
MHC-I prediction using a combination of T cell epitopes and
MHC-I binding peptides

Tal Vider-Shalit1 and Yoram Louzoun1,2

1Department of Mathematics and Gonda Brain Research Center, Bar Ilan University, Ramat Gan
52900, Israel

Abstract
We propose a novel learning method that combines multiple experimental modalities to improve
the MHC Class-I binding prediction. Multiple experimental modalities are often accessible in the
context of a binding problem. Such modalities can provide different labels of data, such as binary
classifications, affinity measurements, or direct estimations of the binding profile. Current
machine learning algorithms usually focus on a given label type. We here present a novel Multi-
Label Vector Optimization (MLVO) formalism to produce classifiers based on the simultaneous
optimization of multiple labels. Within this methodology, all label types are combined into a
single constrained quadratic dual optimization problem.

We apply the MLVO to MHC class-I epitope prediction. We combine affinity measurements
(IC50/EC50), binary classifications of epitopes as T cell activators and existing algorithms. The
multi-label vector optimization algorithms produce classifiers significantly better than the ones
resulting from any of its components. These matrix based classifier are better or equivalent to the
existing state of the art MHC-I epitope prediction tools in the studied alleles.

Introduction
CD8+ T cells are stimulated by epitopes presented in the context of Type I Major
Histocompatibility Complex (MHC-I) molecules. These epitopes, are preprocessed by the
cellular machinery, and eventually bind MHC-I molecules [1]. Not all peptides generated
from endogenous or exogenous proteins can bind MHC-I molecules. The MHC-I molecule
has a limited binding cleft that allows only 8-10mers peptides to bind, with the vast majority
of epitopes being 9mers [2]. Within all 8-10 amino acid long peptides, only those with a
high enough affinity (as defined by the peptide half-life on the MHC-I molecule) can serve
as epitopes. MHC molecules are extremely polymorphic [3] yielding a wide range of
binding potentials and a diverse T cell epitope repertoire. Each MHC-I molecule has
different binding properties, and thus requires a separate binding prediction algorithm.

The identification of MHC-I binding epitopes has many applications in T cell activation and
in vaccine development. The accumulation of experimental epitope data and in silico
computational methods led to the development of a large number to MHC-I binding
prediction algorithms (see for example among many others: [4]).
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Various assay types have been used to detect CD8+ T cell epitopes and measure their
properties. Most of these measurements were combined through generic ontologies into
large scale databases, such as the IEDB (Immune Epitope Database) [5] and the SYFPEITHI
[6] databases. The determination of a peptide as an epitope can be divided into two label
types: binary definitions (epitopes vs. non-epitopes or MHC-binding vs. non binding
peptides) and quantitative measurements, such as off-rate or affinity estimates. Beyond the
explicitly published epitope affinities, a posteriori estimations of the binding properties can
be extracted from existing binding prediction algorithms. Some of the prediction algorithms
are based on published data (e.g. IEDB [7] and NetMHC [8]), and are thus redundant with
the same published data. Other algorithms only provide estimate of the binding affinity/off-
rate, but not the experimental data used to generate them (e.g. BIMAS [9]). In such cases,
the existing algorithm itself can be considered as an indirect third data label type.

We here introduce a supervised learning algorithm combining both binary and continuous
experimental observations as well as a priori estimate of the optimal solution. The combined
optimization problem is translated into a quadratic programming problem. We apply this
new methodology to MHC-I epitope prediction and show that it performs better than
existing algorithms. We call this algorithm Multi-Label Vector Optimization (MLVO).

Multiple labels can increase the classifier precision in two ways. In alleles with a large
learning set, the combination of labels can introduce different qualitative aspects of the
sampled data. In alleles where the total amount of samples per label is limited, a
combination of alleles can be used to increase the size of the learning sets. Previous attempts
to define the binding properties of alleles with limited data were mainly based on sharing
similar label data among neighboring alleles (i.e. alleles with similar biding properties or
super-alleles) [10]. We here propose a larger formalism that can merge an a priori guess
based on neighboring alleles with all the data available in a given allele.

