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Abstract
Despite significant advances in our understanding of the pathophysiology of acute lung injury, a
lung-protective strategy of mechanical ventilation remains the only therapy with a proven survival
advantage. Numerous pharmacologic therapies have failed to show benefit in multicenter clinical
trials. The paradigm of early, goal-directed therapy of sepsis suggests greater clinical benefit may
derive from initiating therapy prior to the onset of respiratory failure that requires mechanical
ventilation. Thus, there is heightened interest in more accurate and complete characterization of
high-risk patient populations and identification of patients in the early stage of acute lung injury,
prior to the need for mechanical ventilation. This article discusses the growing literature on
clinical predictors of acute lung injury (including risk factors for specific subgroups) with an
emphasis on transfusion-related risk factors and recent research targeting the early identification of
high-risk patients and those with early acute lung injury prior to the onset of respiratory failure.
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Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a
spectrum of acute hypoxemic respiratory failure disorders, characterized by bilateral
airspace consolidation with high permeability and protein-rich edema fluid. ARDS was first
described by Ashbaugh and colleagues in a series of 12 patients in 1967 [1]. They
recognized a common pattern of severe respiratory distress, refractory cyanosis, loss of lung
compliance and diffuse alveolar infiltrates in a variety of clinical disorders, including sepsis,
pneumonia, aspiration and major trauma. Previously, similar syndromes of acute respiratory
failure were recognized only as distinct conditions named for their specific inciting etiology
(e.g., Da Nang lung, shock lung, post-traumatic lung and respirator lung) [2]. However, lack
of consistent definitions and appropriately powered clinical trials diluted the impact of early
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research efforts and constrained improvements in clinical outcomes. As recently as 1990, the
mortality rate was estimated to be as high as 67% [3].

In 1994, the American and European Consensus Conference (AECC) established more
specific clinical criteria for ALI and ARDS, providing standardization for clinical research
and multicenter clinical trials [4]. However, despite our improved understanding of the
etiologies and pathophysiology of ALI, in the nearly 20 years since the AECC [5], a lung-
protective strategy of mechanical ventilation is the only supportive therapy that clearly
improves survival [6]. Other ventilatory strategies, including prone positioning [7,8], high
levels of positive end-expiratory pressure (PEEP) [9–11] and a conservative fluid strategy
[12], have shown potential benefit in terms of a reduction in the duration of mechanical
ventilation, but none have significantly reduced mortality. While these studies represent
advances in the supportive care of patients with ALI, no disease-specific treatments
targeting the pathogenesis of the underlying lung injury can currently be recommended.
Numerous pharmacologic therapies have shown promise in early phase studies but failed to
demonstrate benefit in multicenter clinical trials [13,14]. The apparent benefit of early goal-
directed therapy for sepsis [15] suggests that greater clinical benefit may derive from
initiating therapy prior to the onset of mechanical ventilation-dependent respiratory failure.
Early intervention to limit tidal volumes and transfusions in at-risk patients may prevent ALI
[16,17]. Multiple pharmacologic therapies that have either failed to show benefit in ALI
after progression to mechanical ventilation, such as aerosolized albuterol (NCT00434993
[201]), or that are currently being evaluated, such as statins (SAILS Trial [NCT00979121]
[202] and HARP study [18]) or antiplatelet agents [19], may yield additional benefit if
initiated earlier in the progression of lung injury. This focus has led to greater interest in
earlier identification of ALI and better characterization of high-risk patient populations prior
to the onset of lung injury.

Improved understanding of cellular pathways of injury and genomic and proteinomic
signatures of ALI offer potential for more accurate and early detection but are not currently
sufficiently validated for use in clinical practice [5,20–24]. These topics have been reviewed
elsewhere and are beyond the scope of this article, which will focus on the growing
literature on clinical risk factors and strategies for early identification of ALI.

Limitations of current consensus criteria
The AECC criteria have allowed standardization of patients for clinical trial and
epidemiologic purposes. However, controversies with the criteria still exist.

Correlation between clinical criteria and the accepted histopathalogic correlate of diffuse
alveolar damage (DAD) is less than perfect. Esteban et al. found a clinical diagnosis of ALI
was 75% sensitive and 84% specific for the presence of DAD on autopsy of patients in an
intensive care unit (ICU) [25], while de Hemptinne et al. found DAD was present at autopsy
in only 50% of patients with clinical criteria for ALI [26]. However, autopsy findings may
not conform temporally to the constellation of clinical symptoms, and histopathologic data
are rarely available in clinical settings. Until more accurate physiologic, laboratory or
imaging assessments are routinely available, current clinical criteria will need to continue to
define the syndrome.

While a syndrome defined by physiologic parameters fosters conceptualization of ALI as a
final common pathway of a broad array of potential etiologies of lung injury (a major
strength of Ashbaugh's series and of the AECC criteria), it also results in inclusion of
heterogeneous patient populations with potentially different pathophysiologies and
prognoses. Better characterization and risk stratification of subgroups of ALI may be
important for the success of future clinical trials. Furthermore, criteria based on physiologic
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parameters, as opposed to disease entities, may not be intuitive for clinicians. A recent
survey of ICU clinicians still identified ‘physician under-recognition’ of the syndrome as a
barrier to implementing lung-protective ventilation [27].

