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Coherent atomic motions in materials can be revealed using time-
resolved X-ray and electron Bragg diffraction. Because of the size
of the beam used, typically on the micron scale, the detection of
nanoscale propagating waves in extended structures hitherto has
not been reported. For elastic waves of complex motions, Bragg
intensities contain all polarizations and they are not straight-
forward to disentangle. Here, we introduce Kikuchi diffraction
dynamics, using convergent-beam geometry in an ultrafast elec-
tron microscope, to selectively probe propagating transverse elas-
tic waves with nanoscale resolution. It is shown that Kikuchi
band shifts, which are sensitive only to the tilting of atomic planes,
reveal the resonance oscillations, unit cell angular amplitudes, and
the polarization directions. For silicon, the observed wave packet
temporal envelope (resonance frequency of 33 GHz), the out-of-
phase temporal behavior of Kikuchi’s edges, and the magnitude
of angular amplitude (0.3 mrad) and polarization [011] elucidate
the nature of the motion: one that preserves the mass density
(i.e., no compression or expansion) but leads to sliding of planes
in the antisymmetric shear eigenmode of the elastic waveguide.
As such, the method of Kikuchi diffraction dynamics, which is
unique to electron imaging, can be used to characterize the atomic
motions of propagating waves and their interactions with inter-
faces, defects, and grain boundaries at the nanoscale.

ultrafast electron microscopy | convergent-beam electron diffraction |
coherent elastic waves | acoustic waveguide | propagating wave packet

With parallel-beam X-ray or electron illumination, the atom-
ic structure of a material can be determined from mea-
surement of the position and intensity of Bragg spots. When
diffraction is time resolved, both for X-rays (1-5) and electrons
(6-10), it is possible to track the motions of certain elastic exci-
tations, such as breathing modes and optical phonons. These
excitations create uniform structural distortions in the lateral
directions (i.e., parallel to specimen’s surface) and, hence, they
are ideal for detection with micron-size beams. On the other hand,
for laterally propagating elastic waves originating from a localized
source on the extended structure (see Fig. 1), the unit cell
modulations vary with the wavelength on the nanoscale. Accord-
ingly, such group waves are not amenable to probes with sizes
larger than their spatial cycle (11). Moreover, these waves may
exhibit complex unit cell distortions due to the pure and quasi-po-
larizations involved, similar to Rayleigh or “earthquake” waves.

Longitudinal elastic polarization is driven by linear forces
that compress (or expand) the unit cell and such modes have
successfully been studied with time-resolved Bragg diffraction.
Transverse polarization, on the other hand, is impelled by tor-
sional forces that buckle the unit cell and their direct imaging is
not straightforward, as mentioned above, and especially when
multiple electron scattering is involved (12,13). For bulk, thick
materials, it is possible to identify the different elastic waves,
longitudinal and transverse, by creating them using lasers and
detecting them as they travel over macroscopic distances at very
low temperatures (14, 15). However, such measurements cannot
provide the microscopic spatial or temporal nature of atomic
motions.
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Fig. 1. Schematic of coherent atomic motions leading to transverse waves in
a nanostructure. A transverse elastic wave packet is created at time zero and
detected later in space by using ultrafast electron packets. The initial strain
originated at a distant point travels in the acoustic waveguide with a group
velocity vy and wave vector k,, and crosses the “observation point,” i.e., the
nanoscale electron probe, which enables us to measure the spatiotemporal
characteristic of the transient shear strain. For the first antisymmetric shear-
horizontal eigenmode of the waveguide, the atoms at the top and bottom
halves of the slab slide in opposite directions (here emphasized with the
red ribbon) and characterized by the polarization vector d. Along the surface
normal, the standing wave condition results in a wave vector k. The trans-
verse motion is color coded with increasing strain from blue to orange.
The cross-sectional view is at the peak of the transient. The dimensions are
not to scale.

