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Abstract
When modeling the risk of a disease, the very act of selecting the factors to include can heavily
impact the results. This study compares the performance of several variable selection techniques
applied to logistic regression. We performed realistic simulation studies to compare five methods
of variable selection: (1) a confidence interval approach for significant coefficients (CI), (2)
backward selection, (3) forward selection, (4) stepwise selection, and (5) Bayesian stochastic
search variable selection (SSVS) using both informed and uniformed priors. We defined our
simulated diseases mimicking odds ratios for cancer risk found in the literature for environmental
factors, such as smoking; dietary risk factors, such as fiber; genetic risk factors such as XPD; and
interactions. We modeled the distribution of our covariates, including correlation, after the
reported empirical distributions of these risk factors. We also used a null data set to calibrate the
priors of the Bayesian method and evaluate its sensitivity. Of the standard methods (95% CI,
backward, forward and stepwise selection) the CI approach resulted in the highest average percent
of correct associations and lowest average percent of incorrect associations. SSVS with an
informed prior had higher average percent of correct associations and lower average percent of
incorrect associations than did the CI approach. This study shows that Bayesian methods offer a
way to use prior information to both increase power and decrease false-positive results when
selecting factors to model complex disease risk.
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Introduction
To discover and describe the etiology of complex diseases requires simultaneously
examining the association of multiple factors with the disease. The risk factors included in
the final model of disease association can heavily impact the results of the study. If a
researcher includes too many covariates, or not enough data, the coefficients in a logistic
regression or conditional logistic regression model can be biased. The coefficients of various
factors would then be overestimated, which would lead to more false-positive results for
association of the risk factors [1,2]. Therefore, the selection of factors associated with a
given disease is a very important part of model building. Researchers commonly use logistic
or conditional logistic regression with standard stepwise statistical methods to select
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associated factors for a particular disease. However, standard stepwise statistical methods
for variable selection tend to select the inflated coefficients and, at the end of the analysis,
report those inflated coefficients [3]. This is because the standard selection methods, which
involve statistically testing a variable’s significant contribution to a model in a stepwise
fashion, ignore the uncertainty introduced by the model selection process [4–6]. Recent
research suggests that hierarchical shrinkage estimation and/or Bayesian methods offer a
solution to reducing the false-positives and overestimation of the coefficients [3,7–11]. In
particular, some authors propose using informed priors in a Bayesian analysis to reduce
these errors [3,10,11].

One approach that accounts for the uncertainty introduced by model selection, Bayesian
model averaging (BMA), has recently been applied to logistic regression for case-control
studies [12,13]. BMA more accurately models the variation in the estimates for the
coefficients by accounting for the uncertainty surrounding model selection. Specifically, it
incorporates prior model information as the prior probability of a model appropriately
modeling the association [6,14–16]. Thus, BMA methods create a comprehensive
mathematical model of the associations in the data that contains both the uncertainty in
estimating the associations in the data through the model coefficients and the uncertainty in
selecting the model itself.

An alternative type of Bayesian model averaging, known as stochastic search variable
selection (SSVS), focuses on variable selection rather than model selection [17–20]. Like
BMA, SSVS captures the uncertainty surrounding model selection, but it is framed in terms
of the variables, rather than the model as a whole. With SSVS, priors can be defined in
terms of the prior probability of a variable’s inclusion in the model, which is interpreted as
the prior probability of a specific variable’s association with the outcome. The model
probability can then be defined as the joint probability of all the variables that compose that
particular model. SSVS allows researchers to think in terms of specific covariates—or in the
epidemiology setting, specific risk factors— both as they construct prior model probabilities,
and as they make posterior inferences. Therefore, SSVS provides an alternative to BMA that
may facilitate prior elicitation and posterior interpretation.

