
Cancer genetics-guided discovery of serum biomarker
signatures for diagnosis and prognosis of
prostate cancer
Igor Cimaa,1, Ralph Schiessb,1, Peter Wildc, Martin Kaelind, Peter Schüfflere, Vinzenz Langeb, Paola Picottib, Reto Ossolab,
Arnoud Templetond, Olga Schuberta, Thomas Fuchse, Thomas Leippoldf, Stephen Wylerf, Jens Zehetnera,
Wolfram Jochumg, Joachim Buhmanne, Thomas Cernyd, Holger Mochc,2, Silke Gillessend,2, Ruedi Aebersoldb,h,2,
and Wilhelm Kreka,2

aInstitute of Cell Biology and bInstitute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland; cInstitute of
Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland; dDepartment of Medical Oncology, fDepartment of Urology, and gInstitute of
Pathology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland; eDepartment of Computer Science, Eidgenössische Technische Hochschule Zurich, 8092
Zurich, Switzerland; and hFaculty of Science, University of Zurich, 8057 Zurich, Switzerland

Edited by Owen N. Witte, The Howard Hughes Medical Institute, University of California, Los Angeles, CA, and approved January 12, 2011 (received for review
September 25, 2010)

A key barrier to the realization of personalized medicine for cancer
is the identification of biomarkers. Here we describe a two-stage
strategy for the discovery of serum biomarker signatures corre-
sponding to specific cancer-causing mutations and its application
to prostate cancer (PCa) in the context of the commonly occurring
phosphatase and tensin homolog (PTEN) tumor-suppressor gene
inactivation. In the first stage of our approach, we identified 775
N-linked glycoproteins from sera and prostate tissue of wild-type
and Pten-null mice. Using label-free quantitative proteomics, we
showed that Pten inactivation leads to measurable perturbations
in the murine prostate and serum glycoproteome. Following bio-
informatic prioritization, in a second stage we applied targeted
proteomics to detect and quantify 39 human ortholog candidate
biomarkers in the sera of PCa patients and control individuals. The
resulting proteomic profiles were analyzed by machine learning
to build predictive regression models for tissue PTEN status and
diagnosis and grading of PCa. Our approach suggests a general
path to rational cancer biomarker discovery and initial validation
guided by cancer genetics and based on the integration of exper-
imental mouse models, proteomics-based technologies, and com-
putational modeling.
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Molecular and genetic biomarkers play a paramount role in
clinical oncology. They can help predict who will develop

cancer or detect the disease at an early stage. Biomarkers also
can guide treatment decisions and help identify subpopulations
of patients who are most likely to respond to a specific therapy
(1, 2). However, the noninvasive detection and prognostic eval-
uation of a specific tumor by the analysis of indicators in body
fluids such as serum remains a formidable challenge. Novel
biomarkers represent today an urgent and critical medical need.
Serum has long been considered a rich source for biomarkers

(3). However, the discovery of serum biomarkers has been
technically challenging and ineffectual for reasons that include
the particular and variable composition of the serum proteome
and its enormous complexity (4). As the genetic alterations that
cause cancer are becoming better understood, one strategy to
overcome the limitations of the traditional serum proteome
comparisons is to use the knowledge about specific cancer-
causing mutations and the underlying disrupted signaling path-
ways to guide the discovery of novel cancer serum biomarkers.
The tumor-suppressor gene phosphatase and tensin homolog

(PTEN) is one of the most commonly inactivated genes in hu-
man cancer and has been identified as lost or mutated in several
sporadic cancers, including endometrial carcinoma, glioblastoma,

breast cancer, and prostate cancer (5). An established conse-
quence of PTEN inactivation is the constitutive aberrant activa-
tion of the PI3K-signaling pathway that drives uncontrolled cell
growth, proliferation, and survival (6, 7). It is expected that specific
signaling pathway-activating mutations such as PTEN loss will
produce changes in the surface and secreted proteomes of the
affected tissue (8), and, in principle, these changes should be de-
tectable as discrete biomarker signatures in the serum. Based on
this conceptual consideration, we developed a two-stage strategy
for the discovery and initial validation of serum biomarkers in
humans based on a mouse model of prostate cancer (PCa) pro-
gression caused by Pten inactivation.

