has been pointed out in the last few years
[18,19]. Binding of proteins to lipid rafts may result in
internalisation of such proteins into cells. There are many
examples of bacterial toxins, pathogenic bacteria and viruses that
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use lipid rafts and raft-associated caveolae to bind to cells and
induce their internalisation [20,21].

Membrane rafts are currently considered to consist of transient
nanoscopic domains enriched in sphingolipids and cholesterol and
have a characteristic protein composition and physicochemical
properties different from the surrounding bulk membrane [20,21].
Accumulating evidence suggests that these domains play impor-
tant roles in cellular functions such as membrane trafficking,
endocytosis, cell adhesion mechanisms and regulation of signalling
pathways [22]. Numerous pathogenic bacteria, bacterial toxins
and viruses have been reported to use rafts or raft-like membrane
domains (RLMDs) as cell surface platforms to interact, bind and
possibly enter host cells [23-25].

Toxins that use lipid rafts as part of their virulence strategy have
receptors that are raft components [26,27]. However, ACT binds
to host cells through the integrin CD11b/CD18 receptor, which
does not associate with lipid rafts before cell activation has taken
place [28]. While inactive, By integrins are confined to non-
RLDM locations due to their anchorage to cytoskeletal proteins
such as talin [28,29]. One mechanism that allows the movement of
integrins into RLMDs involves the calcium-dependent activation
of calpain, a protease that hydrolyzes talin, releasing integrins from
their anchoring to the cytoskeleton [28,29]. Very recently, such a
mechanism has been reported to be involved in the recruitment of
ACT - CDI11b/CD18 integrin complexes into membrane rafts
promoted by toxin-induced calcium influx [30].

In view of recent data from our laboratory showing that AC'T
induces increases in [Ca®']; in target cells [13], we designed this
research to explore the downstream effects derived from this toxin-
induced calcium influx. In particular, we have addressed its
implication in possible toxin-induced internalisation processes. We
show here that ACT and integrin molecules, along with other raft
components, are rapidly internalized by the macrophages in a
toxin-induced calcium rise-dependent process, affecting the
adhesion properties of these immune cells. The removal of
domains that contain key molecules such as integrins, and perhaps
other important signalling molecules, from the leukocyte plasma
membrane may represent a beneficial strategy followed by
pathogenic Bordetella to circumvent the host immune system.

Results

ACT is internalised and promotes the internalisation of
integrins and membrane raft domains in J774A.1
macrophages

Bacteria can induce Ca** responses that play a role in cytoskeletal
rearrangements required for cell binding and for internalisation of the
microorganism [14]. Further, bacterial toxins, pathogenic bacteria
and viruses that use lipid rafts and raft-associated caveolae to bind to
cells can induce internalisation of the pathogen [26,31]. In the last few
years, several RTX-family toxins, such as leukotoxins from
Actinobacillus and Mannheimia species, and membrane microdomains
have been reported to be closely related [18,19]. Accordingly, we
explored the possibility that the calcium influx induced by AC'T could
induce the internalisation of the toxin and/or of its receptor in
macrophages, the integrin CD11b/CD18, and the role that raft-like
membrane domains might have in such a process.

In J774A.1 macrophages incubated with ACT, the surface
staining for the toxin, measured by flow cytometry, decreased in a
few minutes (Fig. 1A). As antibodies cannot diffuse through the cell
membrane, this finding is most readily explained by the endocytosis
of ACT, suggesting that once bound to the cell, the toxin may be
internalised. A raft marker phospholipid, the ganglioside GM 1, and
the integrin By seemed to follow the same fate as ACT, with a
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decrease in surface staining following similar kinetics, while with
control cells the staining for these molecules did not change (Fig. 1 B
and C, respectively). Furthermore, the internalisation process is
dependent on ACT concentration (Figure S1). Putative shedding of
Mac-1 molecules was ruled out as causative of the integrin epitope
loss, as this phenomenon has not been reported for Mac-1 to date.

Confocal images of J774A.1 cells treated with ACT at 37°C for 2
minutes revealed more marked co-localization of the toxin with
known raft-marker molecules, such as GM1 and the cholera toxin
subunit B (C'TxB), as well as with the integrin By than with a non-
raft marker, the transferrin receptor, CD71 (Fig. 1E). When longer
incubation times were used (10 min) ACT, GM1 and the B, integrin
could be detected inside the cell (Fig. 1F), supporting the data
obtained by flow cytometry, and demonstrating that ACT, GM1
and the B integrin are internalised. In untreated control cells, the By
integrin co-localizes more abundantly with the non-raft marker
CD71 than with the raft marker GM1 (Fig. 1D), in agreement with
reports in the literature, i.e., that in non-stimulated macrophages
the B, integrin is mainly found in non-raft sites.