Previous research has shown that BMA outperforms the standard selection methods [12,13]
when using uninformed priors. The purpose of this study was to compare the performance
on a logistic regression model of standard variable selection techniques with that of the
Bayesian SSVS technique, using both informed and uninformed priors. We simulated data
from distributions with parameters chosen to reflect reality to compare the average percent
correct and percent incorrect associations detected by the selection methods. The scenarios
we present here are in the context of hypothesis driven studies, where the number of
covariates is smaller than the sample size (e.g. a candidate gene association study).

Methods
Simulating Covariates

In order to compare model selection methods, we simulated realistic data by defining the
parameters for the distributions, from which we simulated our covariates using values found
in the literature for lung or colorectal cancer. The studies we used consisted of
predominantly non-Hispanic Caucasians, and further details can be found in the individual
references. We selected factors that drastically increase risk, moderately increase risk, and
moderately decrease risk. For continuous covariates, such as nutritional factors, we collected
means, variances, and some relevant covariances to simulate covariates from univariate or
multivariate normal distributions. For categorical covariates, such as smoking status, we first
simulated values from a standard univariate normal distribution or a multivariate normal
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distribution with mean 0, variance 1, and relevant covariances from the literature and then
categorized the distributions using appropriate values that correspond to prevalences
reported in healthy populations (usually control samples from a case-control study).

The following are examples of the covariate simulations we performed. Fiber intake, a
continuous covariate, is correlated with folate intake in colorectal cancer cases and controls.
Therefore, we simulated fiber and folate from a multivariate normal distribution, setting the
correlations for fiber and folate to be .35 [21] and using a mean of 17.8 g/day and standard
deviation of 7.84 g for fiber [22] and a mean of 331 mcg/day and standard deviation of 137
mcg for folate [23]. From these values, we constructed a multivariate covariance matrix and
mean vector. For the categorical covariates of smoking status and alcohol intake, we
simulated smoking and alcohol intake as dichotomous, (smoker or non-smoker; drinker or
non-drinker). We first simulated a multivariate normal distribution with mean 0, variance 1,
and covariance 0.54 from [24]. We then used a cut point of −0.8416212 for smoking to
match the reported prevalence of .20 [25], and a cut point of −0.1509692 for alcohol to
match the prevalence of .44 [26]. For other covariates, we used parameters on the order of
those found in the literature. For the full list of covariate distributions, see Table 1.

Simulated Diseases
We simulated all diseases using a logistic regression model, defining the coefficients using
odds ratios found in the literature as a guide. For the complete list of odds ratios from the
literature and the corresponding coefficients, see Table 2. We simulated 3 diseases, with
each disease having its own model and analysis to highlight different risk mechanisms. We
also simulated a null data set to calibrate our priors. The first disease (Simulated Disease 1)
we simulated using a model containing only main effects. We defined cases and controls by
defining the probability of a disease as

(1)

This model yielded about a 30% disease prevalence on average in the simulated population.
When we analyzed this disease, we included all true covariates and 7 unassociated
covariates (e.g., fiber, X6–X10, X15) not originally in the simulation model (see Table 3).
The second disease model (Simulated Disease 2) was also simulated from a model using
only main effects, but we used more covariates:

(2)

This model yielded about a 2.5% disease prevalence on average in the simulated population.
When we analyzed Simulated Disease 2, we omitted covariates X8 and X9 (which were
included in the simulation model, equation (2)) but included all other associated covariates
and an additional 4 unassociated covariates (X11–X14, see Table 4) to examine how each
selection method (described below) performed when not all causal covariates were included
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in the analysis. The third disease model (Simulated Disease 3) was simulated including the
main effects and a non-nested interaction term:

(3)

This disease yielded about a 30% disease prevalence on average in the simulated population.
When analyzing Simulated Disease 3, we included all the associated covariates and the
interaction and analyzed an additional 7 unassociated covariates and 7 unassociated
interactions (see Table 5).