Ultrafast Kikuchi Nanodiffraction

With convergent-beam electron optics, which allows for the
observation of nanodiffraction, the Kikuchi bands present in elec-
tron imaging (12, 13) exhibit unique atomic-scale interferences.
When time resolved, they should, in principle, enable determina-
tion of laterally propagating transverse elastic waves with their
polarization directions and amplitudes revealed, even in the pre-
sence of other excitations, such as breathing modes, and regard-
less of the extend of multiple scatterings. This unique probing is
particularly significant because the dynamics is mapped in their
band positions and not intensities. In general, Kikuchi bands
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appear as a result of multiple scattering (12, 13); first, the highly
directional incident electrons scatter from the atoms and dif-
fuse into a large-angle-cone (primary scattering), and then they
undergo Bragg reflections (secondary scattering) from a specific
crystalline plane, appearing as lines (or “bands”) on a CCD. This
picture is well-known for studies of static images, i.e., with no
time resolution, and the time resolution provided here is appro-
priate, as is in other X-ray and electron studies (10,16, 1718), for
making movies of the nuclear motions involved.

The concept introduced here for dynamic Kikuchi nanodiffrac-
tion is illustrated in Fig. 2. When the planes are experiencing
shear (tilting) motion, the diffraction spot in conventional Bragg
probing (Fig. 2 Left) could change its intensity (due to modulation
in the “relrod”) but not its position. On the other hand, for
Kikuchi band probing, because the cone after the primary scat-
tering is large with sufficient span of scattering wave vectors, lines
always appear at the exact Bragg condition regardless of the spe-
cimen thickness (or length of the relrods). In other words, there
will be a new set of Ewald spheres corresponding to every scat-
tered electron direction that will intersect the relrods at their
center. Hence, Kikuchi lines are “attached” to the atomic planes
(18), and any shear motion polarized perpendicular to the inci-
dent electron beam will shift their position in the diffraction
pattern (Fig. 2). It follows that the amplitude and polarization
of the motion can be directly measured.*

Besides the above-mentioned characteristics, one should be
able to observe the transit of the resonance wave packet, provided
that the spatial length scale (resolution) is shorter than the
wavelength of the waves involved and the time resolution is short-
er than their periods. Because electrons can be focused as single-
electron packets and they have a high-interaction cross-section
with the atoms involved in the motion, these requirements can
be met to probe the wave group propagating in the nanostructure
(Fig. 1) and obtain resonance and coherence times. We note that,
although Kikuchi bands should, in principle, be visible in parallel
electron-beam illumination, specimen imperfections in the large
probed areas usually obscure them. Thus nanoscale electron
beams are required to probe the homogeneous and local part
of the crystal, which is the case in this study with convergent-beam
ultrafast electron microscope (UEM).

Resonance Oscillations of Kikuchi Edges

Fig. 3 depicts the observed convergent-beam ultrafast electron
diffraction frame taken at a negative time (i.e., before the arrival
of the clocking pulse) and with an electron-beam convergence
angle of 9 mrad. Because the beam is convergent, the diffraction
in the back-focal plane of the microscope’s objective lens is now
made of discs, rings, and Kikuchi bands (19, 20). The strong sec-
ond-order-Laue-zone ring (the white ring), which is solely due to
Bragg diffraction, and zero-order-Laue-zone discs (labeled with