Results
In the first stage of our approach, we identified PCa candidate
biomarkers by applying a large-scale quantitative proteomic
screen to detect and quantify N-linked glycoproteins that differ
in their amount in the prostate tissue and sera of prostatic Pten-
deficient PbCre4-Ptenfl/fl (Pten cKO) and littermate control ani-
mals (9) (Fig. 1A and Fig. S1 A–C). The choice of an experi-
mental mouse model as entry point for the identification of
candidate biomarkers was guided by the possibility of collecting
tissue samples from a genetically defined and homogeneous
population in which variables such as environmental factors, age,
and tumor type and stage are controlled and standardized. We
selectively analyzed N-glycosylated proteins to maximize their
subsequent detectability in the serum (10) and to focus on
a subproteome that is enriched for validated serum biomarkers.
In fact, 30 of the 38 protein biomarkers currently used in the
clinic are glycosylated (11).
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Purified tissue and serum samples from wild-type and pros-
tate-specific Pten cKO animals were subjected to solid-phase
extraction of N-glycopeptides (SPEG) (12). The enriched N-
glycosites from each sample were analyzed in duplicate on a
linear ion trap quadrupole-Fourier transform (LTQ-FT) mass
spectrometer. Glycoprotein enrichment in combination with
high-throughput MS at a false-discovery rate ≤1% resulted in the
identification of a total of 775 glycoproteins (Fig. 2A and Dataset
S1). Seventy-seven percent of proteins detected in prostate tissue
and up to 92% of proteins identified in serum were manually
annotated (13) to be secreted, to reside in/on the plasma mem-
brane, or to belong to the secretory or lysosomal compartments,
indicating strong enrichment for the intended target population
(14) (Fig. S1D). Of the 658 proteins identified in the prostate
tissue, 152 (23.1%) were identified exclusively in the Pten cKO
prostate cancer tissue, and 91 (13.8%) were identified only in the
wild-type tissue (Fig. 2A).
To detect Pten-dependent changes in the N-glycosite profiles

of prostate tissue and serum respectively, we compared the liquid
chromatography (LC)-MS feature maps of the corresponding
samples using the SuperHirn software (15). The ion chromato-
grams for each N-glycosite were used subsequently as the basis
for relative label-free quantification of 352 proteins (213 from
tissue, 105 from serum, and 34 from both samples). The relative
amounts of 68 proteins differed significantly in the tissue of Pten
cKO mice compared with their age-matched controls. In the
matched sera only 12 proteins with significantly altered abun-
dance were detected (Fig. 2B and Dataset S2), a result that is
in agreement with previous ineffective direct serum–proteome
comparisons. Spectral counting (16) confirmed the quantitative
data derived from the ion counts and identified a further 43
proteins with significantly altered abundance between Pten cKO
and wild-type prostate tissue (Dataset S2). Moreover, immuno-
blotting and immunofluorescence microscopy of selected glyco-
sylated proteins verified the quantitative MS data (Fig. 2 C and
D). Interestingly, our tissue glycoprotein screen identified dif-

ferential expression of proteins known to be associated with
differentiation and the stem cell phenotype (Fig. 2D). Further
analyses of differentiation and stem cell markers confirmed this
hypothesis (Fig S1 D and E), in agreement with previous reports
(17) that implicate a role for PTEN in differentiation and stem
cell homeostasis during PCa progression. The candidate bio-
marker list was analyzed further based on a series of three cri-
teria: Pten dependency, prostate specificity, and detectability in
serum. This analysis resulted in a list of 126 proteins (Dataset
S2), which is expected to contain one or more specific candidate
biomarker signatures that mirror PTEN-loss in human PCa.
Therefore, in the second stage of our approach we tested