For each disease scenario, we simulated 500 replicates, with 500 cases and 500 controls. To
accurately simulate the disease, for each scenario, we simulated 200,000 individuals with
disease penetrance defined by the appropriate logistic regression model. Then we sampled
500 cases and 500 controls from this simulated population. For each replicate, we simulated
a new population. For the null data set, we randomly selected one replicate from Simulated
Disease 2 and independently assigned case status. To simulate the case status, we simulated
a binary random variable with probability parameter 0.5. If the binary variable was 1, the
status was changed; if the binary variable was 0, the status did not change. This method can
be used on any collected data set, and on average keeps the number of cases and controls
equal. We created 500 null data sets from the selected replicate.

Variable selection methods
Using the simulated disease models described above, we compared the performance of five
different model selection methods: a confidence interval approach for significant
coefficients (CI), backward selection, forward selection, stepwise selection, and Bayesian
stochastic search variable selection (SSVS) using both informed and uniformed priors. The
first four methods we consider standard methods, easily implemented in a software package.
The first method consists of calculating the 95% confidence interval for the β coefficient. If
the confidence interval does not include 0, we select the variable as important to the model.
The next methods, backward, forward, and stepwise selection are all well known selection
methods [27]. Backward selection first estimates the coefficients for each covariate in the
model and then calculates the Wald statistic for each coefficient. The covariate whose
coefficient has the largest p-value greater than a threshold is removed and never re-enters
the model. The process is repeated until all covariates are significant. For forward selection,
SAS calculates the chi-squared statistic for each covariate not yet entered in the model, and
the largest statistic with a p-value less than an entry value enters in the model and remains in
the model. Stepwise selection in SAS is calculated like forward selection, with the flexibility
of removing a variable if its p-value becomes larger than a threshold [28]. Once each
standard selection method was complete, we screened the remaining covariates with the
95% confidence interval method described above to decide on a final model. For this study,
we investigated the performance of these standard selection methods using 3 different
significance thresholds: 0.01, 0.05, and 0.20.

SSVS, which was recently extended to conditional logistic regression [29], is applicable to
generalized linear models [18,30–32], and here we apply it to logistic regression. We begin
with the familiar logistic regression likelihood:

(4)
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Then, we model the model selection uncertainty through a mixture prior assigned to each
coefficient:

(5)

where γi is a Bernoulli indicator with probability wi, and we describe c and τ next.

The variable selection mechanics come through the Bernoulli indicator and the values for c
and τ. We choose τ to be a small value so that when γi = 0, the prior on βi focuses the
probability on values of βi close enough to 0 that we can consider the covariate as having a
negligible contribution to the model. And we choose c to be large enough such that when γi
= 1, the product of c τ spreads the probability distribution of βi to cover reasonable values of
the coefficient for the covariate that is selected. To select covariates, we use the median
model decision rule [33]: select all covariates where P(γi=1|data) ≥ 50%.

Comparing Analyses
For each simulated scenario, and the null set, we used available software to implement all
forms of variable selection. We used SAS 9.1 (Cary, NC) to implement the standard variable
selection methods. For forward, backward, and stepwise selection, after the covariates were
selected, we applied the 95% confidence interval rule described above for further selection.
We implemented SSVS using WinBUGS 1.4.2 [34], assigning c and τ using a rationale
similar to that used previously [29]. Since the coefficients have the interpretation of the log-
odds ratio, we chose c to be 1000 and τ to be 0.001. This covered the range from −3 to 3,
with a little over 99% of the probability mass, when γ = 1 and restricted the range from
about -0.003 to 0.003 when γ = 0. We also assigned different types of priors. We used non-
differentiating prior probabilities of inclusion, where all the prior wi’s were given the same
value, either 0.5, matching those used in [29], or 0.25, matching those used in [35].
Additionally, we used a differentiating prior where we set wi to 0.5 for some variables and
0.25 for others. This models the idea of using informative priors for those variables with
information in the literature. We used a w = 0.5 for MTHFR, smoking, alcohol, XPD and
folate to represent upweighting the prior according to the literature. We also use a w =0.5 for
fiber to reflect using colon cancer literature to inform our risk prior for lung cancer, as a
result misspecifying our prior. For the remaining covariates we used wi = 0.25 to represent
skepticism of association for those remaining covariates. We also created a second type of
informative prior by setting all the wi’s to 0.25 and setting the mean of the beta distribution
to the value for the logistic regression model simulation. One caveat, if this were a real study
on real data, we would spend more time eliciting expert opinion regarding the importance of
each risk factor, rather than weighing the priors according to our simulation.