In addition, the AECC criteria include acute respiratory failure and require calculation of the
PaO2/FiO2 ratio [4]. Traditionally, this has limited the diagnosis to patients receiving
mechanical ventilation. In the most rigorous prospective study to date of the epidemiology
of ALI/ARDS in the USA, Rubenfeld et al. interpreted respiratory failure to include
mechanical ventilation via a noninvasive facemask or endotracheal tube [28]. However,
other authors have expanded interpretation of the consensus criteria to include
nonmechanically ventilated patients and patients outside of the ICU [29–32]. In a pediatric
study of ALI, 85 out of 328 children were not intubated at the time of diagnosis and 46
never required intubation or mechanical ventilation [30]. A second pediatric study
retrospectively identified emergency department patients with acute hypoxic respiratory
failure defined as a PaO2/FiO2 ratio of less than 300 (using a PaO2 derived from recorded
saturations and charted FiO2) [31]. However, only 5% of these patients were intubated
during the follow-up period. Ferguson et al. prospectively followed 815 patients who were
admitted to a hospital ward or an ICU with at least one predefined risk factor for ALI [29].
Overall, 53 patients (7%) developed ALI; 17 patients were diagnosed with ALI outside of
the ICU (15 were never admitted to an ICU) and 24 were not receiving mechanical
ventilation at the time of the diagnosis.

Expanding the definition of ALI to outside the ICU may contribute to earlier recognition but
it raises several issues that may jeopardize standardization of study populations. First,
measuring a PaO2/FiO2 ratio assumes a reasonably accurate estimation of the inspired FiO2,
which can be problematic in patients who are spontaneously breathing with an indeterminate
inspired concentration of oxygen (i.e., not an endotracheal tube or tight-fitting noninvasive
mask). Still, high oxygen flow rates delivered by a facemask likely result in an inspired FiO2
of at least 50% [33] so only a PaO2 less than 150 mmHg would be required to meet the
PaO2/FiO2 criteria for ALI (PaO2/FiO2 <300). However, quantifying lung injury by a PaO2/
FiO2 ratio in spontaneously breathing patients ignores the beneficial effects of positive
pressure ventilation on lung recruitment and oxygenation, and is likely not directly
comparable to mechanically ventilated patients to whom this criterion has traditionally been
applied. Furthermore, expanding the criteria to include spontaneously breathing patients
focuses the definition of respiratory failure to merely a need for supplemental oxygen
without regard for respiratory distress or impending respiratory arrest. If a PaO2/FiO2 ratio
less than 300 is the sole criterion for respiratory failure, then any patient with a PaO2 less
than 63 mmHg (arterial saturation of 92%) on room air (21% FiO2) could meet criteria for
ALI. Finally, and most relevant to this article, this expanded definition blurs the distinction
between early recognition of ALI versus identifying high-risk patients with clinical
predictors of developing ALI. For example, a recent study compared ALI (defined by
bilateral infiltrates and hypoxemia) to patients without one or both in patients admitted to
respiratory isolation rooms outside the ICU [32]. Respiratory distress was higher in the ALI
group but mortality was low and similar between groups (12 vs 10%). If ALI by these
criteria does correlate with important differences in outcomes and healthcare utilization, is it
a meaningful distinction? While convenient, direct application of ALI criteria to
spontaneously breathing patients outside the ICU may not provide clinical relevance without
more rigorous validation in these cohorts.
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Early identification of at-risk patients
Inside the ICU

Early studies prior to standardized criteria and management for ALI/ARDS and sepsis
identified the incidence of ARDS associated with several predisposing conditions [34–36].
Hudson et al. prospectively evaluated 695 ICU patients at risk for development of ARDS
[35]. The presence of one or more of seven clinical risk factors (e.g., sepsis, aspiration or
trauma) was 79% sensitive and 26% specific for developing ARDS. Sepsis (43%), massive
transfusion (40%) and multiple trauma (25%) carried the greatest risk of developing ARDS.
Increasing age, Acute Physiologic and Chronic Health Evaluation II (APACHE II) and
Injury Severity Scores (ISS) were also associated with an increased incidence of ARDS.
Previously, Fowler et al. found pneumonia (12%), aspiration (36%) and disseminated
intravascular coagulation (22%) were the strongest predictors but the overall incidence of
ALI was only 7% [34]. The presence of multiple risk factors compounded the risk of ARDS
[34–36] and was more predictive than the ISS and the degree of impaired oxygenation [36].

