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The mechanisms regulating clonal expansion and contraction of T
cells in response to immunization remain to be identified. A recent
study established that there was a log-linear relation between CD4
T-cell precursor number (PN) and factor of expansion (FE), with
a slope of ∼−0.5 over a range of 3–30,000 precursors per mouse.
The results suggested inhibition of precursor expansion either by
competition for specific antigen-presenting cells or by the action
of other antigen-specific cells in the same microenvironment as the
most likely explanation. Several molecular mechanisms potentially
accounting for such inhibition were examined and rejected. Here
we adopt a previously proposed concept, “feedback-regulated bal-
ance of growth and differentiation,” and show that it can explain
the observed findings. We assume that the most differentiated
effectors (or memory cells) limit the growth of less differentiated
effectors, locally, by increasing the rate of differentiation of the
latter cells in a dose-dependent manner. Consequently, expansion
is blocked and reversed after a delay that depends on initial PN,
accounting for the dependence of the peak of the response on
that number. We present a parsimonious mathematical model ca-
pable of reproducing immunization response kinetics. Model def-
inition is achieved in part by requiring consistency with available
BrdU-labeling and carboxyfluorescein diacetate succinimidyl ester
(CFSE)-dilution data. The calibrated model correctly predicts FE as
a function of PN. We conclude that feedback-regulated balance of
growth and differentiation, although awaiting definite experi-
mental characterization of the hypothetical cells and molecules
involved in regulation, can explain the kinetics of CD4 T-cell re-
sponses to antigenic stimulation.

time delay | parameter estimation

In response to cognate antigens, specific T-cell numbers rapidly
increase and then steeply decline, approaching relatively stable

frequencies higher than those in the naive cell population (1–4).
What determines the magnitude of the response? Several concep-
tual frameworks have been proposed: predator–prey-like inter-
action between lymphocytes and antigen (5–8), cell-autonomous
expansion and contraction following a brief priming (9–14), and
cell population-level feedback control (15–18).
The first concept inspired the development of a broad range of

mathematical cell-population models to describe the dynamics of
the response to viruses and bacteria with the view of antigen (the
prey) as the sole, positive regulator of the proliferation, differ-
entiation, and death of lymphocytes (the predator). Criticism of
this approach can be found in ref. 19. The second concept, antigen-
initiated, but not antigen-driven, expansion and contraction, does
not appear to apply to CD4 T cells, which require the continued
presence of antigen to proliferate (20, 21). Note that such a re-
quirement for antigendoes not necessarily imply antigen-mediated
control of the duration and size of the immune response; these
parameters could still be determined by a cell-autonomous “pro-

gram” or by feedback, via extracellular factors other than antigen.
In particular, lymphocyte proliferation and/or viability may be
limited by competition for cytokines or by the action of specialized
suppressor cells such as regulatory T cells (Treg). Indeed, even in
the case of CD8 T-cell–mediated responses, the data suggested
that a program does not mean a fixed number of divisions but that
the number of divisions depends on the extent of antigenic stim-
ulation and/or on other external factors (12). Hybrid models, in-
corporating a phase of strictly programmed cell division followed
by a feedback-controlled phase, have also been proposed (17).
The number of divisions executed by each antigen-specific

naive CD4 T-cell upon activation strongly depends on the number
of cells present before immunization (3, 4, 22). Defining the
factor of expansion (FE) as the ratio between the number of
antigen-specific cells at 7 d after immunization and the number of
precursors (PN), it has been reported very recently that, over four
orders of magnitude of PN, the relation between the change in FE
in response to immunization and the change in PN was log-linear.
Log(FE) fell by slightly less than half a log for each log increase in
PN, with an r2 of 0.79 (23). This result means that when PN in-
creased n-fold in this range, the fold decrease in FE was ap-
proximately sqrt(n). Remarkably, this relationship existed already
in the physiologic range of very small PN, e.g., when the number
of TCR-transgenic CD4 T cells that homed to lymph nodes after
being transferred to mice increased from 3 to 30, representing an
increase in the frequency from ∼1/3,300,000 to 1/330,000 (as-
suming 10 million lymph node CD4 T cells). A similar decrease in
FE was observed in experiments comparing 30 and 300 precursors
and those comparing 300 and 30,000 precursors (23).
This phenomenon was antigen specific: The FE of small num-