Once all the methods were run on each of the 500 replicates, we calculated the percentage of
replicates where each covariate was selected by each method. We used these values to
calculate the average correct association percentage and incorrect association percentage for
each method. To calculate the average correct association percentage, we added up the
percentages of both the associated variables selected and the unassociated variables not
selected for a model and divided by the total number of variables (equation (6))

(6)
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Likewise, to calculate average percentage of incorrect association, we added up the
percentages of those associated variables not selected, and those unassociated variables
selected, and divided by the total number of variables (equation (7)).

(7)

For simulated disease 3, since the disease was simulated with the interaction term alone,
without the component main effects, we do not count the component main effects as true
risk factors, and instead count them as incorrect associations when they are included in the
model, with or without the interaction term. We count the main effects this way since this
paper examines how variable selection methods recover the true model.

For an additional measure of comparison, we also present the ratio of the average percent
correct to average percent incorrect. This can be interpreted as the Bayes factor describing
support of correct association when the prior probability of correct association is equal to the
prior probability of incorrect association. We caution over-interpreting these ratios however,
because in all cases of selection using standard or Bayesian methods (except SSVS when w
=0.5), this assumption may not be accurate.

Results
The percentages of all replicates for the simulated diseases for which each method selected
each covariate is presented in Tables 3, 4, and 5. Each column of the tables corresponds to a
method used. 95% CI lists the percentage of replicates where the 95% confidence interval
for that covariate did not include 0. Backward, forward, and stepwise columns refer to the
corresponding selection methods, and the p values for sub-headings refer to the threshold
values (p=0.01, 0.05 and 0.20). Then the tables present the columns for SSVS with
subheadings for the different priors. First is w=0.25 for all covariates considered, followed
by SSVS with w=0.5 for all covariates considered. The next column, w=0.25 or 0.5, refers to
selecting the prior probability of inclusion based on the literature. And the final column
reports the performance of SSVS using w=0.25 for all covariates, and centering the prior for
β at the simulated log odds ratio.

Results of Simulated Disease 1
We began our comparisons with a simple model: 5 main effects, with some factors that
increased risk and some factors that decreased risk. For this simple model, all methods had
comparable power to select the true variables (see Table 3). However, the standard methods
had higher incorrect association percentages than the SSVS methods. Of the standard
methods, the 95% confidence interval has the lowest average percentage of incorrect
associations at 5.9%. Backward, forward, and stepwise all had average incorrect association
percentages of 7.9% or higher for every threshold. As to be expected, as the threshold
increased, the incorrect associations increased. For SSVS, using w = 0.5 gave the largest
average percentage of incorrect associations (3%), but the percentage was still less than that
of the 95% CI method. Next largest was centering the priors for β at the simulation value
followed by SSVS using w = 0.25. Choosing the prior probability for inclusion to be 0.5 for
the associated covariates (and for fiber) and 0.25 for the unassociated covariates (except
fiber) gave the lowest incorrect association percentage of 1.1%. Interpreting the ratios on a
Bayes Factor scale [5], only SSVS shows strong evidence for correct associations (ratio
greater than 20), with the differentiating prior yielding the largest ratio.
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Results of Simulated Disease 2
Next, we analyzed Simulated Disease 2, where we simulated the disease from main effects
only, but omitted some of the associated main effects from consideration in the final
analysis. The average ratios were lower across all methods than those for Simulated Disease
1 (see Table 4). The 95% confidence interval approach had the lowest average incorrect
association percentage rate of the standard methods and the highest average correct
association percentage (19.4% and 80.6%, respectively) among the standard methods. It also
had the highest average ratio of the standard methods (4.1). The other standard selection
methods performed very similarly with each other. As the threshold increased, so did the
average correct association percentages. However, the incorrect association percentages
decreased as the threshold increased. The average ratio ranged between 2.5 and 3.5 for all
three stepwise selection methods, across all thresholds, which borders between barely worth
a mention and positive evidence for selecting correct associations on the Bayes factor scale
[5]. Meanwhile, SSVS had the lowest average incorrect association rates, the maximum
being 17.9% when centering the priors for β, and the minimum being 9.6% for w=0.5. SSVS
also has the highest average ratio of all the methods, with the prior w = 0.5 giving the
highest average ratio of 9.4, while the priors centered on the simulation values for β has the
lowest average ratio of 4.6, almost as low as the 95%CI method of selection. However, all
SSVS methods had ratios in the positive evidence range of a Bayes Factor scale (ratios
greater than 3.2) [5].