More recently, Gong et al. prospectively evaluated a cohort of 688 ICU patients with a
predisposing factor of sepsis, trauma, hypertransfusion or aspiration. Overall, 32%
developed ARDS. A pulmonary etiology of injury (pneumonia, aspiration or pulmonary
contusion), transfusion of more than eight units of packed red blood cells and transfer from
another hospital increased the risk of ARDS, while trauma and a history of diabetes were
associated with a lower risk [37]. A respiratory rate above 33 breaths/min, platelets less than
80,000/μl, albumin less than 2.3 g/dl, hematocrit above 37.5% and pH less than 7.33 were
also associated with an increased risk of ARDS [37]. The apparent protective effect of
diabetes was also observed in a cohort of septic patients at risk for ARDS [38]. In septic
patients, additional factors have been associated with increased risk of developing ALI
including a history of alcohol abuse, delayed initiation of early goal-directed therapy or
appropriate antibiotics, treatment with chemotherapy, an increased respiratory rate [38] and
hypoproteinemia [39].

Outside the ICU
In a prospective study of patients in an acute-care setting, primarily the emergency
department, we found that patients without clinical evidence of left atrial hypertension and
without chronic lung disease who had bilateral opacities on the chest radiograph and
required more than 2 l/min nasal cannula oxygen, progressed to require mechanical
ventilation and meet the standard consensus definition of ALI [40]. On multivariate analysis,
only the level of supplemental oxygen was independently associated with progression to
ALI (Table 1). Thus, a clinical definition of early ALI, defined by hospital admission with
bilateral opacities on the chest radiograph in the absence of left atrial hypertension and a
supplemental oxygen requirement greater than 2 l/min to maintain a saturation above 90%,
identified patients who progressed to ALI with 73% sensitivity and 79% specificity [40].
When clinical data for the first 72 h of admission (or up to 6 h prior to onset of ALI) were
analyzed, only the APACHE II and supplemental oxygen requirement were independent
predictors of progression to ALI [Levitt JE, Unpublished Data]. Cutoffs of above 2 l/min
and more than 6 l/min of supplemental oxygen had similar discrimination (AUC 0.76 for
both) with more than 2 l/min being more sensitive (81 vs 61%) and more than 6 l/min more
specific (91 vs 71%).

In 815 ward patients with at least one risk factor for ALI, Ferguson et al. found pulmonary
risk conditions had a higher rate of progression to ALI than nonpulmonary conditions (15 vs
5%; p < 0.0001), but shock was the strongest predictor (shock 36%, pneumonia without
shock 10% and nonpulmonary sepsis 1%; p < 0.001) [29].
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In the largest prospective multicenter study to date, Gajic et al. recently reported validation
of their previously derived Lung Injury Prediction Score (LIPS) [41,42]. Using a 2500
patient training cohort and a 3084 patient validation cohort recruited from 22 centers in the
USA, the investigators modeled the development of ALI from previously published risk
factors present at the time of hospital admission [41]. Risk factors were divided into
predisposing conditions (sepsis, shock, pneumonia, aspiration, trauma and high-risk surgery)
and risk modifiers (obesity, alcohol abuse, diabetes, hypoalbuminemia, acidosis, tachypnea
and oxygen supplementation). The overall incidence of ALI in the cohort was low at 7%.
The incidence of ALI varied depending on risk factor, with smoke inhalation (26%) and
shock (18%) carrying the highest risk and spine surgery and pancreatitis (3% each) the
lowest risk of developing ALI. Overall, nonmutually exclusive diagnoses of shock, sepsis
and/or pneumonia occurred in 298 (79%) of 377 cases of ALI. On multivariate analysis,
shock, aspiration, traumatic brain injury, high-risk (acute abdomen, cardiac and aortic
vascular) and emergent surgery were independent predictors for developing ALI. Obesity
(BMI >30), tachypnea (respiratory rate >30/min), supplemental oxygen greater than 4 l/min,
acidosis (pH <7.35) and hypoalbuminemia were modifiers that increased risk of ALI (Table
2). The AUC of their model was 0.80 and it outperformed the APACHE II (AUC 0.67). A
LIPS of 4 provided the best discrimination with an associated sensitivity of 69%, specificity
of 78% and a positive predictive value of 18%.

The incidence of ALI (33%) in the study by Levitt et al. [40] was substantially higher than
the 7% in the two studies by Ferguson et al. [29] and Gajic et al. [41]. In Gajic's cohort,
even a LIPS above 4 had a positive predictive value of only 18%. This difference likely
highlights differences between strategies identifying at-risk patients prior to the onset of
lung injury versus identification of existing (defined by bilateral chest radiograph opacities
in Levitt et al.) but early ALI prior to onset of respiratory failure. For some pulmonary-
specific risk factors (i.e., pneumonia, aspiration and so on), this distinction may be semantic
while for others (nonpulmonary sepsis, high-risk elective surgery) the distinction is real,
affecting not only the prevalence but also the time of progression to ALI. In the cohort by
Levitt et al., median time to progression was less than 24 h [40]. Similarly rapid rates of
progression were reported by Ferguson et al. (median 0 days, interquartile range [IQR] 0–2)
[29] and Pepe et al. (76% within 24 h) [36]. Gajic et al. included elective admissions for
high-risk surgeries and found progression to ALI occurred over a median of 2 days (IQR 1–
4 days) [41]. These differences may have important implications when selecting strategies to
identify patients within an adequate window to initiate therapeutic or preventative therapies.