bers of precursors of a given specificity was minimally affected by
concomitant responses of large numbers of precursors of a dif-
ferent specificity despite the fact that small and large numbers of
precursors of the same specificity had a very different FE. There
was robust proliferation at both low and high PN, but at low PN
the proportion of cells in S phase between 3.5 and 7.5 d after
immunization was sufficiently greater than that of cells at high PN
to account for most of the differences in FE (23).
Together, these observations suggested that the control that

PN has on the magnitude of expansion is a delayed effect, oc-
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curring when the number of responding cells has increased sub-
stantially, and that, given the antigen specificity of this effect, it
likely occurs in localized microenvironments (“cell clusters”) de-
fined by the presence and activity of cells that effectively present
the cognate antigen used for immunization. Accordingly, cell pro-
liferation is progressively inhibited as the number of specific CD4
T cells clustering about individual antigen presenting cells (APCs)
increases. If APCs are limiting, immunization at small PN would
require responding cells to divide more times, compared with
large PN, before reaching the density at which within-cluster in-
hibition becomes significant, explaining at least in part the dif-
ference in FE. Indeed, increasing dendritic cell (DC) number,
which presumably increased the number of effective APCs,
resulted in larger FEs. Interestingly, this increase did not change
the degree of advantage that precursors at low frequency dis-
played over precursors at high frequency, suggesting that the DC
number “is limiting for the expansion of precursors but that it is
equally limiting for cells at high and low precursor frequency”
(23). This observation of a similar dependence of FE on PN at
small and large DC numbers further suggests that in both cases all
effective APCs are eventually engaged, so that cell clusters be-
come essentially replicas of each other and the limitations on FE
that are imposed within each cluster are simply mirrored by the
whole system.
At the single-cell level, possible mechanisms underlying within-

cluster inhibition at high cell densities include competition for
antigen or for locally secreted growth factors, as well as direct
inhibitory effects mediated during cell–cell interactions by in-
hibitory cytokines and cell-surface molecules or by Tregs. In-
creasing the amount of antigen had a very limited effect on FE
(23). Increasing antigen amount or exogenous IL-2, IL-7, or IL-15
did not significantly affect FE nor did FE depend on Fas, TNFRα,
CTLA4, IL-2, or IFN-γ. Small numbers of Foxp3-deficient TCR
transgenic cells expanded to a greater extent than did large
numbers, implying that inhibition is not mediated by Tregs (23).
Despite these negative results, signals exchanged during TCR-
mediated interactions other than those tested might be involved,
and differences in the strength of these signals resulting from
differences in PN could then explain the differences in FE. Such
an explanation would depend on assumptions regarding the na-
ture of the mechanisms that control the magnitude and duration
of the response.
First, consider a strictly cell-autonomous expansion model with

a fixed expansion time. In the absence of cell-crowding effects,
each activated cell would have given rise to a number of progeny
that are independent of the presence of other responding cells
(i.e., there would be no dependence of FE on PN) and the total
number of responding cells at the end of the expansion phase
would be proportional to the initial number of precursors. Be-
cause cell crowding does exist, proliferation of responding cells
arising from a larger number of precursors would be subject to
a stronger inhibition during the fixed (preprogrammed) expan-
sion phase, resulting in less proliferation and smaller FE. We
would assume that the majority of cells that have come to the end
of their proliferation phase are programmed also to differentiate
into tissue-seeking cells and/or undergo activation-associated cell
death, accounting for the contraction phase of the response.
In fact, smaller numbers of precursors do require more time to