whether PTEN-inactivation in human PCa is associated with
a specific serum signature (Fig. 1B). Between the years 2004 and
2007, using a standardized protocol, we collected prostate tissue
samples of consenting patients who underwent biopsy, radical
prostatectomy, or transurethral resection because of PCa and
matched sera from a single source. We collected sera from
a total of 143 patients. As control group (n = 66; median age =
65.7 y; range, 50.8–90.26 y), we selected patients with histologi-
cally confirmed benign prostatic hyperplasia (BPH). The PCa
group (n = 77; median age = 67.7 y; range, 49.1–89.4 y) had
histologically confirmed localized PCa (locPCa). Patients with
other malignancies or with chronic or acute inflammatory con-
ditions and patients with advanced prostate cancer were excluded
from our analysis. From 99 patients (BPH, n = 40; locPCa, n =
59) we had also access to the corresponding prostate tissue sam-
ples. Of these, 92 samples (BPH, n = 40; locPCa, n = 52) were
spotted on a tissue microarray (referred to thereafter as TMA-
P92) for genetic and immunohistochemical analyses (Fig. S2A).
We analyzed the epithelial PTEN status by dual-color FISH on

the TMA-P92 by calculating the percentage of epithelial cells
that lost at least one PTEN gene copy number on each spot. To
this end we compared PTEN gene copy numbers with total
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Fig. 1. Translational approach for biomarker discovery and validation
workflow. (A) Candidate biomarkers are discovered using a genetic mouse
model by enriching N-linked glycoproteins to sera and freshly isolated per-
fused prostates from wild-type and Pten cKO mice. Tryptic N-glycosites then
are measured by LC-MS/MS. Identification and quantitation of proteins is
performed as described. After a filtering process, candidate biomarkers are
selected for the verification phase. (B) Verification phase. Highly standard-
ized biobanking and clinical data collection are used for collecting serum
and matching tissue samples from patients harboring localized PCa and
control patients with BPH. N-linked glycoproteins are extracted as in A, and
selected candidates from the discovery phase are measured by targeted
proteomics and ELISA. At the same time, tissues are spotted as microarray
and stained for the indicated antigens. Feature selection and modeling then
is performed to find novel biomarkers for diagnosis, patient stratification by
Gleason score, and PTEN status.
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Fig. 2. Murine prostate and serum N-linked glycoproteome. (A) Venn dia-
grams of the mouse prostate and serum glycoproteome identified in the
wild-type and Pten cKO mice indicating proteins commonly detected or
detected only in the respective genotype/organs. (B) Label-free quantifica-
tion of the proteins by means of SuperHirn plotted for prostate and serum.
Dots indicate the ratio for each protein between the Pten cKO and wild-type
prostates or sera and indexed from the most down-modulated to the most
up-regulated. (C and D) Previously unknown Pten-dependent changes in
protein expression are verified by standard cell biology techniques such as
Western blot (C) and immunofluorescence (D).
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chromosome 10 copy numbers per cell using commercially
available fluorescently labeled DNA probes for cytoband 10q23.3
and region 10p11.1∼q11.1, respectively. We also stained sections
from the TMA-P92 with antibodies reporting the activation state
of the PI3K-pathway including phospho-serine (pSer)-473-Akt
and stathmin (18). Seventy-two percent of prostate cancers dis-
played focal loss of PTEN gene copy numbers compared with the
control group, indicating deletion of one or both alleles of PTEN
(Fig. 3A, and Table S1) in at least 20% of the cells analyzed. This
result is in agreement with previous reports using the same
technique (19, 20). As expected, a significant fraction of these
cancers demonstrated PI3K-pathway activation, as evidenced by
the increased staining of pSer-473-Akt and stathmin (Fig. 3 B
and C).
Next, we analyzed serum samples from these patients by using

N-glycosite extraction followed by targeted quantitative MS via
selected reaction monitoring (SRM) (21). To this end, we used
a hybrid quadrupole/linear ion trap mass spectrometer (22) to
detect and quantify 57 N-glycosites, corresponding to 49 candi-
date protein biomarkers present on the list of prioritized can-
didates. The absolute serum concentrations of these proteins