*The effect of a shear motion on the position and intensity of a Bragg spot is very dif-
ferent from that of Kikuchi diffraction. The transverse motion of atoms shown in Fig. 2
will rotate the reciprocal vector (G) that corresponds to the planes parallel to the
incident beam (Fig. 2, Left). This motion will cause the relrod to intersect the Ewald
sphere at a different position, which will result in an intensity change due to the mod-
ulation in the relrod’s intensity. On the other hand, its position will remain practically
the same for the following reason. The change in the length of G, which is the inverse
of interplanar distances, is proportional to cos(d), where 6 is the tilt angle. For small unit
cell changes, i.e., 0 < 1 rad, cos(d) = 1 — %, and it follows that the change in G per unit
inverse length will be AG/G = 6. Hence, for @ = 1073 rad and G = 1,000 pixel (a typical
value for modern CCD cameras), the Bragg spot will shift only 1/1,000 of a pixel, which is
practically impossible to measure. Therefore, the shear motion considered in Fig. 2 will
not move the Bragg spots of the diffraction pattern and only modify their intensities.
We note that the intensity of Bragg spots will also change by longitudinal waves (such
as breathing modes) if they are present in the sample together with the shear motions.
Thus, the dynamics in the intensity of one Bragg spot alone cannot be directly attrib-
uted to a specific motion. In contrast, the shift of the Kikuchi bands (which is directly
proportional to 6; Fig. 2, Right), is a result of the tilts of atomic planes (see text), and as
such can directly reveal the amplitude and polarization direction of the shear elas-
tic waves.
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Fig. 2. Kikuchi and Bragg diffraction dynamics. Specifically shown is the
effect of transverse elastic waves on Bragg (Left) and Kikuchi (Right) dif-
fractions. The Bragg spot G in the zero-order-Laue-zone, corresponding to
the planes parallel to the incident electron beam, is defined by intersection
of the Ewald sphere (ES) and the relrod in the reciprocal space. The tilt 0(t)
of atomic planes at a time t causes this intersection point to move along
the relrod, resulting in an intensity change but with no change in position
on the CCD.* On the other hand, Kikuchi diffraction (Right) is a result of
diffusely scattered electrons (black arrows) undergoing a second scattering
from the atomic planes with a Bragg angle 6. Because the span of angles
after the diffuse scattering is large, there are always electrons that will
exactly satisfy the Bragg condition (shown with red and dark-blue arrows
at time =0 and time = t, respectively). Hence, Kikuchi lines will shift on
the CCD by an amount proportional to atomic plane tilts 6(t), which
enables us to directly measure the polarization amplitude and direction
of the shear deformations. This schematic depiction is simplified in several
ways: () The result of the diffuse scattering is actually a cone in three
dimensions and the Bragg condition is satisfied along lines (or parabolas)
that appear as Kikuchi lines on the CCD, in contrast to the left-panel case
where the Bragg condition is satisfied along one direction only (and hence
only one spot on the CCD). (ii) The space between the Kikuchi lines is filled
and they appear as bands for thick enough samples. (iii) The objective lens
that actually forms the diffraction pattern on the CCD is omitted for sim-
plicity.

Miller indices in black numbers), whose diameter gives the con-
vergence angle, are visible in our patterns. The Kikuchi bands,
which are the results of secondary scatterings, are labeled as
KB1, KB2, and KB3. Projections of the three orthogonal crystal-
lographic orientations (specimen coordinates) are also shown
with yellow arrows. From this zone-axis diffraction, polarization
of the displacement fields (linear or torsional waves) can be pro-
jected into the crystallographic coordinate system of the slab
(Fig. 3) to provide an intuitive physical picture of the specimen’s
atomic motions, as we shall show below.

The projection direction of a polarization vector V in the
reciprocal space defined in Fig. 3 by the [114] zone axis can simply
be written as,

vV

:Z[—114] X (VXZ[—114])7 (1]

proj
where the X denotes the vector cross-product. For the specimen
coordinate system shown in the inset of Fig. 3, the three crystal-
lographic directions of V" are [100], [011], and [011]. The projec-
tions of these three directions (the yellow vectors in Fig. 3 with
the acquired Miller indices) can be used readily for conversion
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Fig. 3. Kikuchi diffraction in convergent-beam pattern. Shown is a frame
taken along the [114] zone axis, displaying the zero-order-Laue-zone discs
(labeled with black Bragg indices), the second-order-Laue-zone ring (the
white ring), and the Kikuchi bands labeled as KB1, KB2, and KB3. Yellow
arrows indicate the relevant specimen axes and their projections with the
acquired Miller indices underneath them. The 14 14 2 HOLZ reflection, which
is used to establish time zero, is also indicated. (/nset) Relevant specimen
[100], [011], [011] and observation [114] directions: [011] is normal to the slab
surface, whereas [011] is normal to the wedge.

from the observed diffraction plane to the lateral plane of the
specimen. For instance, movement along the [5 13 2] direction
is associated with real-space dynamics polarized along normal-
to-surface direction (i.e., [011]) of the specimen. We note that
[5 13 2] has a component perpendicular to KB2, and a distinction
can be made between the linear and angular changes of the
planes, because both Bragg reflections and Kikuchi bands coex-
ists in the diffraction pattern. Interatomic planar displacements,
such as compressional strain, are reflected in the movements of
the Bragg ring [in the high-order-Laue-zone (HOLZ) circle
shown in Fig. 3]. These conclusions can be generalized irrespec-
tive of the zone axis used.

