
Epigenetics 6:1, 4-8; January 2011; © 2011 Landes Bioscience

 POINT-OF-VIEW

4	 Epigenetics	 Volume 6 Issue 1

Key words: epigenetics, transcription, 
histone demethylase, RNA polymerase 
II, X-linked mental retardation, neuronal 
differentiation, brain development

Abbreviations: PHD, plant 
homeodomain; PHF2/8, plant 
homeodomain finger 2/8; JmjC, 
jumonji carboxyterminal domain; 
XLMR, X-(chromosome) linked mental 
retardation; PTM, post-translational 
modification; KMT, histone lysine 
methyl-transferase; SET, Su(var)3-9/
enhancer of zeste/trithorax domain; 
MLL, mixed lineage leukemia; KDM, 
histone lysine demethylase; PRC, 
polycomb repressive complex; ChIP-seq, 
chromatin immunoprecipitation followed 
by deep sequencing; ING, inhibitor of 
growth; ES-cells, embryonic stem cells; 
RNAPI/II, RNA polymerase I/II

Submitted: 07/22/10

Accepted: 08/10/10

Previously published online: 
www.landesbioscience.com/journals/ 
epigenetics/article/13297

DOI: 10.4161/epi.6.1.13297

*Correspondence to: Klaus Fortschegger; 
Email: klaus.fortschegger@ccri.at

Several recent publications demon-
strate a co-activator function for a 

subgroup of plant homeodomain fingers,  
which, in humans, comprises PHF2, 
PHF8 and KIAA1718. Besides an 
N-terminal plant homeodomain (PHD), 
these proteins also harbor an enzymati-
cally active Jumonji-C domain (JmjC). 
While they have been shown to bind 
via their PHDs to H3K4me3-bearing 
nucleosomes at active gene promoters, 
their JmjC-domains are able to remove 
mono- and dimethyl-lysine 9 or 27 on 
histone H3 or monomethyl-lysine 20 
on histone H4, chromatin modifica-
tions that correlate with transcriptional 
repression. Such dual histone crosstalk 
ensures the proper removal of repres-
sive histone marks following transcrip-
tional activation by RNA polymerases 
I and II. Mutations in the PHF8 gene 
lead to X-linked mental retardation 
(XLMR) and knockdown of KIAA1718 
and PHF8 homologs in zebrafish causes 
brain defects. Thus, the co-activator 
function of this new class of chromatin-
modifying enzymes has important func-
tional roles in neuronal development. To 
continue with the nomenclature for his-
tone demethylases, we propose the usage 
of KDM7A, -B and -C for KIAA1718, 
PHF8 and PHF2 proteins, respectively.

Histone Modifications  
and Chromatin-Modifying  

Enzymes

A host of transcriptional co-activators 
and co-repressors function through post-
translational modifications (PTMs) of 
histones.1 An important and well-studied 
type of PTM in this respect is methyla-
tion of the ε-aminogroup of the lysine 
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sidechain, which can occur in three possi-
ble states, namely mono-, di- or trimethyl-
ation (me1/2/3, respectively). Depending 
on the histone variant, the position of the 
lysine and its methylation state, such mod-
ifications may signal different outcomes. 
For example, trimethylation at lysines 
4, 36 and 79 of histone H3 (H3K4me3, 
H3K36me3, H3K79me3) are positively 
correlated with transcription and thus 
considered as activating chromatin marks. 
While H3K4me3 is strongly enriched at 
proximal promoters, H3K36me3 and 
H3K79me3 are found throughout tran-
scribed gene bodies.2 Conversely, di- and 
trimethylation at lysines 9 and 27 of his-
tone H3 (H3K9me3/2, H3K27me3/2) 
spread on silent chromatin and therefore 
are often correlated with transcriptional 
repression.