were determined using stable isotope-labeled reference peptides
as external standards. Of the 57 targeted peptides, 36 peptides
representing 33 different proteins were detected consistently and
quantified in 80–105 patients (Dataset S3). The median con-
centration of the measured proteins varied from 320 μg/mL to
5.5 ng/mL, indicating that our approach allows the quantification
of protein concentrations in sera along six orders of magnitude.
The median concentration of various measured proteins was
in the concentration range of prostate-specific antigen (PSA),
a widely used diagnostic serum biomarker for prostate cancer.
For nine proteins, we also established ELISAs, which confirmed
the validity of the SRM approach for two proteins and provided
independent quantitative data for the other proteins that were
not detected by SRM, thus resulting in a total of 39 proteins that
were quantified consistently (Dataset S3). Next, we used this
dataset to select the best candidate biomarkers and to build
predictive models for the discrimination between normal and
aberrant PTEN status. First, we applied the random forest (RF)
classifier algorithm (23) for variable ranking and subsequent
selection. RF is particularly well-suited in this regard, because it
does not assume that the data are linearly separable. Moreover,
the selection of the top-ranked variables reduces the di-
mensionality of the feature space and the computing time, thus
allowing a subsequent exhaustive screening of the best models.
We selected the 20 top-ranked variables resulting from 100 RFs

and screened for all logistic regression models to predict focal loss
of PTEN by combining one to five serum proteins. This screening
resulted in 21,699 different models, which were validated by 100-
fold bootstrapping (24). For each model we calculated the median
area under the receiver operating characteristic (ROC) curve
(AUC), thereby identifying the best regression models that are
able to predict significantly aberrant PTEN status from an over-
lapping data set comprising 54 patients derived from the PTEN
FISH analysis of 82 patients and the SRM and ELISA quantifi-
cation of sera from 105 patients (PTEN focal loss <20%: n = 26;
PTEN focal loss ≥20%: n = 28) (Fig. S2B). The signature com-
prising thrombospondin-1 (THBS1), metalloproteinase inhibitor
1 (TIMP-1), complement factor H (CFH), and prolow-density
lipoprotein receptor-related protein 1 (LRP-1) could predict cor-
rectly 78% of cases belonging to patients having aberrant or
normal PTEN status with a sensitivity of 79.2% and specificity of
76.7% [AUC = 0.82; P = 5.49*10E-5; 95% confidence interval
(CI) = 0.704–0.936] (Fig. 3E). Taken together, these results sug-
gest that the reduction of PTEN gene copy number in prostate
cancer led to a measurable perturbation of the serum proteome.
Moreover, they demonstrate the usefulness of computational
variable selection using RF followed by exhaustive regression
model screening as a valid approach to extract information on
candidate biomarkers.
To corroborate this analysis, we determined the occurrence of