Important subgroups of at-risk patients
Mechanically ventilated patients

The tidal volumes in mechanically ventilated patients without ALI are likely an important
contributor to the development of lung injury. In a 2004 review of non-ALI patients
mechanically ventilated for more than 48 h, Gajic et al. found that tidal volumes were large
(11.4 and 10.4 ml/kg predicted bodyweight for women and men, respectively) and were
independently (along with transfusions of blood products, acidemia and a history of
interstitial lung disease) associated with the development of ALI [43]. In a similar review of
789 patients, Jia et al. found tidal volumes and peak airway pressures along with plasma
transfusion, sepsis and a high positive fluid balance independently predicted ARDS [44]. In
a prospective trial, Determann et al. randomized 150 critically ill patients requiring
mechanical ventilation to receive tidal volumes of 6 or 10 ml/kg predicted bodyweight [45].
The study was stopped early owing to a greater rate of ALI in the higher tidal volume group
(14 vs 3%; p = 0.01). In addition, lower tidal volumes led to lower plasma (but not lavage
fluid) levels of IL-6 consistent with the results of lower tidal volumes in patients with ALI
[6].
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By contrast, an early clinical trial of mechanically ventilated patients at risk for ARDS found
no difference in rates of ARDS between patients randomized to PEEP of 8 cm H2O versus
no PEEP. However, a subsequent trial randomized 131 patients with normal chest
radiographs and a PaO2/FiO2 above 250 to receive 5–8 cm H2O of PEEP versus no PEEP
and reported reduced rates of ventilator-associated pneumonia (25 vs 9%; p = 0.017) and a
number of patients who developed hypoxemia (54 vs 19%; p < 0.001) with a trend toward a
reduced rate of ARDS (14 vs 5%; p = 0.08) in patients ventilated with PEEP [46]. In
addition, ventilator strategies to reduce atelectasis attenuated bacterial growth and
translocation in an animal model of pneumonia [47]. The ideal ventilation strategies for non-
ALI patients or for specific subgroups of patients at risk for ALI remain to be established.
However, the routine use of modest tidal volumes (6–8 ml/kg predicted bodyweight) and
PEEP (5–10 cm H2O) seems a reasonable approach.

Noninvasively ventilated patients
The role of noninvasive mechanical ventilation in the treatment of ALI remains uncertain. A
small clinical trial showed reduced rates of endotracheal intubation and mortality in
immunocompromised patients with pulmonary infiltrates and respiratory failure who were
randomized to receive noninvasive ventilation versus standard treatment with supplemental
oxygen [48]. However, in a study of 123 ICU patients with acute hypoxic respiratory failure
and pulmonary edema (102 with ALI and 21 with cardiac disease) randomized to receive
continuous positive airway pressure (CPAP) versus standard oxygen therapy, CPAP did not
reduce rates of endotracheal intubation or mortality despite improved PaO2/FiO2 ratios and
subjective improvement at 1 h of therapy. Furthermore, there were more adverse events in
the CPAP group suggesting potential detriment with delayed intubation. In a 2006 meta-
analysis of randomized clinical trials, Agarwal et al. found noninvasive ventilation did not
reduce the rate of endotracheal intubation or mortality in patients with ARDS [49].
However, the number of patients with ARDS in these trials was small and there was
significant heterogeneity among the trials. In a subsequent review of noninvasive ventilation
at a single center, the same authors found 12 out of 21 patients (57%) with ALI successfully
avoided intubation, but there was no difference in response to noninvasive ventilation
between patients with ALI and other causes of acute hypoxemic respiratory failure [50].
Only a lower baseline PaO2/FiO2 ratio independently predicted the failure of noninvasive
ventilation. Another single-center review found 33 of 47 patients (70%) with ALI avoided
intubation with treatment with noninvasive ventilation [51]. An APACHE II score above 17
and a respiratory rate above 25 after 1-h of noninvasive ventilation predicted failure.
Similarly, in a multicenter review of ARDS patients treated with noninvasive ventilation,
Antonelli et al. found a 1 h Simplified Acute Physiology Score II above 34 and a PaO2/FiO2
ratio of less than 175 predicted failure [52]. In this review, 79 of 147 patients (54%) avoided
intubation, and avoidance of intubation led to lower rates of ventilator-associated pneumonia
and mortality. However, in a series of 79 patients with ALI treated with noninvasive
ventilation, 70% (including all 19 patients with shock) required endotracheal intubation [53].
In patients without shock, metabolic acidosis and severe hypoxemia independently predicted
failure of noninvasive ventilation. In addition, patients who failed noninvasive ventilation
had higher-than-predicted mortality, again suggesting potential detriment with delayed
intubation. Heterogeneity in settings (noninvasive ventilation vs CPAP), patient selection
and clinician expertise may explain the different results across centers. However,
noninvasive ventilation needs further validation in prospective randomized trials before it
can be routinely recommended in patients with ALI or ARDS.