Role of the ACT-induced calcium influx and importance
of raft domains in the ACT-induced internalisation

process

Cell pre-incubation with La® (100 uM), a compound that has
been shown (by us and others) to significantly inhibit the ACT-
induced calcium influx [12,13] prevented the decrease in surface
staining of both ACT (Fig. 2A) and the integrin By (Fig. 2B). Pre-
incubation of cells with nifedipine, a L-type calcium channel
blocker (10 uM) and with KT5720, a cAMP-dependent PKA
mhibitor (56 nM), also had a detectable effect on the surface
staining of the two molecules (Fig. 2 A and B, respectively). These
two compounds, nifedipine and KT5720, have previously been
shown to considerably affect the calcium entry induced by ACT
[13]. These results suggest that toxin-induced calcium influx is
required for the internalisation process initiated by toxin binding.

In a previous publication from our laboratory we observed that
both cAMP production and calcium influx induced by the toxin
were affected by membrane cholesterol depletion [13]. Given this,
we tested whether toxin-induced internalisation might also be
affected by this compound.

We found that depletion of membrane cholesterol by pre-
incubation of J774A.1 cells with 10 mM methyl-B-cyclodextrin B
(MBCD), for 30 minutes (=50% elimination of total cholesterol)
before toxin addition, affected the degree of internalisation of
ACT and the integrin to a comparable extent (Fig. 2C). This
finding is consistent with a localization of the toxin in raft-like
domains, demonstrating a greater sensitivity to be cholesterol-
depleted by sterol sequestering agents, in comparison with the bulk
lipid phase, and with the presence of raft marker molecules, such
as GMI, co-localizing with AC'T' and that were also internalised
together with the toxin itself (Fig. 1).

As negative control it was assayed the effect of the calcium entry
inhibitors (La®", nifedipine and K'T5720) on the internalisation of a
non-raft marker molecule such as the transferrin receptor. The
results shown in Figure S2 support the notion that these compounds
by themselves do not affect the cellular endocytic routes.

Characterization of the ACT-induced internalisation: a
clathrin-independent internalisation mechanism
operates in parallel with clathrin-dependent endocytosis
in ACT-treated cells

In order to characterize the endocytic pathway followed by
ACT we performed an internalisation assay in the presence of
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Figure 1. ACT is internalized and it triggers endocytosis of integrins and cholesterol-rich membrane microdomains in J774A.1 cells.
Addition of ACT (35 nM) to J774A.1 cells results in time-dependent internalisation of ACT (A), GM1 (B) and the B2 integrin (C) ([e] control cells and
[0] ACT-treated cells). Analysis by confocal microscopy of the localization of ACT, GM1 and the B2 integrin in J774A.1 cells treated for
2 min at 37°C with 35 nM toxin (D) and cells treated for 10 min at 37°C with the same toxin concentration (E). Internalisation in A, B
and C was analysed with FACS as described in Materials and Methods. The data shown are the mean = SEM of at least three
independent experiments, with *p<0.05, **p<<0.025 and ***p<<0.001.

doi:10.1371/journal.pone.0017383.9001

chlorpromazine. This compound is a specific inhibitor of clathrin- of chlorpromazine (Figure S3). According to the obtained results
dependent receptor-mediated endocytosis. A dose-response curve we decide to use a 5 pg/ml chlorpromazine concentration
was performed to establish the maximal inhibitory concentration throughout this experiment. In chlorpromazine-treated cells the
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Figure 2. ACT-mediated endocytosis is dependent on Ca?*

influx, PKA activation, actin polymerization and raft-like
microdomains integrity. J774A.1 macrophages were pre-incubated
for 30 minutes at 37°C with inhibitors of the toxin-induced calcium
influx, La>* (100 uM) and nifedipine (10 uM), with an inhibitor of PKA,
KT5720 (10 uM), and with an inhibitor of actin polymerization,
cytochalasin D (10 uM), before the addition of ACT (35 nM). Then, the
surface staining of ACT, GM1 and the B2 integrin was measured using a
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flow cytometer (panels A and B). The effect of cholesterol depletion was
assayed by pre-incubation of cells with methyl-B-cyclodextrin (10 mM)
for 30 minutes, after which cells were washed and then incubated with
ACT (35 nM) (panel Q). Internalisation was measured by FACS as
described in Materials and Methods. Data shown are the mean = SEM
of at least three independent experiments, with *p<<0.05, **p<0.025
and ***p<0.001.