Results of Simulated Disease 3
The results for Simulated Disease 3 show how the selection methods perform when
analyzing an interaction term. All associated covariates and interaction terms were included
in the analysis (see Table 5). Again, of the standard methods, using the 95% confidence
interval to detect associated covariates and interactions had the lowest average incorrect
association percentage and the highest correct association percentage (6.7% and 93.3%,
respectively). Comparing the stepwise selection methods, backward selection had the lowest
average incorrect association percentages, and the best average ratios for each threshold
value. SSVS, regardless of prior specification, had the smallest average percentage of
incorrect associations across the replicates, and the highest average percentage of correct
associations. Considering the average ratio, the differentiating prior of using w = 0.25 or 0.5
depending on the covariate w = 0.25 gave the strongest evidence for finding true
associations (average ratio = 136), followed by using w = 0.25 which yielded an average
ratio of 99. The lowest average ratio was 18.2 for the prior w = 0.5, which is still positive,
and almost strong evidence for detecting correct associations. Centering the prior for β
actually reduced the average ratio from simply using w = 0.25, but still provides much
stronger evidence for detecting correct associations than using w=0.5 without centering the
priors (44.9 versus 18.2 respectively).

Analysis of Null Replicates
We present the analysis of the null replicates slightly differently. We report the average and
the maximum false-positive frequencies for each selection method, along with the
percentage of covariates selected by each method, and do not calculate any ratios (see Table
6). Also since we are simulating a null set, we don’t have any prior information about the
importance of particular covariates. Therefore, we used four different values of the prior
probability of inclusion, rather than the previous differentiating priors. The standard
methods all had similar average false-positive frequencies. Of the standard methods (holding
the threshold constant for comparisons), stepwise selection and forward selection had the
smallest false positive percentage compared to backwards selection. Using 95% CI has a
false positive percentage that is not as low as the p = 0.01 threshold, but is lower than the p
= 0.05 and 0.20 thresholds for forward and stepwise selection methods. Backwards selection
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had the highest false positive percentages for each threshold and was larger than the 95% CI
method for thresholds greater than or equal to p = 0.05. Using a prior value of w = 0.25 and
0.4 for SSVS had a false positive percentage similar to the selection methods with p = 0.01
threshold. Increasing w to 0.5 or 0.6 increased the false positive percentage greater than
stepwise or forward selection with p = 0.01 threshold, but not as high as using thresholds
greater than or equal to p = 0.05.

Discussion
We compared Bayesian SSVS with informed and non-informed priors and standard variable
selection methods. We compared their performance on 3 different simulated diseases: main
effects only; main effects only, but some covariates were not considered in the analysis; and
main effects with an interaction. Across all analyses, the Bayesian SSVS methods had the
lowest average incorrect association percentages and had average correct association
percentages and average ratios greater than those of the standard selection methods,
regardless of how much information was modeled in the priors. Thus, this study agrees with
previous studies [12,13], showing that methods accounting for model selection uncertainty
tend to be more powerful in finding the true model than methods that do not account for
model selection uncertainty.