reach the peak of their response (figure 2B in ref. 23), suggesting
that the responding cells “measure” their population size to
determine the length of their expansion phase. This observation
may be incorporated by assuming a more flexible (and physio-
logically more plausible) cell-intrinsic setting of response duration
that depends on the strength of some external stimuli, antigenic
and other, during priming or at some later critical phase. Cell
crowding would affect the “time-counting” program of activated
cells and not just their proliferation by reducing the strength of
these stimuli; in turn, cell crowding depends on PN in this model,

as discussed, linking both the duration of the response and FE to
PN. Such generalization of the programmed-expansion model is
in line with suggestions made earlier by others aiming to bring
models into closer agreement with experiments involving CD8 T-
cell responses and the manifestations of immunodominance in
such responses (12, 24).
An alternative view is that feedback-control mechanisms,

rather than programming, determine both the magnitude and the
duration of the response. Cell crowding per se, or any other
“direct” feedback control, is unlikely to be the major determinant
of the response duration and magnitude. If it were, we would
expect the peak number of responding cells to be independent of
initial PN, assuming that all APCs presenting the relevant anti-
gen become engaged. Expansion would cease when a certain
density of cells surrounding individual APCs was reached, at
which point cell proliferation and migration/death would balance.
However, in fact, the peak increased with increasing PN, although
not proportionally.
The objective of this study is to investigate whether feedback-

regulated balance of growth and differentiation (18, 25) can be
used to accurately reproduce our relatively comprehensive results
on immunization-induced T-cell response in mice (23), including
cell population kinetics, BrdU labeling, and carboxyfluorescein
diacetate succinimidyl ester (CFSE) dilution, and, if it does,
whether it predicts the quantitative relationship found between
FE and PN. To this end, the concept was translated into a family
of related mathematical models applicable to the description of
various aspects of the data. These models, their application to the
data, and analysis of the results are presented in the following
section. Methods are described in SI Methods. In the Discussion
we include comments on the state of the art.

Model
To address the feedback regulation of T-cell expansion, we
formulated a general mathematical model for the local dynamics
of responding antigen-induced T cells over the short term (<2
wk; this restriction is further addressed in the Discussion). As
reasoned earlier, a single localized cell population (a single cell
cluster) is probably representative of the entire population of
responding cells for our purposes. We assumed that during
antigen-driven responses, monoclonal antigen-specific T cells ex-
hibit a heterogeneous structure in which some effector cells con-
tinue their cell division and other, more differentiated effectors
and memory cells are no longer proliferating. Cell proliferation
and differentiation were considered to be intracluster regulated
processes. It was further assumed that antigen availability was
not a limiting factor in the experiments described. The biological
scheme underlying the equations of the mathematical model is
shown schematically in Fig. 1A. For parameter definition see
Table S1. The dividing cell compartment consists of two subsetsX1
and X2, where X1 is less mature than X2. This difference in mat-
uration state is manifested by their relative rates of cell cycle
progression, so that the net proliferation rates obey the ranking
p1 < p2. The differentiated cells Z1 and Z2 are no longer dividing;
Z2 controls the balance of proliferation and differentiation of X1
and X2 via positive feedback on differentiation, thus negatively
affecting proliferation. Biologically, such a positive effect on dif-
ferentiation rate could involve different alternative mechanisms.
In particular, the differentiated cells might either act directly on
their precursors, inducing their differentiation or increasing its
probability by inhibiting proliferation, or modify the function
of APC. The subdivision of the proliferating and nonproliferating
populations into two subsets each was done, on biological grounds,
to capture the heterogeneity of the system of activated cells (18).
Mathematically, it facilitates emergence in the model of a suffi-
ciently prolonged, variable time delay between the activation of
naive cells and the accumulation of substantial numbers of feed-
back differentiation-inducing mature cells. Such a delay is essen-
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tial for reproducing the FE–PN effect. Note that Foxp3-expressing
Tregs would have been natural candidates for Z2 (18), but a sig-
nificant contribution of Tregs to inhibiting proliferation was ex-
cluded here (23). The population dynamics of the above four
subsets of T cells were modeled using a system of ordinary dif-
ferential equations (Section S1).
The core mathematical model was used for data assimilation