the 15 RF-selected top-ranked variables in the best 50 boot-
strapped models (Fig. 3D). All proteins have been selected in
more than half of all highly predictive models. This approach
thus provided the theoretical robustness of discrimination of
individual candidate biomarkers described in Fig. 3E. To de-
termine whether our signature is significantly linked to the
PTEN network, we sought curated knowledge-based connections
between our signature and the PTEN network. When tested
against 50 random signatures, the PTEN signature identified
here showed significantly more direct and indirect connections to
the PTEN signaling network, thus providing independent sup-
port for our serum signature as a predictor of tissue PTEN status
(Fig. S3 A and B). Because PTEN loss is causally associated with
accelerated PCa progression and aggressiveness, as exemplified
by the association between PTEN loss of function and Gleason
sum score (25, 26), we next asked whether the bioinformatic
approach also could extract serum protein signatures reflecting
tumor grading. Examination of our TMA-P92 revealed a corre-
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Fig. 3. PTEN score status predictors modeling. (A) PTEN FISH boxplot for
BPH and locPCa cases. Focal PTEN loss indicates the percent of cells with
reduced PTEN FISH signals compared with the centromere signal in the an-
alyzed epithelial cells (n = 75). (B) pSer-473-Akt immunostaining boxplot. The
score indicates the average staining intensity on a scale of 0–3 multiplied by
the percentage of positive epithelial cells in BPH and locPCa tissues (n = 92).
(C) Boxplot showing the staining intensity of stathmin, a marker for the
PTEN/PI3K signature on BPH and locPCa tissues (n = 92). Numbers indicate
the percentage of positive epithelial cells. (D) Predictor variable distribution
for genetic PTEN status. The predictive importance of LRP-1, THBS1, TIMP-1,
CFH, Attractin (ATRN), BGN, OLFM4, Golgi membrane protein 1 (GOLPH2),
ASPN, Cell adhesion molecule 1 (CADM1), Galectin-3-binding protein
(LGALS3BP), Vitronectin (VTN), ECM1, Transmembrane 9 superfamily mem-
ber 3 (TM9SF3), and Ceruloplasmin (CP) selected by random forests and
subsequent bootstrapped exhaustive search is based on the frequency in
which the candidates appear in the best 50 predicting models. (E) ROC curve
for the best predicting signature for tissue PTEN status (n = 54). In boxplots
(A, B, and C), the line within the box indicates the median value, the box
spans the interquartile range, whiskers extend to data extremes, and
asterisks are outliers >3× interquartile range.
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lation between PTEN loss and Gleason score sum (Fig. S4),
confirming previous reports (25, 26). The Gleason grading
available for 69 tumors and the corresponding quantitative SRM
serum analysis served as the basis for applying the bioinformatics
approach outlined above (Fig. S2B). Intriguingly, we identified
a five-protein signature from an overlapping dataset of 54
patients comprising polypeptide GalNAc transferase-like pro-
tein 4 (GALNTL4), fibronectin (FN), zinc-α-2-glycoprotein
(AZGP1), biglycan (BGN), and extracellular matrix protein 1
(ECM1) that predicted patients having tumors with a Gleason
score <7 or ≥7 with an AUC = 0.788 [P = 3.1*10E-4; 95% CI =
0.668–0.907; sensitivity (sens.) = 60.9%; specificity (spec.) =
67.8%] (Fig. 4B). The predictive relevance ranking corroborated

the composition of the best signature (Fig. 4A). These results
imply a potential link between aberrant PTEN status and the
emergence of protein signatures in the serum reporting on tumor
grading. Taken together, because only few reports describe se-
rum biomarkers for the stratification of patients based on the
grading of the tumors (2, 27, 28), the data suggest an application
of our biomarker discovery platform for the prognosis of locPCa,
wherein patients with clinically significant or insignificant pros-
tate cancer can undergo stratification for therapy or watchful
waiting, respectively (29). Finally, we assessed whether our ap-
proach can reveal signatures for PCa diagnosis. As reported
previously, we note that the vast majority of the tumors show
aberrant focal PTEN loss (Fig. 3A and Table S1) and altered
PI3K signaling (Fig. 3 B and C). The current method of choice
for noninvasive screening of PCa is the blood-based quantifica-
tion of PSA together with digital rectal examination (DRE).
Recent studies showing that PSA, alone or in combination with
DRE, is prone to overdiagnosis and has no or very limited
beneficial effects on overall survival (30, 31) suggest a strong
need for better diagnostic signatures. We thus analyzed a total of
143 sera from 77 PCa patients and 66 controls. Sera from 105
patients were selected as training-validation set (Fig. S2B). Ma-
chine learning analysis applied to a quantitative data set derived
from SRM analysis of the sera of 82 patients identified a four-
protein signature comprised of hypoxia up-regulated protein 1
(HYOU1), asporin (ASPN), cathepsin D (CTSD), and olfacto-
medin-4 (OLFM4) (32). This signature discriminated between
BPH and PCa with an AUC = 0.726 (P= 0.01; 95% CI = 0.614–
0.838; sens. 81%, spec. 57%). PSA measurements resulted in
a similar AUC = 0.730 (P = 1*10E-6; 95% CI = 0.693–0.871;
sens. 78%, spec. 63%). Strikingly, the combination of the four-
protein signature with PSA resulted in an AUC = 0.840 (P =
5*10E-9; 95% CI = 0.824–0.964; sens. 85%, spec. 79%) (Fig. 4 C
and D). With the aim of testing the reproducibility of our ap-
proach, we measured the four-biomarker signature by SRM in an
independent test set comprising 38 patients that were not in-
cluded in the training-validation set. In the test set, the diagnostic
signature from an overlapping dataset of 37 patients performed
equally as well as the training-validation set, indicating repro-
ducibility and robustness of the test as well as of the measurement
procedure (Fig. 4E). To exclude confounding variables such as
inflammatory conditions as the origin of eventual bias (33) in our
analysis, we correlated the single biomarkers comprised in the
prognostic and diagnostic signatures mentioned above with clini-
cal parameters of inflammatory state in a subset of patients, in-
dependently of the disease status. Specifically, we correlated
C-reactive protein (CRP) and the leukocyte count. All the se-
lected variables failed to correlate with either parameter, thus
excluding a bias derived from the inflammatory status of the
patient at the time of diagnosis (Fig. S5).