This study also shows some advantages to including prior information when it is present. In
most scenarios, the average ratio was highest when we used SSVS with a discriminatory
prior probability of inclusion (w = 0.25 or 0.50, depending on the covariate). These results
also show that informatively increasing the prior probability of inclusion for only those
variables believed a priori to be associated with the disease controls the average incorrect
associations and both increases the average correct association, and increases their ratio.
However, we see that when we inform the prior distribution of the log odds ratios (β
coefficients), SSVS did not perform as well as using discriminating prior probabilities of
inclusion (informing the wi’s). Therefore, informing the prior probability of inclusion has a
stronger impact on controlling the average incorrect associations and increasing the correct
associations than informing the prior distributions on the coefficients.

We also see that this method exhibits robustness in some situations. When we increased the
prior probability of inclusion for fiber to 0.5, even though it wasn’t truly simulated to be
associated with the disease, SSVS correctly determined that this variable was not associated
with the simulated disease across all scenarios. Looking across different prior values, we
also see that the method is very robust for finding the true associated risk factors when all
factors were investigated, such as in Simulated Diseases 1 and 3. However, the method
became more sensitive to the prior probabilities for inclusion of associated variables when
some of the associated variables were omitted from the analysis, as in Simulated Disease 2.

Our analysis of null data sets serves two purposes. First, it evaluates the sensitivity to
different prior probabilities of inclusion. Second, it provides a model for calibrating the prior
probability of inclusion for this and future studies. We specifically chose to generate disease
status unassociated with a fixed set of covariates to model using one data set, as would be
the case with a real data set. This calibration study we performed here can be done for any
Bayesian study, allowing researchers to calibrate uninformative priors for individual data
sets. For this set (Simulated Disease 2), we see that increasing the prior probability of
inclusion did not increase average percentage of incorrect associations appreciably.

The calibration study, combined with the results across the different priors, has important
implications for using informed priors, and Bayesian methods in general, for
epidemiological research. The fact that using a differentiated prior probability of inclusion
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performed the best in most cases suggests that informing the prior can be useful. Even in
Simulated Disease 2, where we did not include all of the true associated covariates in the
analysis, although the non-differentiated prior with w=0.5 performed best, the differentiated
prior was still close, and controlled the incorrect associations well. Therefore, a
differentiated prior is recommended. In the absence of prior knowledge on how to inform
the prior, these results recommend using the same value between 0.25 and 0.5 for all the wi.
These prior values, combined with the median model decision rule [33] leads to the same
decision rule as including variables whose Bayes factor is greater than 3 or 1 respectively.
Since a Bayes Factor greater than 3 leads to “substantial evidience” this supports previous
findings recommending using w = 0.25 [35]. Also, since the incorrect association rates do
not increase appreciably, and the method is more powerful when all the true covariates are
present in the pool of searchable variables, it is better to include more, rather than fewer,
variables in the initial pool of searchable variables, to a point. Although informing the prior
improves variable selection performance, we caution the readers that, as discussed in
previous reports, these methods are not to replace careful consideration of available
scientific information or data analysis [12,13]. The epidemiologist should approach the
study with a preconceived set of candidate variables to investigate as potential risk factors or
confounders. However, these results imply that if there is debate about whether or not to
include a specific factor as a potential, it can be included, using an appropriately calibrated
prior. However, we remind the reader that in this study we used a relatively small number of
covariates, representing a typical hypothesis driven approach focusing on specific covariates
and interactions. Theoretically, SSVS can be applied to problems with many more
covariates (see [18,36]), but this would increase computational burden, and often requires
custom computer code to implement. As the number of variables increase, identifiability has
to be addressed as well, [37–40] which is beyond the scope of this paper.