Machine learning Model
The multi-label vector optimization problem can be posed as follows: Assume a learning set
with points: xi ∈ Rn,i = 1…m that have two possible label types yi and si. yi is a binary
classification, and si is a continuous observation that is monotonically related to the binary
classification yi. Each sampled point can have either one of the two label types or both.
Beyond the explicit measurements on xi, an a priori estimate of w(w0) can be given. The a
priori estimate can be based on previous algorithms, structural insight, or results obtained in
similar systems (e.g. similar alleles/molecules). We are looking for a score w and a constant
b that would properly separate a set of test points xj ∈ Rn, j = 1…k, so that yj(wTxj + b) is
positive for the maximal number of samples in the positive and negative test sets. In the
presence of only binary classifications yi in the learning set, this problem converges to a
binary Support Vector Machine (SVM) algorithm (with a linear Kernel, although any other
kernel could be used). If only continuous measurements si are given, a logistic regression
over the si would be a possible solution. If only w0 is given, then w0 is the optimal solution.
However, given the three components, we may be able to better predict the test classification
combining all three data label types. These three label types can be combined into a single
constrained optimization problem, with the following weighted objective function:

where we set the weight of E2 to 1.

Vider-Shalit and Louzoun Page 2

J Immunol Methods. Author manuscript; available in PMC 2012 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The first element (E1) is the term for the optimal separation between the data points based
on the binary classifications (we follow the classical SVM formalism [11]):

The sum and the constraints are over all the learning set points xi with a binary
classification. As in the SVM formalism, a linear classifier is defined as a hyper-plane (wT x
+ b = 0), such that yi(wT xi + b) ≥ 1−ξi. In the absence of the ξi term, this expression implies

that all points classified as yi = 1 are at a distance of at least  to the right of the hyper-

plane and all points classified as yi = −1 are at a distance of at least  to the left of the

hyper-plane. The minimization term  is introduced to obtain the widest margin in the
learning set between points classified as 1 and −1. The variables ξi allow for violations of
the constraint. c2 controls the tradeoff between the penalty for mistakes and the margin
width.

The second element (E2) is based on an apriori guess (w0): . Given an
existing linear classification algorithm based on samples not included in the learning or test
sets, one can hope to improve the classification of the validation set by choosing a solution
not too far from w0.

The last element (E3) is a linear regression based on the samples for which a continuous
measurement si is given:

s is a column vectors with all the values si. Pm×n is a matrix with all the sample points xi
having a continuous score si, α and β are the regression coefficients of s on Pw. Note that the
units of the continuous scores si may differ from the units of the a priori guess w0, or the
optimal separating hyper-plane of the binary data. E3 . We simultaneously make a regression
of s on Pw and of the optimal hyper-plane w on a linear transformation of the values of s. In
a pure regression problem, we can set α = 1, and adapt the values of w appropriately.
However, in the MLVO formalism, the other terms induce limits on w, and the two
regression elements are required. Assume for example that  is the a priori estimate of
the off-rate and si is a measurement of the log of the affinity. In order to improve the off-rate
estimate, we correlate it to the affinity, but either the affinity or the off-rate has to be
properly linearly transformed to fit one each other: . We compute the
appropriate regression coefficients (α, β) using a least squares algorithm. The combined
optimization problem is a quadratic problem with linear constrains. The resulting solution is
affected by the weight given to each component: c1, c2 and c3.

Results
We here apply the MLVO to predict MHC binders using three sources: A) the affinity of
MHC-binding epitopes in the proper HLA allele, B) T cell epitopes again on the proper
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allele, and C) published predictors obtained from regression on MHC-binding peptides off-
rates [9]. The off-rates of peptides were not used as direct measurements in order to avoid
information leaks between the learning and test sets. In each classifying task, 20% of the
data was kept as an external test set, and the MLVO was applied to the remaining 80% of
the data. The weights of the MLVO were determined to optimize the learning set accuracy.
The negative learning and test sets were composed of 8,000 random peptides each with
amino acid composition similar to the positive learning set. We have not used true negative
peptides, since their quantity was limited in most alleles. Moreover, the goal of the
classifiers was to maximize the precision, not the specificity. Thus, we wanted to be sure
that when applying the scores to a large amount of sequences, most predicted positive values
would indeed be positive. Only ninemers were used, as these are the vast majority of
peptides presented to T Cells. The affinity data was separated by the measured units (e.g.
IC50, EC50). Duplicated epitopes and epitopes overlapping between the different sets were
removed.

The classifiers were built as a position weight matrices (PWM), assigning each amino acid
at each position in the ninemer a weight [9]. The vectors w were 9*20 matrices reshaped
into a 180*1 vector. The peptides were described as a 9*20 occupancy matrix, with a value
of 1 for the relevant amino acid at each position and values of 0 for all other amino acids.
This matrix was then reshaped into a 180*1 vector x. Thus the score assigned to a vector is
wT x + b, where b is the offset of the PWM.