doi:10.1371/journal.pone.0017383.g002

internalisation of ACT and B2 was more modest, but still
detectable (=20%) (Fig. 3 A and B, respectively), suggesting that
a clathrin-independent, ACT-induced internalisation mechanism
might be operating in parallel in the ACT-treated cells. The
relatively slow kinetics observed in this condition (Fig. 3 A and B,
respectively) in comparison with the 40 to 180-second process seen
in classical clathrin-mediated endocytosis of small ligands [32]
seems consistent with this.

Ligand binding to CD11b/CD18 is known to induce activation
of non-receptor tyrosine kinases that promote its phosphorylation,
which in turn induces the internalisation of the integrin within
clathrin-coated pits [33,34]. Here, we did not detect tyrosine
phosphorylation in the By chain of the integrin after immunopre-
cipitation of the integrin and Western blot analysis (Fig. 3C).
Consistent with this result, genistein, a general inhibitor of tyrosine
kinases was found not to significantly affect the internalisation of
the integrin (data not shown).

To further elucidate the endocytic process involved in
internalisation of the toxin, we tested dimethylamiloride (DMA)
(200 uM) (Fig. 3D), a potent blocker of Na*/H" exchange, which
inhibits macropinocytosis. The presence of this compound did not
significantly alter the toxin internalisation (Fig. 3D). In addition,
Cav-1-mediated endocytosis was ruled out, as according to the
literature this caveolae-forming protein is not expressed in J774A.1
macrophages [35].

Internalisation of the oy f3, integrin in macrophages
specifically depends on ACT-integrin interaction

Recruitment of ACT and its receptor, the oy integrin, into a
membrane raft location has been reported very recently, and was
considered to be a direct consequence of the hydrolysis of cellular
talin [30]. An ACT-induced intracellular [Ca®"] rise has been
reported to activate calpain, a calcium-dependent cysteine
protease, with concomitant talin hydrolysis and the release of
integrins, which then move into raft domains [30].

Our results indicate that ACT and its integrin receptor are
internalised from a raft-like membrane domain (Fig. 1 and Fig. 2C).
According to the literature, however, the main site for the oo
integrin, in non-stimulated cells, is in a non-raft location. Therefore,
we decided to explore whether ACT-By binding occurs outside the
raft and then the complex becomes raft associated, inducing there
signalling that then promotes the internalisation of the ACT-B,
complex-containing RLMD, or each molecule migrates indepen-
dently, similarly encouraging RLMD internalisation.

To address this question we tested whether it was possible to
induce migration of “empty” By integrin molecules into micro-
domains, by treating J774A.1 cells with a calcium ionophore,
ionomycin, in the absence of the toxin. This approach was based on
the assumption that if migration of the Py integrin molecules
depends only on their calpain-mediated release from the talin
cytoskeleton, then it would be expected that the induction of an
artificial intracellular [Ca®'] rise by the calcium ionophore could
enable the migration of integrin molecules into rafts. Results are
shown from a representative experiment using Western blot analysis
of SDS-PAGE gels loaded with fractions from a sucrose-density
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Downstream Effects of ACT-Induced Calcium Influx

D T T T T 1 0 T T T 1
0 2 4 6 8 10 0 2 6 8 10
Time (min) Time (min)
\c} A
S
C S & @& 41D
IP: B2 & & & g
. i ¥y 3 7
WB:phosphotyrosine  ~>% <
354
c I
2 30+
8
= 25 T
©
5 20
IP: B2 27
WB: B2 ?:'E 154
115 kDaw= ’ 104
93 kDamm . . 59
0 1
ACT ACT +DMA