Transfusion-related lung injury
There is growing evidence that transfusion of blood products plays an important role in the
pathogenesis of ALI in at-risk patients. Numerous authors have reported increased rates of
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ALI with transfusion of red blood cells [37,54–60], platelets [60–63] and fresh frozen
plasma (FFP) in adults [60–62,64–66] and children [67]. However, quantification of the risk
of transfusion is challenged by the complex pathophysiology and current criteria for
transfusion-related acute lung injury (TRALI). Improved understanding of the
pathophysiology of TRALI has identified the importance of the ‘two-hit’ model [68]. First,
the pulmonary vascular endothelium is activated by one or more endogenous stimuli (i.e.,
sepsis or surgery) resulting in priming and adherence of neutrophils [69,70]. A second event,
such as the transfusion of antibodies to leukocyte antigens or the infusion of bioactive lipids,
results in activation and neutrophil-mediated cytotoxicity of the vascular endothelium,
resulting in capillary leak and ALI [68,71].

However, despite this enhanced understanding of the importance of a ‘first hit’, current
clinical criteria for TRALI limit the diagnosis in the setting of existing risk factors for ALI.
The 2004 National Heart, Lung and Blood Institute (NHLBI) and Canadian Consensus
Conference criteria exclude pre-existing ALI and require progression within 6 h of
transfusion [72,73]. The NHLBI criteria [73] allow coexisting risk factors if clinical
deterioration is appropriately temporally related to transfusion, while the Canadian criteria
[72] only allow a diagnosis of ‘possible TRALI’ in the setting of a known risk factor for
ALI. Past estimates, dependent on recognition of overt cases in low-risk patients, place the
incidence of TRALI at a fraction of a percent and likely underestimate the true incidence
[74,75]. In the largest prospective trial to date enrolling 901 consecutively transfused
medical ICU patients over a 2-year period, Gajic et al. found an incidence of TRALI of 8%
[60]. Even this estimate likely underestimates the true contribution of transfusions to the
development or worsening of lung injury in critically ill patients. Expanding the definition to
include delayed TRALI (development of ALI 6–72 h after transfusion, regardless of existing
risk factors) increases the incidence to 25% with an associated mortality of 40% [76]. A
prospective trial of 225 patients admitted to an ICU owing to gastrointestinal bleeding found
a TRALI incidence of 17%, which increased to 29% in patients with end-stage liver disease
[77]. In patients with existing ALI, Gong et al. found a dose-dependent increase in mortality
with an increasing number of red blood cell transfusions [37]. In the prospective trial by
Gajic et al., 12% of patients had worsening of their oxygenation following transfusion [60].

To complicate the diagnostic complexity even more, TRALI must be distinguished from the
related entities of transfusion-related circulatory overload, which may be three-times as
prevalent as TRALI [63], anaphylactic transfusion reactions, and transfusion of
contaminated blood products. In addition, we need to shift the paradigm of TRALI from the
patient developing ALI after receiving a massive red blood cell transfusion. Gajic et al.
showed a higher incidence of TRALI with plasma-rich products (FFP and platelets)
compared with packed red blood cells [60]. Many older studies [34,35,78] failed to control
for FFP, which was routinely given along with massive red blood cell transfusion while
more recent studies in medical, trauma and surgical populations have found plasma
containing blood products were independent predictors of ALI, while packed red blood cells
were not [57,60,62,63,79].

Important additional donor and host factors exist. Gajic et al. found a history of chronic
alcohol abuse or sepsis in transfusion recipients increased the risk of ALI, while female
gender and a higher number of pregnancies among donors increased rates of post-
transfusion ALI. Higher rates of ALI were also associated with a higher number of units
with anti-granulocyte and anti-HLA class II antibodies and increased concentrations of
lysophosphatidylcholine in the donor products [60]. In addition, in a case–control study of
ICU patients transfused with more than 2 units of FFP or apheresis platelets, Gajic et al.
found a deterioration in oxygenation (PaO2/FiO2) in patients receiving female only but not
male only products compared with controls [64]. Recipients of male only products had more
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ventilator-free days and a strong trend toward improved survival. The increased incidence of
TRALI with female and multiparous donors has led to removal of females from the plasma
donor pool in the UK, The Netherlands and many parts of the USA [68]. The move to male
only plasma products led to a reduction in the observed incidence of TRALI and plasma
product-associated TRALI in the UK [80]. The role of other donor factors such as the age
(shorter storage time) and leukocyte reduction of packed red blood cells are less well
established [57,68].