The MLVO prediction was tested using a Leave One Out (LOO) method. The accuracy of
the vast majority of alleles increased in the MLVO to over 0.95 (with AUC of over 0.98)
compared with accuracies of 0.8-0.9 for the vast majority of alleles in the other learning
methods (Table 1). For some alleles, very large learning sets were available. Increasing the
size of the learning sets did not increase the accuracy of the MLVO predictors. Similarly,
enlarging the negative data set did not improve the prediction (data not shown). The
precision obtained in these binding predictions may thus be approaching the maximal
precision of PWM.

The optimization formalism used incorporates multiple elements. The contribution of each
element to the optimization is determined by its weight. The optimal values were almost
always obtained for intermediate values (Figure 1), showing that the combination of
multiple labels does decrease the total error function. The improved performance occurs
even if the a priori guess is far from optimal. Interestingly, a negative correlation can be
seen between the values of c1 and c2. In other words, as we increase the importance we give
to the a priori guess vs. the size of the SVM margin, we must allow a higher error rate in the
binary classification.

Instead of using the MLVO, one could propose to combine the data by thresholding the
continuous data and transforming it into a binary data. For example in the case of the MHC-
I, we used the standard 50 NM threshold for the EC50 or IC50 data and replaced each
affinity measure by a binary classification and then applied an SVM to the binary data. We
have here tested such a method for the MHC-I binding prediction algorithm, and the results
are not better than the standard SVM (Table 1).

The LOO results may be biased, since the sensitivity and specificity are computed for the
optimal parameter set. In order to test that the LOO results are credible, a double validation
was performed for alleles with enough samples. The data was divided into learning and
validation sets. At the first stage, a LOO methodology was applied to the learning set, and
the optimal constants for the MLVO were selected. At the second stage, we used these
constants and applied the MLVO on the full learning set. We then used the resulting score
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and tested the external validation set. We applied this external validation to four alleles for
which enough samples are available (HLA A*0201, A*2402, A*1101 and B*2705). For all
alleles tested, no significant difference was found between the LOO results and the two
stage validation results (Table 2). Given this good fit, we believe that the precision level of
the LOO results obtained for the other alleles are also correct.

Discussion
We have developed a novel optimization algorithm using different modalities, called multi
label vector optimization. This formalism can be treated as the combination of a SVM, a
linear regression and an initial guess. In the current analysis we have used the MLVO to
produce MHC-I binding matrices. We used the BIMAS matrices as an initial guess, and
focused on 20 MHC-I alleles, having at least another modality (classification data) sufficient
for training sets.

Even the two-label combination of the a priori guess and SVM performed better than each
of them separately, giving less than 5 % FP and FN each. The combination of all three
elements further improved the precision for most alleles. In the context of MHC-I, this
methodology can be expanded to use the prediction matrix of similar allele as an a priori
guess. Using such a methodology, if the differences between alleles are small, a small
number of samples for the new allele can be used to translate the existing matrix to a new
allele.

The MHC-I binding prediction is only one example of applications of the MLVO. It can
actually be used as a general supervised learning method when multiple types of data are
available. Such a situation often emerges in biological interactions, such as transcription
factor binding or protein-protein interactions. In such cases, observations can either be
binary (the presence or absence of an interaction) or continuous (the affinity).

The mathematical interpretation of the MLVO is straight-forward. Given a classifier based
on a linear hyper-plane, the normal vector of the plain is perpendicular to it. The a priori
estimate provides a second vector, and the regression line of all the continuous samples
provides a third vector. The MLVO is a method to optimally combine these three vectors
into a single optimization problem.
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Figure 1.
The optimal c1 and c2 values for the partial MLVO. The optimal values where almost
always obtained for intermediate values 10 > ci > 0.1 showing that the combination of
multiple labels does help decreasing the total error function. A positive correlation can be
seen in the values of c1 and c2.
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Table 2

Comparison between LOO and external validation set for alleles with enough data samples. The difference
between the LOO and the external validation are very small.

LOO External
Validation

Sens. Spec. Sens. Spec.

A*1101 0.98 0.93 1 0.91

A*2402 0.98 0.92 1 0.93

B*2705 1 0.97 1 0.96

B*1501 1 0.95 1 0.95
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