Figure 3. ACT internalisation takes place through two different routes of entry, likely acting in parallel. Cell-surface fluorescence of ACT
and P2 integrin molecules in cells pre-treated for 30 min with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, as followed by flow
cytometry (A and B). ((O] control cells, 35 nM ACT-treated cells [[J] and chlorpromazine-treated cells [l]). In controls, cells were incubated for 2 min
with ACT, then kept at 4°C to avoid any internalisation. Treatment of cells with 35 nM ACT does not induce integrin phosphorylation in tyrosine
residues as assayed by Western blotting (C). Inhibition of macropinocytosis by DMA (200 uM) does not prevent ACT internalisation (D). FACS analysis
of internalisation processes and immunoprecipitation were preformed as described in Materials and Methods. The data shown in (A), (B), (C) and (D)
are the mean * SEM of at least three independent experiments, with *p<<0.05 and **p<<0.025 with respect to control cells and #p<0.05 and

##p<<0.025 with respect to ACT-treated cells.
doi:10.1371/journal.pone.0017383.g003

gradient of cells treated with ionomycin (Fig. 4A). No protein band
corresponding to the CD11b/CD18 integrin was detectable in the
upper fractions of the sucrose gradient. In addition, flow cytometry
was performed to test whether internalisation of the By integrin
occurred in ionomycin-treated cells (Fig. 4B). When J774A.1
macrophages in suspension were treated with 500 nM ionomycin,
no decrease of the integrin surface signal was detected. Both results
suggest that the By integrin needs to be in a complex with ACT in
order to be located in raft-like domains and be internalised.

Signalling partners in the ACT-induced integrin
internalisation

Very recently, calpeptin, a calpain inhibitor, was reported to
block talin hydrolysis, to strongly inhibit the association of ACT
with DRMs (detergent resistant membranes) and to decrease by at
least a factor of two the capacity of cell-associated ACT to
translocate the AC enzyme [30]. Contrary to these results reported
by Bumba et al. [30], we found that pre-incubation of cells with
100 uM calpeptin markedly affected the ACT-induced calcium
influx, with a substantial effect on the kinetics of the cation entry,
which now showed a lag period of around 100 seconds and a lower
amplitude (Fig. 5A). Production of cAMP by the toxin was also
affected by treatment with calpeptin (data not shown) in
agreement with the findings of the aforementioned authors [30].

@ PLoS ONE | www.plosone.org

The effect of calpeptin on ACT-induced internalisation in
macrophages was assayed by flow cytometry (Fig. 5B). This
compound nearly completely abrogated the internalisation of the
CD11b integrin. Its effect on the toxin internalisation was not
however so prominent, suggesting that the toxin has dual processes
for internalisation, one associated with its receptor and another
independent of it. This is in agreement with the aforementioned
finding that a clathrin-insensitive entry pathway also operates in
the internalisation of ACT.

In addition, we tested the occurrence of ACT internalisation in
CDI11b  cells, i.e., cells that do not naturally express the CD11b/
CD18 toxin receptor. Flow cytometry experiments showed very
modest, but reproducible, internalisation of the toxin in ACT-
treated CHO cells (Figure S4B). Images taken using a confocal
microscope showed co-localisation of ACT with Cav-1 after 2
minutes of incubation with ACT (Figure S4A) supporting the
aforementioned results and indicating that ACT may be
internalised in the absence of the integrin receptor.

Integrin removal from the cell surface decreases

macrophage adhesion capacity

Integrins participate in cellular functions such as cell-cell or cell-
extracellular matrix adhesion that are essential in the immune
response [36]. In particular, B2 integrins are predominantly
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Figure 4. Endocytosis of the CD11b/CD18 integrin depends on
ACT-receptor interaction and on ACT-induced calcium influx.
Western blot of the fractions of a sucrose-density gradient stained with
an anti-B2 integrin monoclonal antibody and with an anti-ACT
monoclonal antibody, for ACT-treated cells (35 nM toxin) and for cells
pre-incubated for 30 minutes at 37°C with 500 uM ionomycin before
toxin addition. Flotillin, a raft marker protein, was used as control in
membrane fractionation and gradient fraction analysis (A). Surface
staining of -B2 integrin in control cells [®], ACT-treated cells (35 nM
toxin) [O] and ionomycin-treated cells (500 uM ionomycin) [A] (B).
Membrane fractionation by sucrose gradient, analysis by immunoblot-
ting and FACS were performed as described in Materials and Methods.
The data shown in (A) are representative of a set of three independent
experiments and the data shown in (B) are the mean = SEM of at least
three independent experiments, with ***p<0.001 with respect to
control cells.