Trauma
Multiple authors have confirmed the association of transfusions in this subgroup of at-risk
patients [54,55,59,66,81]. Using multivariate regression models, Watson et al. found a 2.5%
increase in ARDS and 2.1% increase in multiple organ failure per unit of FFP received in
1175 blunt trauma patients with hemorrhagic shock [66]. Navarrete-Navarro et al. reported
an incidence of ARDS of 7% in 693 patients prospectively identified with severe trauma
(ISS ≥16). Chest trauma (sternal fracture or pneumothorax), femur fracture, number of long
bone fractures, APACHE II, ISS and amount of blood and colloid transfusions were
associated with ARDS, but on multivariate analysis, only chest trauma, APACHE II and
blood transfusions independently predicted the development of ARDS [82]. Miller et al.
reported an incidence of ARDS of 5% in 4397 patients receiving blunt (nonpenetrating)
trauma [83]. Age above 65 years, ISS greater than 25, hypotension and transfusion of more
than 10 units of packed red blood cells in the first 24 h predicted ARDS but metabolic
acidosis, femur fracture, infection or severe brain injury did not. However, in studies of
smaller cohorts, the severity of metabolic acidosis was associated with developing ALI
[81,84]. Rainer et al., using classification and regression tree analysis, found an ISS above
27 and a hematocrit less than 37, or a hematocrit less than 36 and a white blood cell count
less than 15 predicted ALI with good sensitivity and specificity (classification rate of
96.7%) [85]. Pallister et al. reported that elevated levels of urinary albumin excretion rate
were a good predictor of early post-traumatic ALI [86].

Mascia et al. found higher tidal volumes and respiratory rates were associated with
developing ALI in patients intubated for severe brain injury [87]. Kahn et al. reported an
incidence of ALI of 27% in 626 patients with subarachnoid hemorrhage indentified
retrospectively by CT scan report [88]. Severity of illness, clinical grade of hemorrhage,
severe sepsis and transfusion of packed red blood cells all predicted ALI on multivariate
analysis.

In analysis of a prospective database of 897 trauma patients collected from 1997 to 2004,
Ciesla et al. found that PaO2/FiO2 ratios at 24 h were unchanged throughout the study
period on both univariate and multivariate analysis controlling for age, severity of injury and
blood transfusion in the first 12 h [17]. However, the adjusted PaO2/FiO2 at 72 h improved
significantly during the study period and rates of ARDS and multiple organ failure
decreased from 43 to 25% and 33 to 12%, respectively. The authors conclude that baseline
severity of injury or ‘systemic priming’ as a risk for lung injury did not change over the
study period, but that improvements in supportive care (lung-protective ventilation,
judicious transfusions, tight glycemic control and treatment of adrenal insufficiency)
attenuated the inflammatory response and reduced rates of ARDS and multiple organ failure.
This study highlights the potential of early and accurate identification of at-risk patients to
prevent or reduce the severity of ALI.

Surgical patients
The important perioperative risk factors for ALI, including the role of lung-protective
ventilation, are not as well characterized in surgical patients. There is evidence that the type
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of anesthesia may impact postoperative lung function through suppression of the adrenal
axis and impaired resolution of pulmonary edema [89]. Recently, Gajic et al. (in a
prospective cohort of >5000 patients with at least one previously published risk factor for
ALI) documented the incidence of ALI in five high-risk surgeries [41]. In decreasing order,
incidence of ALI was 17% (21 out of 127) for aortic surgery, 10% (55 out of 541) for
cardiac surgery, 9% (27 out of 295) for an acute abdomen, 4% (7 out of 175) for thoracic
surgery and 3% (16 out of 486) for spine surgery. In multivariate analysis, acute abdominal,
cardiac and aortic vascular surgery were independent predictors of ALI and spine surgery
showed a trend for an increased risk (p = 0.07).

Hughes et al. found that intraoperative fluid resuscitation but not tidal volumes or number of
packed red blood cell transfusions predicted postoperative ARDS [90]. In a subgroup of
patients undergoing major abdominal surgery, an open lung strategy of intraoperative
mechanical ventilation (6 ml/kg tidal volume with high PEEP of 15 cm H2O and recruitment
maneuvers) improved intraoperative PaO2/FiO2 and lung mechanics but not postoperative
PaO2/FiO2 or plasma levels of IL-6 or IL-8 compared with standard practice (10 ml/kg tidal
volume with no PEEP or recruitment maneuvers) [91]. In general, lung-protective modes of
mechanical ventilation are not routinely used intraoperatively, even in patients who might
otherwise meet criteria for ARDS. In a recent survey of noncardiac or thoracic surgery
cases, Blum et al. compared the intraoperative ventilation strategies among patients grouped
by their intraoperative PaO2/FiO2 ratio (>300, 200–300, 100–200 or <100) [92]. Tidal
volumes ranged from 8.6 to 9.2 ml/kg predicted bodyweight and PEEP from 2.5 to 5.5 cm
H2O. There were only minor statistical but no clinically relevant differences in tidal volumes
or PEEP between patients based on their PaO2/FiO2 ratio. In an early clinical trial
(published 10 years prior to publication of the ARDS Network trial of lower tidal volumes),
Lee et al. randomized 103 noncardiac and non-neurosurgical surgical ICU patients to
receive tidal volumes of 6 versus 12 cc/kg [93]. There was a trend toward lower pulmonary
infections (p = 0.06) and duration of intubation (p = 0.07) and ICU stay (p = 0.06) in the
lower tidal volume group despite a low baseline severity of illness (mean APACHE II of 13)
in both groups. The lack of routine use of perioperative lung-protective ventilation may
increase the risk of developing postoperative ALI. Multicenter prospective trials evaluating
the effects of perioperative tidal volumes, airway pressures and fluid and blood product
transfusion strategies are called for [89].