It is also possible to map polarization directions and deter-
mine the amplitude of shear strain. The KB1 band in Fig. 3, for
instance, results from Bragg scatterings from the (131) atomic
planes. Any shear polarization that is perpendicular to these
planes (i.e., along the plane normal of [131]) will result in a shift
in the position of KB1 band. Similarly, a polarization along the
[220] direction will shift KB2, and one along [311] will shift KB3.
By measuring the movement of these three bands, one can un-
iquely map the lateral polarization direction. Note that any po-
larization perpendicular to the sample wedge (i.e., along [011])
will shift KB1 the most, because the projection of the polarization
vector (i.e., [172]) is almost perpendicular to KBI1.

Fig. 4 displays the transient intensity behavior observed at the
two edges of the Kikuchi band (KB1). Strong resonance oscilla-
tions are visible with a period of 30 ps. This temporal behavior
obtained with the convergent electron beam displays two impor-
tant features. First, the diffraction intensity rises at a delayed time
from the measured 1 = 0 and then falls, giving a Gaussian-like
wave packet envelope (see the fit in Fig. 44); it is centered at
125 ps and has a full width at half-maximum of 143 ps. The time
zero is determined in the same diffraction frames from the inten-
sity drop of the HOLZ ring, more specifically the 4 14 2 reflec-
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Fig. 4. Ultrafast spatiotemporal behavior of Kikuchi diffraction. (A) Shown
is the observed resonance oscillations of intensity at the two edges of the
KB1 band. The resonance at 33 GHz with a wave-packet-like envelope
clearly displays the out-of-phase characteristic of the transverse motion
for the atoms at the top and bottom surfaces of the acoustic waveguide.
Time zero was determined by the intensity drop of a HOLZ reflection
(see text). The red amplitude scale corresponds to the band edge (Right)
curve. The difference in amplitudes between the two edges is due to dyna-
mical scattering that is present at the low scattering angles and where
this edge was measured. The apparent shape is also reminiscent of the
superposition of group of vibrational modes (30), but because the time zero
was established, the rise of both transients with the same value at t =0
excludes such proposition. (B) Temporal behavior of two Kikuchi bands
displaying the presence (KB1) and absence (KB2) of the oscillatory
resonance. The bands’ cross-sections were taken close to the Laue-zone ring
for better contrast. From the left image, the amplitude of the shifting
oscillation can be measured directly.

tion; this drop is due to the induced heating (Debye—Waller
effect) which we studied previously in silicon (16).

The second observation is striking: an out-of-phase resonance
oscillation of the two edges, which indicates that the KB1 band
is shifting as a result of out-of-phase transverse motion of the
atoms at the top and bottom surfaces of the slab. The atomic
planes that are parallel to the surface shift with respect to each
other, but in opposite directions at the top and bottom half of the
specimen. This motion tilts the planes perpendicular to the sur-
face and results in the observed Kikuchi dynamics. The amplitude
is obtained to be 0.3 mrad (Fig. 4 A and B). It is interesting that
if such motions had the same expansion coefficient for isotropic
silicon (2.6 x 107 K~!), then the 0.3-mrad amplitude would
correspond to a temperature rise of 100 K, nearly the same as
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Fig. 5. Fourier analysis images of phases and amplitudes at the resonance frequency. Shown are (A) resonance amplitude and (B) phase images at 33 GHz,
obtained by the Fourier transform of the convergent beam ultrafast electron diffraction frames (Fig. 3). It is clear from image A that the KB1 band oscillates
with the highest amplitude, whereas KB2 and KB3 display significantly less amplitude oscillations. The phase image (B) confirms the out-of-phase behavior of
the bands’ edges. Moreover, the white arrows indicate the relative movements of the bands, which are readily used to derive the polarization direction of the

elastic waves (see text). The scale bar, which is in degrees, is for the phase image.

that determined from the Debye—Waller effect of HOLZ inten-
sity” (16).