Methyl-marks are deposited on lysine 
residues by protein complexes that con-
tain lysine methyl transferase enzymes 
(KMTs), most of which contain a 
Su(var)3-9/Enhancer of Zeste/Trithorax 
(SET) domain. For instance, in humans 
H3K4-methylation is conferred by 
enzymes of the KMT2-family (SET1A/B 
and mixed lineage leukemia MLL1-5).3 
The latter are thought to be recruited by 
transcription factors upon gene induc-
tion and to methylate nucleosomes at 
the respective promoters. Subsequently, 
a diverse number of proteins recognizing 
H3K4me3 come into play, some of which 
have already been shown to stimulate 
transcription (e.g., TAF3, BPTF).4,5

On the other hand, methyl-groups 
can be removed from lysines by 
histone demethylase enzymes (KDMs) 
containing either flavin-dependent amine-
oxidase or Fe2+ and α-ketoglutarate-
dependent Jumonji-C (JmjC) domains.6  
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chromatin immunoprecipitation followed 
by deep sequencing (ChIP-seq) using dif-
ferent cell lines and antibodies.12,14,16,17 
Similar results were obtained for 
F29B9.2/KDM7A in C. elegans.24 Thus, 
we assume that the localization is mainly 
determined by binding of the PHD to 
H3K4-trimethylated nucleosomes, and 
that PHF2/KDM7C has similar proper-
ties. Nevertheless, about 30% of highly 
H3K4me3-enriched promoters are not 
co-occupied by PHF8, which indicates 
that there must be other factors influenc-
ing the recruitment.12,14,16

Furthermore, there are exceptions to 
the rule that H3K4me3 is generally linked 
to active gene expression. For example, a 
class of PHD-containing proteins, the 
inhibitor of growth family (ING1-5), has 
been demonstrated to bind to H3K4me3 
but to repress transcription upon DNA-
damage.25 On the other hand, the PHD-
protein AIRE was shown to interact with 
unmethylated lysine 4 on histone H3, 
leading to transcriptional activation.26 
Additionally, there is a class of poised chro-
matin regions in mouse embryonic stem 
cells known as bivalent domains, which 
harbor both H3K4me3 and H3K27me3 
chromatin modifications. In embryonic 
stem (ES) cells many developmental genes 
bear bivalent domains and are thought 
to be rapidly induced by removal of such 
repressive chromatin modifications upon 

chromatin-modifying enzymes is char-
acterized by a single N-terminal plant 
homeodomain zinc finger (PHD), a 
domain that was shown to associate with 
methylated lysine residues.18 In humans 
this group consists of three members: 
the plant homeodomain fingers 2 and 
8 (PHF2 and PHF8) and KIAA1718  
(Fig. 1). Structures of their PHDs and 
JmjC-domains have now been solved 
by X-ray crystallography.13,15,19-21 Besides 
conserved zinc-chelating residues, these 
PHDs comprise a patch of phenylalanine 
and tyrosine residues called aromatic 
cage, which can occur in several domains 
and can interact with methylated lysine. 
Biochemical experiments demonstrated 
that the three proteins interact spe-
cifically with histone H3 methylated at 
lysine 4 via their PHDs.11-15,22 Mutation of 
aromatic cage amino acids abolishes this 
interaction. Binding assays with doubly 
modified histone H3 peptides indicate 
that most adjacent PTMs do not affect 
the interaction between H3K4me3 and 
the PHD of PHF8/KDM7B, but that 
phosphorylation of threonine 3 does, a 
modification mediated by the mitotic 
kinase haspin.12,23 Additionally, phos-
phorylation of PHF8 at serines 33 and 
84 abolishes its binding to mitotic chro-
mosomes.16 However, during interphase, 
PHF8 is present at thousands of gene pro-
moters in several cell lines as revealed by 

The aforementioned methylation of lysine 
4 on histone H3 can be removed by either 
LSD1/KDM1- or JARID1/KDM5-family 
histone demethylases.3 Intriguingly, these 
KDMs can be components of polycomb 
repressive complexes (PRCs) that 
synergize to bring about transcriptional 
repression.7,8 Interestingly, in addition to 
their catalytic domains most chromatin-
modifying enzymes possess additional 
chromatin and/or DNA-binding 
modules.9 Such modular nature of 
chromatin-modifying enzymes allows for 
additional specificity in their recruitment 
and/or mode of action.10 Therefore, it is 
likely that recruitment of such enzymes 
to their target is accomplished by multiple 
synergistic interactions of the components 
of the chromatin-modifying complex and 
different modifications of the chromatin. 
Such a mechanism would allow regulation 
of specificity as well as affinity by tissue-
specific variation of subunit composition 
combined with dynamic changes in 
histone post-transcriptional modifications 
allowing for fine-tuning of gene expression 
in a tissue- and time-specific manner.