doi:10.1371/journal.pone.0017383.9004

responsible for firm cellular adhesion during processes such as
diapedesis and extravasation, phagocytosis, and cell locomotion.
We found that treatment of J774A.1 cells for 10 min at 37°C with
ACT reduced the capacity of these cells to attach to fibrinogen-
coated plates by around 50% (Fig. 6). The inhibition of toxin-
induced calcium influx by nifedipine (10 uM) and KT5720
(56 nM) managed to inhibit, at least partially, their adhesion
(Fig. 6). Such a loss of adhesiveness is a logical result of the
decreased number of integrin molecules on the cell surface due to
internalisation of membrane domains containing such molecules.
ACT-induced calcium-influx is required for this effect. On other
hand, we also observed that pre-incubation of cells with calpeptin,
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Figure 5. Calpain is involved in the endocytosis triggered by
ACT. Cell pre-incubation with calpeptin (50 uM) inhibits calcium influx
mediated by ACT (A) and the internalisation of the integrins (B).
Internalisation and Ca®" influx were determined as described in
Materials and Methods. Data shown are the mean = SEM of at least
three independent experiments, with *p<<0.05 and ***p<0.001.
doi:10.1371/journal.pone.0017383.g005

an inhibitor of calpain, produced a marked recovery in the ability
of the macrophages to adhere to fibrinogen, suggesting that
integrin molecules have to be released from the cytoskeletal talin to

be internalised.

Discussion

ACT is a key virulence factor secreted by the whooping cough
bacterium B. pertussis. The toxin belongs to the so-called RTX
family of bacterial proteins that share several features, including a
dedicated secretion mechanism, and a strict calcium-binding and
post-translational fatty-acylation requirement to exhibit full
biological activity. From recent experiments, it may be concluded
that two additional features are also shared by members of this
family: the induction of rises in intracellular calcium and the
involvement of cholesterol-rich membrane domains, at some
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Figure 6. ACT-induced decrease of macrophage adhesion.
Treatment with 35 nM ACT for 10 min reduces J774A.1 cell adhesion.
The effect of the toxin on adhesion was partially reduced by pre-
treatment with nifedipine (100 pM), a Ca*>* channel inhibitor, KT5720
(56 nM), a PKA inhibitor and with calpeptin (50 uM), an inhibitor of the
protease calpain. All molecules were pre-incubated for 30 min with
J774A.1 cells before the addition of ACT. Adhesion was measured as
described in Materials and Methods; the data shown is the mean * SEM
of at least three independent experiments.
doi:10.1371/journal.pone.0017383.9g006

(maybe several different) stages, in their toxicity mechanisms
[13,19,30,37-39].

[Ca *']; regulates important cellular pathways, including those
leading to cell death by apoptosis or necrosis, therefore,
modulation of [Ca *']; constitutes one of the most widely used
cell signalling mechanisms. Indeed, [Ca *]; is tightly controlled
and must be maintained at a low level (=1 pM), as high
concentrations for prolonged periods have a lethal effect on most
types of cell. The elevation and modulation of free cytosolic
calcium concentrations by bacterial toxins has been described as
one of the basic strategies of host cell manipulation used by
pathogens [14].

Numerous pathogenic bacteria, bacterial toxins or viruses have
been reported to use rafts or raft-like membrane domains as cell
surface platforms to interact, bind and possibly enter host cells.
Bacteria can induce Ca®* responses that play a role in the
cytoskeletal rearrangements required for cell binding and for
internalisation of the microorganism [14].

Here we report evidence that ACT and integrin molecules,
along with other raft components, are rapidly internalized by
macrophages in a toxin-induced calcium rise-dependent process
(Figs. 1, 2 and 3). This toxin-triggered internalisation occurs
through two different routes of entry, chlorpromazine-sensitive
receptor-mediated endocytosis and clathrin-independent endocy-
tosis, which maybe act in parallel.