Surgical subgroups
Cardiopulmonary bypass represents a special class of surgery. Mechanisms and
interventions to prevent lung injury after cardiopulmonary bypass have been reviewed by
Clark [94]. While the cytokine release and complement activation due to the bypass circuit
may predispose to ALI, studies comparing off-pump to onpump coronary artery bypass
grafting have failed to demonstrate consistent improved postoperative lung function with
off-pump procedures. Other interventions such as maintaining ventilation during the
procedure, heparin coating of the extracorporeal circuit, leukocyte reducing filters and
treatment with aproprotinin, pentoxyphylline or aspirin have shown variable improvements
in biologic markers and lung function, but none have been validated to improve outcomes in
a prospective clinical trial [94].

In a subgroup of patients undergoing pneumonectomy for lung cancer, Jeon et al. found
higher tidal volumes (odds ratio: 3.37 per 1 ml/kg predicted bodyweight increase) and
higher airway pressures (odds ratio: 2.32 per 1 cm H2O increase) during single lung
ventilation were independently associated with postoperative ALI [95]. Kim et al. found that
a lower predicted postoperative forced expiratory volume in 1 s (FEV1) and a greater
perfusion fraction of resected lung independently predicted postoperative ARDS [96].
Incidence of ARDS was 17% when the perfusion fraction of resected lung was above 35%
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compared with 3.3% when it was not and was independent of the predicted postoperative
FEV1.

Kuzniar et al. reviewed 84 cases of talc pleurodesis. Postprocedure ALI was uncommon
(6%) but severe hypoxemia (defined by a requirement of an increase in FiO2 of 0.15 on two
successive measurements within 6 h) was common (30%). The presence of preprocedure
peripheral edema, any preprocedure oxygen requirement or receipt of chemotherapy in the
previous 14 days were independent predictors for postprocedure ALI or severe hypoxemia
[97].

Other subgroups
In the subset of ALI secondary to the acute chest syndrome, younger age, homozygous SS
disease, lower levels of fetal hemoglobin, higher hemoglobin and leukocyte levels, avascular
bone necrosis and a prior history of acute chest syndrome have all been associated with the
development of ALI [98].

Lee et al. found ARDS occurred in 14 out of 124 cases (11%) of endoscopic sclerotherapy
for bleeding esophageal varicies [99]. Sepsis, low baseline albumin, use of balloon
tamponade and more than one sclerotherapy session (but not type or volume of sclerosant
used) independently predicted ARDS.

Utilizing automated surveillance to enhance early detection
The need to improve recognition of ALI and to identify patients with ALI earlier in their
clinical course has prompted attempts to use automated identification with real-time
surveillance of the electronic medical record. Herasevich et al. at the Mayo clinic in
Rochester (MN, USA) performed an automated continuous surveillance of 3795 ICU
patients using their ‘ALI sniffer’ (PaO2/FiO2 <300; Boolean query of radiographic reports
for ‘bilateral’ and ‘infiltrate’ or ‘edema’) and identified 325 patients with ALI with a
sensitivity and specificity of 95 and 89%, respectively [100]. Physician recognition of ALI
was present at the time of ‘sniffer’ identification in only 27% of patients and there was an
associated use of larger tidal volumes (9.2 vs 8.0 ml/kg predicted bodyweight) in
unrecognized cases of ALI. Azzam et al. demonstrated that automated electronic screening
of ICU trauma patients without congestive heart failure identified patients with ALI with
87% sensitivity and 89% specificity before or within 24 h of identification by two blinded
physician reviewers [101]. Given the evidence of rapid progression to respiratory failure and
ALI following initial injury [29,40,78] and the widespread adoption of electronic medical
records, refined automated surveillance systems have the potential to play a role in
identification and treatment of patients with developing lung injury.

Imaging of early ALI
The degree of consolidation on a chest radiograph has been shown to correlate with the
extravascular lung water (assessed by weight corrected for predicted bodyweight of
explanted lungs) [102]. However, the chest radiograph is not a reliable predictor of
progression to ALI. Our research group compared the value of the radiographic component
of the Lung Injury Score (LIS) to a modified LIS (scoring each quadrant as 0 for no opacity,
0.5 for <50% opacified or interstitial edema, and 1 for >50% opacified) for predicting
progression to ALI in patients admitted to the hospital with bilateral radiographic opacities
not due to isolated left atrial hypertension [103]. Agreement between two independent chest
radiologists was poor (kappa 0.37 and 0.25 for the LIS and modified LIS, respectively) and
scores were not associated with progression to ALI. A qualitative classification system
found bilateral consolidation beyond the bases (compared with limited bibasilar opacities or
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interstitial edema) was associated with progression to ALI on univariate analysis, but not on
multivariate analysis including the level of supplemental oxygen requirement [40].