The Plant Homeodomain (PHD):  
A Chromatin Reader Module

Recently, we and others found a new 
example of crosstalk between histone 
modifications.11-17 A class of JmjC-domain 

Figure 1. KDM7-family proteins. In humans the KDM7-family comprises three members: KIAA1718, PHF8 and PHF2. These proteins of about 1,000 
amino acids (a.a.) contain an N-terminal plant homeodomain (PHD), a Jumonji C-domain (JmjC) and a short coiled coil region (cc). Nuclear localization 
signals and phosphorylation sites are depicted as arrows below and arrowheads above the model, respectively. Homology between the family  
members is given in percent identity for PHD, JmjC-domain and C-terminal region defined by dashed lines.
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protein interactions are of particular 
importance for proper function of KDM7 
family members.

The Carboxyterminal Half  
and Interaction Partners

Little is known about the properties of 
the C-terminal halves of KDM7 proteins. 
They do not contain any known protein 
domains, and the homology between the 
three human proteins is low in this region 
compared to that of PHD and JmjC  
(Fig. 1). However, we found that direct 
association of PHF8 with the carboxy-
terminal domain of RNA polymerase 
II (RNAPII) largest subunit strongly 
depends on this part of the protein.12 
Other described interactions of PHF8 with 
RNA polymerase I (RNAPI), KMT2-
complex components, HCF-1, E2F1, 
ZNF711 and RAR may also be mediated 
by its C-terminal part (Fig. 2).11,14,16,30 The 
KDM7 C-termini contain nuclear local-
ization signals suggesting their impor-
tance for correct localization (Fig. 1). 
Additionally, all three human proteins con-
tain a putative coiled coil region (Fig. 1).  
PHF2 and PHF8 also exhibit several 
phosphorylation sites which appear to be 
important for the regulation of their activ-
ity (Fig. 1).16

Biological Function  
and Target Genes

Recent findings point to the KDM7-
family of histone demethylases as a new 
class of transcriptional co-activators. By 
virtue of association with H3K4me3- and 
removal of H3K9me2/1-, H3K27me2/1- 
or H4K20me1-modifications, KDM7 

this position confers specificity for me3/2 
(Table 1). In contrast, thus far PHF2 was 
only shown to demethylate H3K9me1.15 
The difference might be due to the fact 
that this protein, instead of the second 
conserved Fe2+-binding histidine, con-
tains a tyrosine residue at this position. 
Trimethylation of H3K4 in cis greatly 
enhances PHF8 demethylase activity 
toward H3K9me2.11,13 However, while 
PHF8 can mediate H3K4me3-binding 
through its PHD domain and H3K9me2-
demethylation on the same histone tail as 
a result of its flexible linker between PHD 
and JmjC, KIAA1718 has a rigid linker 
and an extended N-terminus, preclud-
ing it from demethylation of H3K9me2 
once its PHD associates with H3K4me3.13 
When H3K4me3 peptides are added to 
H3K9me2-demethylation reactions in 
trans KIAA1718 is inhibited and PHF8 is 
not stimulated anymore.11,13 Nevertheless, 
in vivo H3K4me3 might as well stimu-
late demethylation of H3K9me2/1, 
H3K27me2/1 and H4K20me1 on neigh-
boring histone tails because it anchors the 
KDM7 enzymes in close proximity.21 This 
possibility may explain why H4K20me1 
demethylation could only be detected on 
nucleosomal substrates but not on core 
histones.16,17 Obviously, H3K4me3-marks 
and a functional PHD stimulate demeth-
ylation by overexpression of PHF8 in 
vivo.12 Consequently, chromatin-associa-
tion of PHF8 via the interaction between 
PHD and H3K4me3 is crucial for proper 
function. On the other hand, though 
mutations of cofactor binding residues in 
the JmjC render PHF8 catalytically inac-
tive, it still retains most of its co-activa-
tion capacity, at least in episomal reporter 
assays.12 Thus, we expect that additional 

differentiation.27 This may be accom-
plished by displacement of PRCs with 
activating complexes that exhibit demeth-
ylase activity towards repressive marks.