Discussion
The present study provides a general framework for rational
cancer biomarker discovery. The underlying concept is that ac-
tivation of cancer-signaling pathways caused, for example, by the
inactivation of a defined tumor-suppressor gene is associated
with specific protein signatures that can be measured in serum
and potentially used to detect disease at an early stage or
to derive information about the tumor grade and thus guide
treatment decisions. In the past the discovery of serum bio-
markers has been technically challenging because of the enor-
mous complexity of the serum proteome and the lack of sensitive
discovery-driven measurement technologies (4). Based on these
considerations, we implemented a two-stage strategy for bio-
marker discovery. In the first stage, we generated a list of can-
didate biomarkers based on information derived from large-scale
screens of the glycosylated proteome of a mouse model of PCa
progression caused by prostate-specific Pten inactivation. This
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Fig. 4. Candidate biomarkers for diagnosis and Gleason score prediction.
(A) Predictor variable distribution for Gleason score. The predictive impor-
tance for BGN, AZGP1, FN, GALNTL4, Carboxypeptidase M (CPM), ECM1,
CADM1, Biotinidase (BTD), Complement factor H (CFH), Plexin B2 (PLXNB2),
Lumican (LUM), Neural cell adhesion molecule L1 (L1CAM), Protein CREG1
(CREG1), ATRN, and ASPN selected by random forests and subsequent
bootstrapped exhaustive search is based on the frequency in which the
candidate appears in the first 50 models. (B) ROC curve for the indicated
signature for prediction of Gleason score <7 or ≥7 (n = 54). (C) Predictor
variable distribution for diagnosis between locPCa and BPH. (D) ROC curve
showing the performance for the selected signature (green line), the sig-
nature combined with PSA (red line), and PSA alone (black line) (n = 105). (E)
Independent test set for the diagnostic signature. Performance of the
identified diagnostic signature (Left), PSA alone (Center), or the combination
of the signature and PSA (Right) in a set of patients measured independently
and not considered in the training set. Data are presented as confusion
matrices with the sensitivity (sens.), specificity (spec.), and accuracy (acc.)
indicated for each signature (n = 37).
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approach identified multiple proteins differentially regulated
upon Pten inactivation. In the second, hypothesis-testing stage,
the candidate proteins were quantified simultaneously by SRM-
based targeted MS in sera of PCa patients and integrated with
information derived from matched PCa tissue characterized with
respect to PTEN status and PI3K-pathway activation. Using
machine learning algorithms, we then extracted robust patterns
suitable for predicting tissue PTEN status and for the diagnosis
and grading of PCa.
The current standard biomarker for early detection of PCa is

PSA. However, the effectiveness of systematic PCa screening
with PSA testing remains controversial, in part because a lack of
sensitivity and specificity results in considerable overdiagnosis
and overtreatment (30, 31, 34). The ability of our four-protein
signature for prostate cancer diagnosis to distinguish accurately
between locPCa and BPH makes it potentially suited for
screening tests by reducing false-positive outcomes and therefore
avoiding anxiety and biopsies in men who have an elevated PSA
but do not harbor cancer.
Another potential drawback of PSA testing relates to the de-