either directly (data on the kinetics of clonal expansion and
contraction) or in two extended forms in which the cell subsets
were further subdivided into unlabeled and labeled compart-
ments, to describe the BrdU-labeling data (Fig. S1A) and CFSE
dilution data (Fig. S1B) (Sections S2 and S3, respectively). The
parameters are listed and described in Section S1, along with their
best-fit estimates (Tables S1 and S2).
The data sets used for parameter estimation include (i) ki-

netics of clonal expansion–contraction of CD4 T cells over 10
d after immunization starting from PNs of 3 × 102 and 3 × 104

cells (Fig. S2A and Table S3), (ii) percentage of BrdU-positive
CD4 T cells after a 6-h BrdU “pulse” given at various times
between 3.5 and 7.5 d after immunization (Fig. S2B and Table
S4), (iii) dilution of CFSE at days 5 and 7 postimmunization
(Fig. S2C and Table S5), and (iv) the peak size at day 7 for PNs
of 3 and 30 and the FE for a broader range of PNs (Fig. S2D and
Table S6). A brief technical account of a more detailed charac-
terization of these data sets, required for their use in estimating
the model’s parameters, and of the procedures of “data assimi-
lation” implemented in the estimation process, is presented in
Sections S4 and S5.

Results
Sensitivity Analysis, Model Reduction, and Parsimony. The number
of reliably identifiable parameters in mathematical models is
limited by the amount and quality of the available datasets and,
more fundamentally, also by the fact that the model structure
usually has no a priori proof of validity. We applied a sensitivity
analysis to rank the model parameters (listed in Section S1) with
respect to their impact on the model solution (26, 27) as described
in Section S6. The results (Table S7), in conjunction with the
uncertainty intervals around the best-fit parameter estimates
(Tables S1 and S2), suggested that some model parameters have
a relatively small impact on the magnitude of clonal expansion.
We found that setting fp ¼ 1; fx2z1 ¼ 1; fz1z2 ¼ 0 (Fig. 1A) still
allows a consistent match of the datasets used for parameter es-
timation of the complete model. The simplified model reads

dX1

dt
¼ p1 · X1 − ðα1 þ α12 · f x1x2 · Z2Þ · X1;

dX2

dt
¼ p2 · X2 þ ðα1 þ α12 · fx1x2 · Z2Þ · X1 − ðα2 þ α22 · Z2Þ · X2;

dZ1

dt
¼ ðα2 þ α22 · Z2Þ · X2 − β1 · Z1;

dZ2

dt
¼ β1 · Z1 − δ · Z2:

The model is shown schematically in Fig. 1B. The number of
parameters in the reduced model is 10 (compared with 15 in the
complete version, Section S1). The corresponding versions for
BrdU and CFSE labeling reduce accordingly. The best-fit pa-
rameter estimates are presented in Table S2. By information-
theoretic criteria, the more parsimonious version ranks higher
(Section S7). The results presented below and in the figures are
based on the simplified model.

Clonal Kinetics. Fig. 2A (Left) shows a comparison of the experi-
mental and model-simulated kinetics of expansion and contrac-
tion of transgenic 5C.C7 CD4 T cells adoptively transferred into
B10.A mice (either 5,000 or 500,000 cells) followed by immu-
nization with 100 μg of pigeon cytochrome C (PCC)/25 μg of
LPS. Initial experiments indicated that the numbers of cells
homing to lymph nodes (LNs) were ∼300 (the low number case)
and 30,000 (the high number case) (23). These estimates were
used in simulations as the starting values for precursor cells,
X1(t0), t0 = 0 with the other subsets set to zero. This initial con-
dition implies that all of the naive precursor cells transit to X1
upon activation. This is actually a simplification, because there is
essentially no proliferation in the 24 h after stimulation. This
delay, however, is taken into account indirectly in our parameter
estimates given that the proliferation rates in the model are av-
erage quantities. The model simulations show a good fit to the
time-series data. When PN is smaller, clonal growth is more vig-
orous and lasts longer, so that the number of responding cells
reaches a maximum between days 6 and 7 after introduction of
antigen. In the high PN case, the fold increase is smaller and
clonal size reaches its maximum value before day 5. Therefore,
measuring cell numbers at day 7 postimmunization, and thereby
calculating FE according to its definition (23), provides only ap-
proximate estimates of the “true” factor of expansion corre-
sponding to the actual peak of the response. The kinetics of the
subsets comprising T-cell clones are shown in Fig. 2A (Right).