This study also compared standard methods using the same data. We see that for all
simulated diseases, the standard stepwise selection methods did not offer any improvement
in the average percentage of correct or incorrect associations, or their ratio over simply
calculating the 95% confidence interval for the log odds ratio and selecting those variables
whose confidence intervals did not include 0. In all three simulated diseases, by our
measures, the 95% confidence interval method performed better than the standard selection
methods, regardless of the threshold value. Even looking at the individual variables, there
were only a few variables where either backward selection or forward selection performed
better than constructing the 95% confidence intervals. As for within the stepwise selection
methods, on average, they performed similarly across the scenarios without interactions.
However when investigating specific interactions, backward selection with a stringent
threshold performed the best for the non-nested models.

This study supports using Bayesian variable selection methods with informed priors when
looking for factors associated with disease, both risk factors and protective factors. With
appropriately informed priors, SSVS had the highest average percentages of correct
associations and lowest average percentages of incorrect associations of all the methods
examined. Using a calibration study with the data at hand helps to calibrate the priors to
some optimum setting, and also helps evaluate robustness to the prior for certain analyses.
Note that the methods used in this study are model selection methods, which are applicable
to many types of generalized linear models. On the basis of results in the literature regarding
performance with a continuous response [5,6,18], we conjecture that these results generalize
to a continuous response. Finally, this study showed that of the standard selection methods
examined, none provided improvement over the classical method of calculating the 95%
confidence intervals and evaluating whether or not the interval for the log odds ratio
includes 0. With this study, we see that Bayesian methods offer a way to bring prior
information into the analysis in such a way as to increase detection of true associations.
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Table 1

Simulation parameters for covariate distributions

Covariate Distribution Population Prevalence Reference

Smoking Multivariate normal with Alcohol. Mean 0,
variance 1, correlation 0.54

0.2 Centers for Disease Control and Prevention,
2006 [41]

Alcohol Multivariate normal with Smoking. Mean
0, variance 1, correlation 0.54

0.44 Encyclopedia of Public Health, 2002 [26],
Correlation from Batel, 1995 [24]

XPD (Lys751Gln) N(0,1) LL = 0.442
LG = 0.45
GG=0.108

Spitz, M.R. et al., 2001 [42]

Fiber Multivariate normal with Folate. Mean 77.8
g, variance 7.842, correlation 0.35

Continuous Covariate Hudson, TS et al., 2006 [22]

Folate* Multivariate normal with Fiber. Mean 331
mcg, variance 1372, correlation 0.35

Continuous Covariate Shen H. et al, 2001 [43]
Correlation: Bingham et al, 2005 [21]

MTHFR (C677T) N(0,1) TT = 0.42
TC = 0.455
CC=0.105

Shi, Q. et al, 2005 [44]

X6† N(74.47, 25.53) Continuous Arbitrary

X7† N(0, 33.55) Continuous Arbitrary

X8* N(237.25,7.57) Continuous Arbitrary

X9 N(15, 5) Continuous Arbitrary

X10 N(0,1) AA = 0.5
AB=0.45
BB=0.05

Arbitrary

X11 N(17, 5) Continuous Arbitrary

X12 N(22, 6) Continuous Arbitrary

X13 N(25, 7) Continuous Arbitrary

X14 N(12, 5) Continuous Arbitrary

X15 N(0, 1) 1 = 95%
2= 5%

Arbitrary-Similar to recessive coding for a
SNP**

*
Covariates transformed by dividing by 100 before simulating the disease and analysis to facilitate computations of the probabilities.

†
Covariates transformed by dividing by 10 before simulating the disease and analysis to facilitate computations of the probabilities.

**
SNP = single nucleotide polymorphism.
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Table 2

Covariates and odds ratios extracted from the literature

Covariate Odds Ratio β-coefficient+ Reference

Smoking 15 2.708 Le Marchand et al., 2002

Alcohol 2.1 0.7419 Bandera, E. V., et al. 2001

XPD 1.84 0.6098 Spitz et al., 2001

Fiber 1 0

Folate .53 −0.6349 Shen et al. 2003

MTHFR .6 −0.5108 Shi et al. 2005*

*
The odds ratio for MTHFR is actually the lower endpoint of the 95% confidence interval in this source.

+
β-coefficient = log(odds ratio)
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