tection of clinically insignificant prostate cancers in asymptom-
atic men. Therefore, overdiagnosis, in this context meaning
detection of cancer that has no clinical impact on an individual
during his lifetime, is a major problem. There are several defi-
nitions of insignificant prostate cancer (29); most definitions
exclude patients with any Gleason pattern 4 prostate cancer. Our
five-protein signature predictive for Gleason score therefore may
be suited for improving screening efficacy by reporting which
men might harbor insignificant cancers. Such patients might be
offered active surveillance instead of immediate treatment. If
active surveillance is chosen as the treatment option, repetitive
biopsies for detection of prostate cancer progression ultimately
could be replaced by a serum test.
The biomarker discovery platform presented here provides an

approach for the discovery and validation of biomarkers with the
aim of improving the effectiveness of PCa testing and non-
invasive diagnostic of prostate cancer. Ideally this approach
could avoid overdiagnosis and overtreatment and guide treat-
ment decision.
The simultaneous analysis of a large number of candidate bio-

markers by SRM allows the discovery of new potential biomarkers
independently from the availability of established immunoassays.
However, this emerging technology does not yet allow the analysis
of large cohorts of patients. The identified candidate biomarkers
thus must be validated further in larger, prospective studies,
preferably using standardized immunoassays, which are limited in
the amount of proteins analyzed per sample but allow the analysis
of much larger cohorts. External independent data sets must be
added as well to confirm further the clinical usefulness of the
reported signatures.
Because we now are entering an era in which the genetic and

epigenetic abnormalities responsible for specific forms of cancer
guide the design of molecularly targeting drugs, efficient strate-
gies to evaluate such targeted therapies in patients are critical,
especially as more such compounds become available. Bio-
markers able to identify reliably the patients who are most likely
to benefit from a specific molecularly targeted therapy therefore
would have significant clinical benefit. In this regard, an in-
creasing armamentarium of targeting agents that inhibit key
components of the PI3K pathway exists, and many of these in-
hibitors already are in clinical testing (35–37). It is conceivable
that signatures reflecting tissue PTEN status may aid in selecting
suitable patients and provide proof of target modulation by these
inhibitors. Thus, a cancer genetics-guided path to biomarker
discovery, as described here, may hold the promise for the re-
alization of personalized cancer medicines.

Methods
Experimental Mice. PTEN cKO mice were generated as described in ref. 9. The
Zurich cantonal veterinary office approved all animal studies. Details are
provided in SI Methods.

Glycoprotein Enrichment from Murine Serum. Glycoproteins were enriched
from sera and tissue of mice using the protocol published by Zhang et al. (12).
Details about the isolation of sera and tissues from mice and the glycopro-
tein enrichment method are explained in SI Methods.

Mass Spectrometry Analysis. Samples were analyzed on a hybrid LTQ-FT mass
spectrometer (Thermo Electron) equipped with a nanoelectrospray ion
source. Chromatographic separation of peptides was performed on an
Agilent 1100 micro HPLC system equipped with a 15-cm fused silica emitter,
150-μm inner diameter, packed with a Magic C18 AQ 5 μm resin (Michrom
BioResources). Further details are provided in SI Methods.

Protein Identification. Proteins were identified following protocols described
in refs. 12 and 36–38. Further details are provided in SI Methods.

Label-Free Quantification of Peptide and Protein Ratios. Data from LC-MS runs
were converted from raw to the mzXML data format (38) and processed by
the software tool SuperHirn as described previously (15). JRatio was used for
the calculation and visual assessment of peptide and protein ratios (39).
After examining the distribution of the data and assuming normality (Fig
S1G), we applied a two-tailed Student’s t test with unequal variances sta-
tistics to assess the significance of a protein fold-change. Protein fold-
changes with a nonstringent P value ≤0.15 were selected for further anal-
yses. To verify the results obtained by SuperHirn and JRatio, we performed
spectral counting analysis (SI Methods). Prostate specificity was calculated
from gene-expression profiles obtained for the BioGPS database (http://
biogps.org) (40) by calculating the ratio of average gene expression from
prostate and average gene expression of the remaining tissues. Gene with
ratios of 10 or more were considered prostate specific.