BrdU Incorporation. The observed BrdU uptake at different time
points indicates higher proliferation rates when PN is 3 × 102 cells
than when PN is 3 × 104 cells. The evolution of the fraction of
BrdU-labeled T cells in time is very well reproduced by the sim-
plifiedmodel shown in Fig. 2B, both at low (Fig. 2B,Left) and high
(Fig. 2B, Right) PN. The best-fit estimates of p1 and p2 (Table S2)
suggest that the mean net doubling times of the less and more
mature cell populations are ∼21 and 8.3 h, respectively. However,
the genuine proliferation rates p1 + d and p2 + d (where d is the
per-capita death-rate constant), which effectively determine the
percentage of BrdU-labeled cells during the 6-h pulse labeling
(Section S2), have larger values corresponding to mean cell-
doubling times of 9.3 and 5.6 h, respectively.

CFSE Dilution. To validate the identified mathematical model we
considered the experimental data on CFSE dilution. TCR trans-
genic cells were labeled with CFSE before they were transferred
to syngeneic recipients that were immunized with the cognate

Fig. 1. Biological schemes of the feedback regulation models. (A) Concep-
tual model for T lymphocyte growth and differentiation following antigenic
stimulation. There is a sequence of functionally distinct stages in cell de-
velopment. Cell proliferation and differentiation rates are assumed to be
regulated in a feedback fashion; i.e., they depend on the number of dif-
ferentiated cells. (B) Simplified model: Interaction scheme corresponding to
the reduced version of the model, which provides a consistent description of
the experimental data sets.
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antigen and LPS. Every cell division reduces the CFSE content of
daughter cells by half. The CFSE dilution data show that by day 7
virtually all transferred 5C.C7 CD4 T cells in the groups of
recipients with either 3 × 102 or 3 × 104 PNs completed more than
seven divisions (Table S5). Simulations of the version of the
model adapted to explicitly describe the CFSE-labeling dilution
kinetics (Section S3) were performed and proved to be consistent
with the data shown in Fig. 2C.

FE Dependence on PN.As the data on the dependence of the FE on
initial clonal size were only minimally used for model calibration,
we used the experimental results to validate the identified model.
The simplified model equations were solved numerically for dif-
ferent PNs (3, 30, 3 × 102, and 3 × 104 cells) and FE evaluated
from day 7 numbers. The predicted day 7 FE closely approximates
the experimental data (Fig. 2D, Left), providing additional sup-
port for the potential validity of the proposed regulatory scheme.
Using the identified simplified model, we analyzed the quan-

titative dependence of both FE and clonal size (CS) on PN. Day
7 expansion was calculated for PN ranging from 3 to 3 × 106 cells.
Regression analysis of log(FE) on log(PN) suggests the following
quantitative relationships: FE = (PN)−0.54 × 2,512 and CS =
(PN)0.46 × 2,512 (cells) for FE and CS, respectively.
Finally, the calibrated simplified model was further used to es-

timate the dependency of the “genuine” FE and CS at the esti-
mated peak of the response, which is reached at different times
after immunization (Fig. 2D, Right). A similar regression analysis
predicts that FEandCSdependence onPN is closer to the “square-
root law”: FE = (PN)−0.48 × 3,981 and CS = (PN)0.52 × 3,981.