In order to map the directions of atomic motions and their am-
plitudes, we needed to follow the temporal changes of each pixel
in the pattern. However, analyzing all million pixels in the images
is nontrivial. We developed a fast Fourier transform approach
that allows us to select changes, as a function of time, of both
the amplitudes and phases. For each pixel, a peak in the Fourier
spectra that corresponds to the resonance frequency of 33 GHz
was integrated to determine the amplitude and phase. We then
reconstructed the amplitude-phase image for this particular
resonance. The results are shown in Fig. 5. From the amplitude
distributions in the image (Fig. 54), one can see that the strongest
change is for Kikuchi band KBI1, followed by KB2 and KB3,
which display somewhat equal amplitudes (KB3 might seem
somewhat larger but the difference is within the noise). The
strong HOLZ ring is completely absent, demonstrating the
robustness of the analysis and consistency with the transverse
nature of the motion.

In Fig. 5B, we display the phases of the Fourier transform for
each pixel. The image clearly indicates the out-of-phase behavior
of the two sides (band edges) of the three Kikuchi bands. More
importantly, they show the relative shift direction of the bands, as
indicated by the white arrows in the figure. From this relative
motion alone, one can reason that the shear polarization must

'For a given temperature, the HOLZ intensity change reflects the magnitude of the
random atomic-displacement amplitudes around the equilibrium value (Debye-Waller
effect). As shown in ref. 16, this change for silicon takes place in a few picoseconds. How-
ever, the position of HOLZ peaks (due to expansion and/or contraction) does not change
as a function of time (within our detection limit), because, in the longitudinal direction,
the absorption length (850 nm) far exceeds the specimen thickness (130 nm) and hence
the near absence of stress gradient in this direction. On the other hand, in the transverse
direction, the specimen is of micrometer scale and the gradient is determined by the
clocking pulse heating profile. From the delay in Fig. 4, we obtained a length scale of
600 nm, indicating that the gradient of the Gaussian heating is on such scale. It should
be emphasized that the observed intensity change in the Kikuchi band edges is solely
due to the shift of the bands and the intensity of the band itself remains the same. This
observation is consistent with the Debye-Waller effect (which scales with s?) because the
scattering vector (s) for these bands is smaller by a factor of 5 than HOLZ ring reflections,
and hence the intensity change is within the noise.
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lie between KB2 and KB3. Such a polarization would produce
the strongest oscillation for KB1, explaining both the amplitude
and phase images observed. Quantitative treatment was made for
the amplitudes, phases, and polarizations (SI Text); giving the
polarization vector to be #20.3[011], where the amplitude is in
milliradian.

Laterally Propagating Elastic Waves

From these observations, it is now possible to elucidate the nature
of atomic motions in the nanoslab waveguide. In general, the
three different polarizations (and hence, three different veloci-
ties) of elastic waves in an anisotropic crystal have to be consid-
ered. However, for a shear-horizontally (SH) polarized wave, the
waveguide propagation is well defined (Fig. 1), and we have
already shown i to be perpendicular to the sample wedge and
parallel to surfaces. Treating this displacement as a part of an
SH wave means that k must be perpendicular to i, i.e., to [011].
Due to the free-motion boundaries, a standing wave condition
defines the magnitude of k|, i.e., k; = (nz/b), where b is the slab
thickness and k is a vector with parallel-to-surface (k,,) and per-
pendicular (k; ) components (Fig. 1). It follows that the acoustic
waveguide dispersion relation can be expressed as (21, 22)

2
a)2:v§(k?/+ki) = v} {k%—b— (r;_zr) ] [2]

where n = 0,1,2,... and v, is the magnitude of the shear-wave
phase velocity which can be derived for anisotropic acoustic wave
propagation of three polarizations (see SI 7Text). The oscillation
angular frequency is w.