SDS/PAGE and Western Blotting. Perfused fresh-frozen prostate tissues were
solubilized in RIPA buffer (150 mM NaCl, 10 mM Tris, 0.1% SDS, 1% Triton
X-100, 1% deoxycholate, 5 mM EDTA) plus protease inhibitors (1 mM
phenylmethylsulfonyl fluoride, 10 mM benzamidine, 10 μg/mL aprotinin).
Fifty-microgram protein extracts were resolved on 8–12% SDS/PAGE,
blotted on nitrocellulose, and visualized by immunoblotting with the
following primary antibodies: anti–phospho-Ser473 AKT (#4058; Cell Sig-
naling Technology), anti-complement factor B (#HPA001817; Sigma
Aldrich), anti-KDEL (#ab12223; Abcam), anti–Niemann-Pick C1 (#NB400-
148SS; Novus Biologicals), anti–LAMP-1 (clone 1D4B; Developmental
Studies Hybridoma Bank), anti–α-tubulin (clone YL 1/2, #ab6160; Abcam).

Immunofluorescence. Five-micrometer cryostat sections on poly-L-lysine slides
were fixed in PBS/4% paraformaldehyde for 10 min, washed in PBS, and
stained using antibodies against the indicated proteins. Further details are
provided in SI Methods.

Real-Time PCR Analysis. Prostate tissues from three wild-type and three PTEN
cKO animals were isolated as described. Total RNA was prepared from
powdered tissue using the RNeasy Mini Kit (Qiagen), and cDNA was pre-
pared using random hexanucleotide primers and Ready-to-go you-prime
first-strand beads (GE Healthcare). Real-time PCR analysis of cDNA was
performed using LightCycler 480 SYBR Green I Master from Roche and
specific primers reported in SI Methods.

Patients, Sampling, and Handling of Human Sera and Glycoprotein Enrichment.
The Ethics Committee of the Kanton St. Gallen, Switzerland, approved all
procedures involving human material, and all patients signed an informed
consent. For the study we included patients with locPCa and BPH. We ex-
cluded from the analysis patients with advanced prostate cancer, infectious or
inflammatory diseases, or other malignancies. Eight milliliters of blood were
drawn and collected in a serum separator tube containing clot activator and
gel (Vacutainer, SSTTM II Advance, REF 367953; Becton Dickinson). Tubes
were inverted eight times and centrifuged within 4 h of collection at 4 °C for
10 min at 1,428 × g. The serum was divided into five aliquots of 500 μL each
and stored at −60 °C or lower until use. Glycoprotein extraction was per-
formed exactly as described for the murine serum.
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Targeted MS Analysis Using SRM. We used the absolute quantification of
proteins (AQUA) strategy introduced by Gerber et al. (41). Further details are
reported in SI Methods.

Tissue Microarray Preparation. A tissue microarray was constructed as de-
scribed (42) using formalin-fixed, paraffin-embedded tissue samples derived
from 92 patients (BPH, n = 40; locPCa, n = 52) with matched serum samples
that were used for SRM or ELISA. Details are provided in SI Methods.

Immunohistochemistry. Immunohistochemistry was performed using a Ventana
Benchmark automated staining system (Ventana Medical Systems) and the fol-
lowing primary antibodies: anti–phospho-Ser473 AKT (dilution 1:150; #ab8932;
Abcam) and and anti-Stathmin (dilution 1:50; #3352; Cell Signaling Technology).

FISH. To assess PTEN deletion, we performed dual-color FISH on paraffin-
embedded tissue using commercially available fluorescently labeled DNA
probes for cytoband 10q23.3 (SpectrumOrange, PTEN locus-specific probe)
and region 10p11.1∼q11.1 (Spectrum-Green centromere of chromosome 10
probe; LSI PTEN/CEP 10; Abbott Laboratories) according to the manu-
facturer’s instructions. Details are provided in SI Methods.

Bioinformatic Analysis of SRM Data. SRM data were normalized and subjected
to feature selection using random forest followed by signature modeling
using brute force search for all logistic models. AUCs for every model were
calculated by bootstrapping to avoid overfitting. Details are provided in
SI Methods.

ELISA. The concentration of selected candidate biomarkers (Dataset S3) was
measured by sandwich or competitive ELISA following the manufacturer’s
instructions. Details are given in SI Methods.
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