Discussion
As quantitative data characterizing the antigen-induced immune
response under different conditions and at different levels of
resolution become increasingly available, mathematical models
based upon sound concepts of immune regulation are required
to systematically integrate various features of the process.
A new feature that has recently been added is a strikingly

uniform dependence of the magnitude of expansion of antigen-
activated CD4 T cells on the initial number of naive precursors
(PN), starting within the physiological range of antigen-specific
cell frequencies. When precursor frequency in secondary lym-
phoid tissues was increased n-fold, the number of responding cells
at day 7 postimmunization increased as well but only by a factor of
(n)0.46, implying a reduction in the FE by (n)0.54. The proportion of
cells in S phase at low precursor frequency over the period be-
tween 3.5 and 7.5 d was sufficiently greater than that of cells at
high precursor frequency to account for most of the differences in
FE (figure 3 in ref. 23).
As discussed in Model above, the PN–FE relation could be

explained as a consequence of a differential inhibitory effect of
cell crowding for different PNs on the net proliferation of
responding cells toward the end of the expansion phase, due to
competition for access to stimulatory molecules and growth fac-
tors or by the action of responding cells to actively inhibit each
other’s growth. Such explanations require a model in which the
duration of the expansion phase is largely a cell-autonomous
characteristic. Indeed, in such amodel the level of crowding during
the (fixed) expansion phase would be directly related to the initial
number of precursors, with more crowding resulting in less effi-
cient proliferation and smaller FE. Instead, if we assume that the
feedback inhibitory effect of increasing cell crowding is the pri-
mary determinant of the duration andmagnitude of expansion, we
should expect the expansion phase to end once a certain number of
cells is reached, independently of the initial number of precursors,
contrary to observation. FE at the peak of the response (approx-
imated by the day 7 number) would be inversely proportional to
PN, also inconsistent with the observed relationship.
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Fig. 2. Data assimilation and parameter estimation. (A) Clonal dynamics:
The kinetics of clonal expansion and contraction for different initial numbers
(5,000 cells vs. 5 × 105 cells) of transferred antigen-specific CD4 T cells. The
time evolution of the total number of cells (Left) and evolution of the clonal
structure (Right) are shown. (B) BrdU incorporation: Comparison of experi-
mental and model-simulated data. Left, 300 antigen-specific precursor CD4 T
cells in the LNs at the time of immunization; Right, 3 × 104 antigen-specific
precursor CD4 T cells at immunization. (C) CFSE dilution: Comparison of
experimental and model-simulated data by days 5 and 7. Left, 300 antigen-
specific precursor CD4 T cells in the LNs at the time of immunization; Right,
3 × 104 antigen-specific precursor CD4 T cells at immunization. (D) Factor of
expansion for various precursor numbers. Left, comparison of experimental
data and model predictions of the factor of expansion as a function of the
number of antigen-specific precursor CD4 T cells in the LNs ranging from 3 to
3 × 104 cells; Right, log-linear regression (solid lines) of the model-predicted
dependence of the clonal size and FE on PN ranging from 3 to 3 × 106 cells
(symbols). Peak-response estimates are shown. Dashed lines indicate the
95% confidence band of the regression line.
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In this communication, we did not further investigate the cell-
autonomous regulation model, with cell crowding as a secondary
effect, a) because of the fact that smaller numbers of precursors
do require more time to reach the peak of their response, sug-
gesting that the responding cells “measure” their population size
to determine the length of their expansion phase (gearing the
cellular time-setting machinery to stimulation strength could re-
solve this apparent discrepancy, but such a model, which is no
longer really cell-autonomous, would have too many degrees of
freedom in the absence of experimental constraints); b) because
no evidence has been found in support of the notion that different
levels, at high and low PN, of competition for antigen or several
known stimulatory molecules, or of a differential expression of
one or more of several inhibitory cytokines and surfacemolecules,
can explain the difference in FE and in the magnitude of the peak
of expansion; and c) because we wanted to investigate whether an
alternative model, which combines the basic simplicity of the
feedback-regulation concept with additional theoretically attrac-
tive features (18, 25, 28, 29), could assimilate the empirical ob-
servations in a consistent and unifying way.
On the basis of the previously formulated theory of feedback-