We have found that toxin internalisation from raft domains also
occurs in cells devoid of receptors, in a toxin-induced calcium-rise
dependent manner, thus suggesting that the process may occur
independently of the presence of the By integrin (Supplementary
data). ACT binding and clustering in patches within membrane
microdomains has previously been reported in other cells, such as
erythrocytes, which do not contain the integrin receptor [40]. On
the contrary, as judged by the results shown in Fig. 4, the CD11b/
CD18 integrin seems to require the formation of a “‘complex” with
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the toxin, and not only an increase in intracellular calcium, to
move into raft-like membrane domains or to form molecular
clusters. This might be due to the fact that calcium elevation
induced by the ionophore does not occur locally, but rather
throughout the sub-membrane. In addition, the toxin-receptor
interaction may induce some kind of signalling required for the
process. Bumba et al. [30] have very recently reported that AC'T
and the oy(Ps receptor relocate together into DRMs. An intriguing
finding in this same paper is that upon permeabilisation of cells for
extracellular calcium with ionomycin (500 nM), up to 15% of a
mutant toxin (ACT E570K+E581P), unable on its own to induce
any calcium entry and thus DRM relocation, was found to be
associated with DRMs. For another RTX toxin, Actinobacillus
actinomycetemcomitans leukotoxin (Ltx) it was recently shown that
cells that do not express lymphocyte-associated antigen-1 (LFA-1)
receptor molecules failed to accumulate Ltx in their raft fractions
[18], suggesting that the association of Ltx and LFA-1 within lipid
rafts was essential for Ltx to be in rafts. However, in the same
paper, toxin-induced clustering of both receptor (LFA-1) and non-
receptor integrins (o) was detected, indicating that the integrin
mobilisation was not the result of a toxin-LFA-1 interaction, but
possibly due to the toxin-induced [Ca?"] increase [18].

In our work, we have found that the two toxin activities ACT-
induced calcium influx and toxin-induced internalisation are
markedly affected by cholesterol depletion (Fig. 5). Though the
direct participation of cholesterol-enriched membrane rafts in
these two particular processes is indeed one of the most plausible
possibilities, it must not be forgotten that cholesterol may influence
multiple processes in a cell. The cholesterol effect is evident both in
receptor-expressing cells and in CD11b ™ cells, underlining the
importance of the membrane properties in ACT action.
Involvement of cholesterol-enriched domains in several steps of
ACT activity has been reported in recent years by various different
groups. Decreased AC'T binding and clustering after cholesterol
removal from erythrocytes was reported by Votjova et al. [40].
Modulation of the ACT-induced solute efflux by cholesterol
content was reported in artificial membranes [11]. Translocation
of the AC domain and subsequent cAMP accumulation has also
been found to be impaired by cholesterol depleting compounds
[13,30]. On the other hand, a variety of ion channels, including
members of all major ion channel families, have been shown to be
regulated by changes in the level of membrane cholesterol and
partition into cholesterol-rich membrane domains [41]. Moderate
depletion of plasma membrane cholesterol has been reported to
have inhibitory effects on chlatrin-independent endocytosis, and
also in some cases, on chlatrin-mediated endocytosis [42].
Therefore, it seems to be proving difficult to identify in which
particular step cholesterol elimination is being more detrimental,
or its enrichment more necessary, for ACT activity.

It is expected that multiple cell-types will be exposed to ACT
during infection with B. pertussis. Some of them, such as mucosal
epithelial cells do not express the receptor CD11b/CD18, but
respond, in a specific manner, to nM concentrations of ACT [43].
While CD11b/CD18 expression greatly augments the intoxication
of cells by ACT [7], it is clearly not required for effective
intoxication [9,43-45]. This certainly suggests that additional
factors, aside from the receptor molecule, might also be of great
importance in the overall mechanism of action of AC'T. In view of
the results reported here, and those previously published by other
groups, there is no doubt that target cell membrane properties are
much more relevant in ACT activity than previously thought.

An interesting observation that may contribute to improving
our understanding of the downstream effects of calcium is the
effect of calpeptin on ACT-treated cells. This calpain inhibitor
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affects the toxin-induced calcium influx, the toxin production of
cAMP and the internalisation of the integrin molecules (Fig. 5).
The questions are, how are these three effects related? Which is
the role of talin in the endocytosis of integrin? is clustering of
integrins required for endocytosis? Experiments have been
conducted in our laboratory to attempt to provide an answer
(manuscript in preparation).

Our results strongly point towards an intrinsic ability of ACT to,
directly and efficiently, insert into raft domains triggering there a
range of different effects, without a strict requirement for
receptors. Given this feature, ACT might be considered a
“raflophilic” protein, a termed previously used to describe the
tendency shown by certain lipids and proteins to preferably
partition into liquid-ordered membrane domains [46].