The Jumonji C-Terminal Domain 
(JmjC) Confers Demethylation

Active JmjC-domains comprise several 
conserved amino acids that are needed for 
correct binding of the crucial cofactors Fe2+ 
and α-ketoglutarate (JmjC-containing 
KDM-families are listed in Table 1). 
Besides those, the KDM7-family displays 
four short additional α-helices in the  
carboxyterminal region of the JmjC which 
are essential for activity. The described 
enzymes act on methylated H3K9, 
H3K27 and/or H4K20. Interestingly, 
H3K9 and H3K27 are placed in a simi-
lar context (-ARKS-), while H4K20 is 
not (-HRKV-). Activity has been demon-
strated by in vitro assays using peptides, 
bulk histones or nucleosomes as sub-
strates and in vivo by overexpression and/
or knockdown experiments.11-17,19,20,22,28,29 
While demethylation assays with pep-
tides also stated marginal activity towards 
H3K36me2, there is little evidence that 
these enzymes remove this histone modi-
fication in vivo. The three new mem-
bers exhibit slightly different specificities 
(Table 1). While PHF8 preferentially 
acts on H3K9me2/1 and H4K20me1, 
KIAA1718 mainly demethylates 
H3K9me2/1 and H3K27me2/1.13,16,17,22,28 
Since the active centers cannot accom-
modate trimethylated lysines these do 
not constitute viable substrates for these 
enzymes. Intriguingly, JmjCs that exhibit 
aspartate as Fe2+-chelating residue seem to 
be specific for me2/1, while glutamate at 

Table 1. Human KDM-families with JmjC-domains

JmjC-enzyme(s) Substrate(s) Conserved Fe2+/α-KG binding a.a. Function

KIAA1718 (KDM7A) 
PHF8 (KDM7B) 
PHF2 (KDM7C)

H3K27me2/1; H3K9me2/1 
H3K9me2/1; H4K20me1 

H3K9me1

H D H/T K 
H D H/T K 
H D Y/T K

activators

JHDM1A/B (KDM2A/B) H3K36me2/1 H D H/T K repressors

JHDM2A/B (KDM3A/B) H3K9me2/1 H D H/T K activators

JHDM3A-D (KDM4A-D) H3K9me3/2; H3K36me3/2 H E H/F K activators

JARID1A-D (KDM5A-D) H3K4me3/2 H E H/F K repressors

UTX (KDM6A) 
JMJD3 (KDM6B)

H3K27me3/2 
H3K27me3/2

H E H/T K 
H E H/T R

activators

α-KG, α-ketoglutarate; a.a., amino acids
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KDM linked to XLMR, which also 
contains PHDs and a JmjC domain. In 
contrast to KDM7, KDM5C demethyl-
ates H3K4me3/2, binds to H3K9me3 
and acts as a transcriptional repressor.8 
Overexpression of other candidate tar-
gets like FGF4, FST and MSX1 can in 
part rescue the loss of KDM7 proteins in 
model systems.17,22,28

Taken together, it is not clear whether 
the PHF8 mutations leading to impair-
ment of transcription by RNAPI, RNAPII 
or both accounts for manifestation of 
XLMR. The gene expression changes are 
rather subtle and therefore it is possible 
that a combined decrease in transcrip-
tional output of multiple targets may be 
the underlying cause of the disease phe-
notype. Further experiments using model 
organisms or XLMR-patients’ material 
will shed additional insights on the tar-
get genes and biological functions of the 
KDM7-family members.
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