regulated balance of growth and differentiation (15, 18), a “con-
ceptual” mathematical model of the clonal dynamics of CD4 T
lymphocytes considering the proliferation, differentiation, and
death of T cells in mice after immunization was formulated. The
model describes the differentiation of recently activated naive
T cells (“effectors”) from a proliferative into a nonproliferative
stage (two compartments at each stage) with feedback inter-
actions regulating the balance between division and differentia-
tion. The model does not incorporate mechanisms thought to
be involved in the transformation of a certain portion of the
effector-cell population into “resting,” long-lived memory cells,
e.g., temporally patterned interactions with dendritic cells (30)
and the “tuning” of cellular properties associated with transient
induction of a refractory state (18, 31), and therefore it is not
supposed to adequately describe the kinetics of the contraction
phase far beyond the peak of the response. We did not relate
here to the possibility, discussed in qualitative terms elsewhere
(18), that a delayed onset of tuning, occurring stochastically, or
initiated by Treg cells and/or resulting from a preceding T-cell
density-dependent suppression of APCs, may actually participate
in the feedback that determines the duration and peak of the re-
sponse and not only in determination of the fate of effector cells.
Therefore, ourmodel should be considered as a “minimal model.”
The model was readily adapted for the analysis of BrdU-labeled
cell kinetics and CFSE-dilution data. We estimated the parame-
ters of the basic model using our own data on the expansion of
adoptively transferred transgenic 5C.C7 CD4 T cells (23).
The four compartments of the basic model do not specifically

reflect biologically characterized cell populations, because such
particular classification of effector T cells does not exist bi-
ologically and is likely to be an oversimplification. Note, for ex-
ample, that the small constitutive-differentiation parameters, α1
and α2, are average quantities, and in reality they might be equal
to zero initially but assume larger values as cells continue to
proliferate, but our simple model is not aimed to capture such
details. Nevertheless, the essential features of the experimental
data on the dynamics of T lymphocytes are consistently repro-
duced by the model. In particular, the calibrated model with the
specified feedback regulation predicts FE as a function of the
initial PN in a quantitatively consistent way.
To explain how this was accomplished, we highlight the in-

herent “overshooting” property of the model (and indeed of the
immune response). In the model, differentiation exceeds pro-
liferation once a certain number of differentiated CD4 T cells of
the appropriate phenotype have accumulated, that is, when mi-
totic cells, on average, are more likely to undergo differentiation
than to divide again. However, given the built-in delay in the

multicompartmental differentiation process and the fact that
responding cells proliferate rapidly during this delay period, the
number of differentiated cells at the peak of the response greatly
exceeds (overshoots) the number defining an exact balance be-
tween proliferation and differentiation, so that overdifferentiation
into short-lived and/or tissue-seeking differentiated cells occurs in
the lymph nodes/spleen and a rapid decline follows. The transition
from growth to decline is relatively fast, due to the autocatalytic
nature of differentiation in this model; as the number of differ-
entiated cells increases, they are more rapidly recruited from pro-
liferating cells. Together, these characteristics of the proposed
regulatory process give the kinetics of the immune response its
typical burst-like quality.
It is not difficult to see that the degree of overshooting, as

defined above, and hence the number of responding cells at the
peak of the response (or at day 7), must be smaller with a smaller
PN. Consider responses initiated by activation of two different
precursor numbers, PN1 and PN2, respectively, such that PN1 <
PN2. When the total number of responding cells in the first case
reaches the PN2 level, this responding cell population already
includes, in addition to X1, cells belonging to the more differ-
entiated subsets X2, Z1, and Z2, whereas essentially all of the cells
that initiate the second response, also PN2 in number, belong to
the X1 subset. From that time point onward, this already-skewed
profile toward more differentiated cells in the PN1 case results
in the responding cells requiring less time to reach the critical
number of fully differentiated cells, Z2, compared with the time
required in the larger-PN case. By then, smaller numbers of cells
populate the less-differentiated compartments in the smaller-PN
case and consequently the subsequent feedback-induced differ-
entiation of these cells results in a smaller peak. We note that the
overall length of the expansion phase is nevertheless longer in
the smaller PN case, because of the additional time required to
reach the PN2 level; the FE is larger, because of the additional
cell-division cycles performed by each precursor cell during this
initial phase of expansion from PN1 to PN2.
Obviously, the overshooting characteristic was not introduced