Another important finding in this work has been the observation
that the removal from the cell surface of By integrin molecules by
ACT action significantly decreases macrophage adhesion capacity.
Integrins have many essential functions in the immune response
such as adhesion and phagocytosis [47]. Specifically, integrins are
involved in cell adhesion to the extracellular matrix and to other
cells, regulating leukocyte extravasation during inflammation, the
initiation of the immune response and leukocyte traffic under
normal physiological conditions. Many of these processes are very
important in the host immune response against any bacterial
infection. Impairment of this response by the removal of domains
that contain key molecules such as integrins, and perhaps other
important signalling molecules, from leukocyte plasma membrane
may represent a beneficial strategy followed by pathogenic
Bordetella pertussis to circumvent the host immune system.

As a corollary from all the data, we conclude that the plasma
membrane physicochemical properties undoubtedly play a key
role in the mechanism of action of ACT, and very likely, other
RTX toxins. In this regard, many questions remain to be explored
in the near future: Does AC'T exploit or depend on the inherent
properties of cholesterol-enriched domains to exert its cytotoxic
activities? Is the toxin itself able to locally alter the physical
properties of the lipid bilayer? And could ACT even indirectly
induce local changes in the membrane lipid composition, i.e.,
activating calcium-dependent sphingomyelinases? Experiments
are currently ongoing in our laboratory to provide answers.

Materials and Methods

Antibodies and reagents

Anti-RTX was from Santa Cruz Biotechnology (Santa Cruz,
CA, USA); anti-talin, anti-flotillin-1, anti-caveolin-1, La®", Cyto-
chalasin D, methyl-B-cyclodextrin, nifidepine, chlorpromazine,
DMA, ionomycin and genistein from Sigma(St Louis, MI); anti
CD11b, anti-B2 and anti-GM1 from abcam (Cambridge, UK);
calpeptin and KT5620 from Calbiochem (Merk, Germany); anti-
mouse Texas Red, anti-rabbit FITC and anti-goat Alexa Fluor®
594 from Invitrogen, Molecular Probes(Carlsbad, CA).

ACT purification

ACT was expressed in Escherichia coli XL-1 (Stratagene) blue
cells transformed with pT7CACT plasmid and purified as
previously described [10].

Cell culture

J774A.1 murine macrophages (ATTC, number TIB-67) and
CHO cells (ATTC, number CCL-61) were cultured at 37°C in
DMEM supplemented with 10% (v/v) heat-inactivated foetal
bovine serum, 100 U/ml penicillin, 100 pg/ml streptomycin and
4 mM L-glutamine in a humidified atmosphere with 5% CO,.
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Flow cytometry

To determine the internalisation kinetics of integrins, GM1 and
ACT, macrophages were incubated with 35 nM ACT for 2 min at
37°C allowing the toxin to bind with no time enough to allow
internalisation. Then, cells were washed 3 times with ice-cold PBS
to remove unbound toxin, and incubated again at 37°C for various
mtervals (0, 2, 4, 6, 8 and 10 min). Cells were then washed,
detached in ice-cold PBS, labelled under non-permeabilizing
conditions against 2 integrins, ACT, or GM1 with the primary
antibodies for 1 h at 4°C, then centrifuged, washed and mixed in
buffer containing FITC-conjugated secondary antibodies and
incubated for 1 h at 4°C. Cells were then washed, mixed in ice-
cold PBS and analyzed in a FACSCalibur flow cytometer (Beckton
Dickinson). Geometric MFI data was used to calculate the
percentage of internalisation at each point, which is expressed as
the percentage of fluorescence of the cells at each point of the
kinetic relative to the total fluorescence of the cells obtained after
toxin binding for 2 min.

Total cell surface bounded ACT at 4°C, and the internalisation
kinetics at 37°C in CHO cells were determined in the same
conditions as described above.

Confocal microscopy

Cells were grown to sub-confluency onto 12 mm diameter glass
coverslips placed into the wells of a 24-well plate. 35 nM ACT was
added to the medium and cells were incubated for 2 or 10 min.
Then, treated cells were washed three times in PBS to remove
unbound toxin, fixed for 10 min with 3.7% paraformaldehyde and
permeabilized with acetone at —20°C. Control cells followed the
same procedure. Then samples were incubated with the
appropriate primary antibodies for 1 h followed by incubation
with Texas Red- or FITC-conjugated secondary antibodies.
Coverslips were mounted on a glass slide and samples were
visualized using a confocal microscope (Olympus IX 81) with
sequential excitation and capture image acquisition with a digital
camera (Axiocam NRc5, Zeiss). Images were processed with
Fluoview v.50 software.