For our case, b = 130 nm and n = 1, one obtains k; = 2.4x
10’ m~!. And by using Eq. 2 with measured o = 2733 GHz (from
resonance oscillations in Fig. 4) and calculated v, of 5.84 km/s,
the value of k,, is 2.6 x 10’ m~'. Therefore, the angle of SH
waves in the nanoguide is arctan(k,,/k,) = 47°, which satisfies
the total internal reflection condition for the silicon-vacuum
boundary (21). The displacement fields of the lowest antisym-
metric mode (n = 1) are sketched in Fig. 1, and one can see
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that the atomic displacements of this mode uniquely predicts the
observed temporal behavior of Kikuchi bands. Moreover, the
total lateral movement of the top- and bottommost atomic layers
can be estimated to be (0.3 mrad) x (130 nm/2) = 0.2 A. This
value is significant when compared to the size of the hydrogen
atom, suggesting that such displacement may be exploited to
generate atomic movements on the nanoscale. We note that
higher-order modes (n > 1) cannot be supported at the observed
frequency and slab thickness because Eq. 2 results in a negative
propagation wave vector (k,/). Similarly, the first symmetric
eigenmode (n = 0), which shifts the atomic columns transversely
without tilting, has a higher k,, value corresponding to a wave-
length comparable to the probe size (see SI Text).

The time and length scales involved in the motion are reflected
in the results of Fig. 4. The transverse wavelength is 4,/ =
(27/k;;) and has the value of 240 nm. In order to detect such
lateral resonance modulations, one must use a spatial probe
whose dimension is smaller than (4,,/2), which is the case in
our convergent-beam microscopy experiments; parallel-beam
illumination cannot detect such resonances, because it would
average the spatiotemporal modulations of the traveling wave.
Moreover, the envelope shape of the amplitude of resonance
oscillations depicted in Fig. 4 indicates that the waves originated
at a distance away from the measurement point (Fig. 1), because
t =0 was established in the same diffraction pattern as men-
tioned before. The maximum of the flux arrives to the observation
point at 130 ps. With the transverse group-wave speed being
4.3 km/s along [001], the arrival time translates to a distance
of 560 nm. This spatial propagation reflects the gradient in the
temperature which is determined in silicon by carrier excitations
and electron-phonon heating of the lattice in a few picoseconds
(23-25).

Concluding Remarks

In this contribution, we have introduced the use of Kikuchi ultra-
fast diffraction to experimentally observe the transverse elastic
wave atomic motions with nanoscale spatial resolution. The
amplitudes, phases, and polarizations of the coherent waves have
been characterized for a silicon waveguide. The wave (group)
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packet exhibits real-time oscillatory resonance with unique coher-
ent envelope. The electron probe is smaller than the lateral
wavelength, making possible the recording of the evolution in
space and time. Because of the probe size, which can be focused
to the scale of a unit cell in electron microscopy, and time resolu-
tion, Kikuchi together with conventional Bragg diffraction enable
the mapping of anisotropic structural dynamics in 3D. With the
variant techniques (18, 26-29) of convergent-beam electron
microscopy, such as with energy filtering, we expect a range of
applications in materials science and including studies of structur-
al dynamics in site-selected molecular transformations.

Materials and Methods

The experiments were conducted in our microscope, UEM-2, which, as
detailed elsewhere (10), is equipped with laser systems operating in the
stroboscopic and single-pulse modes. The time-resolved convergent-beam
arrangement is similar to that reported in ref. 16. Here, the electron packets
are accelerated to 200 keV corresponding to de Broglie wavelength of 2.5 pm
and wave vector of 40 A™". Femtosecond infrared pulses were up-converted
to the ultraviolet at 347 nm and sent to the cathode for photoelectron
extraction. Synchronously, green pulses of 5 pJ output at 520 nm were
directed to the sample after entering the microscope to initiate (or clock)
the elementary excitations. The temporal evolution was recorded by varying
the path length between these two pulses.

The sample was oriented such that the [114] crystalline direction was
parallel to the incident electron packets; see Fig. 3, Inset for the relevant
directions. A low-symmetry zone axis, such as [114], was preferred over a
high-symmetry one, such as [011], in order to contain the complete HOLZ ring
within the CCD camera range. The beam of electron packets can be focused
down onto typically a 10-nm probe (16) and, in this work, the electron pack-
ets are focused onto a probe of 100-nm diameter, instead of the micron scale
used in conventional parallel-beam probing. The second condenser lens of
the microscope was used for such focusing and the shadow image of the sam-
ple was invoked to determine the optimum focus in diffraction patterns. The
silicon nanoslab specimen with a 4° wedge angle was prepared by mechanical
polishing along the (011) planes, followed by ion milling for final smoothing.
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