into the model in the first place to account for the PN–FE re-
lation. Rather, this characteristic was regarded from the outset as
a fundamental aspect of the immune response to pathogens (15,
28, 29, 32, 33). Indeed, we have reasoned that overshooting may
be instrumental in facilitating complete elimination of many
pathogens. Considering that in real life (as distinguished from the
experimental conditions pertinent to this study) antigen is a pos-
itive regulator of the immune response, although not the sole
regulator, and that antigen is cleared by the very effector cells
it induces to proliferate, the delay in the development of large
numbers of effector cells from proliferating cells following in-
fection may be necessary to prevent the stimulus from diminishing
too early and the size of the response from being too tightly
geared to the amount of antigen, which could readily result in
a predator–prey-like coexistence of effectors and pathogen and in
a chronic, only partially controlled, disease. The delayed emer-
gence of effectors, controlled in a feedback fashion by a factor or
factors other than the effect of these effectors on antigen avail-
ability, allows for the generation of an excessive number of ef-
fectors sufficient to eliminate the pathogens down to the last one.
The capacity for an overshooting response is expected to be
considerably reduced when the initial stimulus is weak and/or
increases slowly on the scale of effector-cell differentiation times.
This kinetic effect has been proposed as an explanation for certain
“sneaking through” phenomena in which cancer cells or slowly
replicating pathogens evade the immune response and establish
a chronic state in tissues (29, 32) and even, along with tuning, as
a basis for self–nonself discrimination (15, 28, 33).
We showed that for the considered datasets the model pa-

rameters can be identified using a simpler version of the complete
model. Using a criterion that estimates the relative distance to the
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unknown true model and statistical hypothesis testing, we found
that the reduced model is a parsimonious description of the con-
sidered datasets. However, one needs to distinguish between the
model of the data and the model of the system. The data avail-
able to us do not allow, for example, rejection of nonsimplistic
models incorporating programmed proliferation and differentia-
tion. More generally, the dependence of T-cell recruitment and
proliferation on the presence and/or strength of antigenic stimu-
lation during development of the immune response, which was
the focus of other studies pertaining to the primary CD8 response
(12, 24), was deliberately largely eliminated in the present study’s
experimental design (23), where antigen is nonlimiting, and there-
fore has not been explicitly incorporated in our model. Even
as we acquire better and more sophisticated tools for data analy-
sis, the rules that govern regulation of the real system remain
tentative. An ideal approach (although not always practical) to
achieving a better fundamental understanding of the system,
which could be translated into a better correspondence between
the system’s structure and the interactions among its elements on
the one hand and amodel’s variables and parameters on the other,
would be an iterative process of hypothesis-driven experimenta-
tion, reformulation of the hypothesis, and more experimentation.

As suggested by this report, and by the work of others, mathe-
matical analysis can help in the process of data assimilation and
hypothesis testing and modification.

Methods
Our data analysis methods are described in more detail in the SI Methods. In
SI Methods, we explicitly present the different mathematical models leading
to or derived from the simplified parsimonious model featuring in the text,
as well as several tables and figures, referenced from the text in the order
they appear, summarizing different aspects of the data and estimated pa-
rameter values of the models. Also described are the techniques used to
identify the parameters, to compare the models, and to calculate the sen-
sitivity of the simulated results to variation in parameter values (sensitivity
analysis). This calculation, summarized in Table S7 in the form of partial rank
correlation coefficients between the parameters and FE, in conjunction with
the uncertainty ranges around the best-fit parameter estimates (Tables S1
and S2), allows simplification of the model.
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