Immunoprecipitation of B2 integrin

Cells treated for 10 min with ACT were homogenized in lysis
buffer (20 mM Tris-HCI [pH 7.65], 1 mM sodium orthovana-
date, 2% Triton X-100, 100 ug of aprotinin per ml, 100 ug of
leupeptin  per ml, 10 ug of pepstatin per ml, and 2 mM
phenylmethylsulfonyl fluoride). Lysates were incubated with anti-
B2 antibody overnight at 4°C.. Sepharose protein G beads (20 uL)
were added to the lysates and the mixture was incubated for 4 h at
4°C. After incubation, the mixture was centrifuged and the
supernatant was discarded. The pellet was washed three times with
200 pl of wash buffer, 50 pl of elution buffer was added, and the
suspension was vortexed gently for 30 s and pelleted by
centrifugation. Aliquots (25 pl) of 2x SDS-PAGE loading buffer
(without 2-mercaptoethanol) were added to each tube containing
the immunoprecipitated proteins (pellet), boiled for 4 min, loaded,
and resolved on 8.5% SDS gels. Separated proteins were
transferred onto a nitrocellulose membrane and subjected to
Western blotting.

Isolation and analysis of DRMs

DRMs from J774A.1 cells were prepared according to Olsson
and Sundler [48]. Briefly, control and 35 nM ACT-treated cells
were lyzed in 10 mM Tris-HCI, 200 mM NaCl, 1 mM EDTA
pH 7.4, containing 1% (v/v) Triton X-100, for 30 minutes at 4°C.
The extracts were brought to 40% sucrose and placed at the
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bottom of 5-35% sucrose gradient with 1% TX-100. Gradients
were ultracentrifuged for 18 hours at 306,000 xg at 4°C.. Fractions
of 1 ml were harvested from the top of the gradient and stored at
—20°C. Equal amounts of protein from each fraction were
analysed by SDS-PAGE and western blott, and protein bands on
X-ray film were quantified by densitometric scanning using a Bio-
Rad Imaging densitometer.

Western blotting

Proteins were separated electrophoretically on a 8.5% SDS-
polyacrylamide gel and transferred to nitrocellulose membrane.
The membranes were then blocked overnight at 4°C, and after 2 h
of incubation with the corresponding primary antibodies, mem-
branes were washed and exposed to the secondary antibodies for
1 h at room temperature. Proteins were detected using the
enhanced chemiluminiscence detection system (ECL®, Amersham
Biosciences). The Quantity One® TImage Analyzer software
program (Bio-Rad) was used for quantitative densitometric analysis.
Measurements of intracellular [Ca®*]

Calcium influx into J774A.1 cells was measured as previously
described [10]. Briefly, J774A.1 cells grown on glass coverslips, were
loaded with 2 uM fura2-AM for 30-45 min. The coverslips were
mounted on a termostatized perfusion chamber on a Nikon Eclipse
TE 300 based microspectofluorometer and visualized with a x40
oil-immersion fluorescence objective lens. At the indicated time,
35 nM ACT was added and the intracellular Ca*" levels were
determined using the method of Grynkiewicz et al. [49]. The ratio
of light exited at 340 nm to that at 380 was determined with a Delta-
Ram system (Photon Technologies International, Princeton).

Adhesion assay

50%10° cells were incubated 10 min with 35 nM ACT then,
cells were washed and distributed in fibronogen coated 96-well
plates. Cells were subsequently incubated up to 4 h at 37°C, with
5% CO,. At different times, released or came off cells were gently
removed by pipette and the attached cells were gently washed,
fixed for 15 min with 0.25% glutaraldehyde, stained for 30 min
with 1% crystal violet, washed several times and incubated for
15 min at room temperature with 15% acetic acid. The staining
intensity corresponding to the amount of attached cells was
measured in a photometer at 595 nm.

Statistical analysis

All measurements were performed at least 3 times, and results
are presented as mean * s.d. Levels of significance were
determined by a two-tailed Student’s #test, and a confidence level
of greater than 95% (p<<0.05) was used to establish statistical
significance.

Supporting Information

Figure S1 Dose-response curve for the internalisation of
ACT, B2 integrin and GM1 molecules. Addition of ACT to
J774A.1 cells at the concentrations indicated in the figure results in
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