Computed tomography (CT) scoring of the degree of consolidation and fibroproliferative
change (traction bronchiectasis and bronchiolectasis) [104], diffuse versus patchy or lobar
attenuation [105], and percentage of recruitable lung [106] are associated with greater
mortality [104–106], worse lung compliance [105], and fewer ventilator-free days and more
pneumothoraces in patients with ALI [104]. However, CT has not been well evaluated for
predicting progression to ALI. A review of CT scans in trauma patients reported that CT
scanning was more sensitive than plain radiographs for identifying factures and contusions,
but fractures and contusions visible on plain films were more predictive of progression to
respiratory failure [107].

Ultrasound is an inexpensive and noninvasive technology that allows rapid and accurate
bedside assessment of the lung in ALI. Ultrasound can accurately distinguish normal lung
(lung sliding with horizontal A lines), pulmonary edema (anterior B lines with lung sliding),
pneumothorax (absent lung sliding with anterior A lines and a positive lung point), lung
consolidation and pleural effusions [108]. A tight correlation exists between CT and
ultrasound, but not chest radiograph, assessment of lung re-aeration after antibiotic treatment
of ventilator-associated pneumonia [109], suggesting ultrasound may be a useful technology
to evaluate PEEP-induced alveolar recruitment in ALI.

In a small series of eight patients with blunt trauma and pulmonary contusion,
fluorodeoxyglucose positron emission tomography (FDG-PET) identified increased diffuse
signal in the lung of patients who developed ARDS compared with those who did not [110].
FDG-PET scanning identified increased uptake, presumably due to neutrophil sequestration,
in areas of normally aerated lung in patients with ALI, suggesting that it may be a sensitive
and early marker of lung injury prior to evidence of radiographic consolidation [111,112].
However, the clinical utility of labor-intensive, advanced imaging in ALI is unclear.

Expert commentary
Other than lung-protective ventilation, clinical trials in ALI have failed to demonstrate
improvements in survival. Studying heterogeneous patient populations with potential
different prognoses and pathophysiologies as well as delaying initiation of therapy until after
respiratory failure requiring mechanical ventilation (inclusion requirement of most clinical
trials) may limit our ability to identify effective treatments. Identifying better biologic
markers of lung injury and genomic and proteinomic signals of alterations in cellular
pathways contributing to lung injury may allow more specific targeting and earlier initiation
of treatment.

However, these techniques are not currently ready for clinical practice. Better
characterization of important clinical risk factors for developing ALI and of patients with
early lung injury who are at high risk for progression to respiratory failure, may allow early
intervention to prevent or attenuate the progression of lung injury. However, direct
application of current AECC criteria to spontaneous breathing patients outside the ICU may
not identify a clinically relevant cohort without further validation of these criteria in these
patient populations. The recently developed LIPS [41] and criteria for early ALI [40] offer
an opportunity to accurately identify high-risk patients and initiate interventions prior to the
onset of respiratory failure requiring mechanical ventilation. We suggest a paradigm of
increased recognition of conditions (sepsis, trauma, high-risk surgery, and so on) that may
either prime the lung for a secondary injury or induce early ALI with risk for progression to
respiratory failure, as well as modifiers (such as transfusion of blood products and larger
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tidal volumes) that may perpetuate lung injury in susceptible patients (Figure 1). This
conceptualization highlights potential targets, both pathways of lung injury and novel patient
populations, for future clinical trials addressing prevention and early intervention to
attenuate lung injury and progression to respiratory failure.

To date, no disease-specific therapies other than lung-protective ventilation have proven to
decrease mortality when initiated after progression to mechanical ventilation. However,
clinical trials of additional pharmacologic therapies are ongoing and designing future
clinical trials to initiate treatment earlier in the progression of lung injury may identify a
therapeutic window and an opportunity to improve outcomes not attained when treatment is
delayed until after onset of respiratory failure and need for mechanical ventilation.
Currently, initiating interventions such as lower tidal volumes in mechanically ventilated
patients and limiting blood and plasma transfusions in other high-risk patients may reduce
rates of progression to ALI.

Five-year view
Improved understanding of clinical predictors of ALI and better characterization of the
earliest phases of ALI will lead to novel empirically derived criteria such as the LIPS and
early ALI identifying patients prior to the onset of acute respiratory failure requiring
mechanical ventilation. These criteria will provide novel cohorts for future clinical trials that
can target prevention of ALI and treatment of early ALI prior to progression to the need for
mechanical ventilation. Similar to the paradigm of early goal-directed therapy of sepsis,
clinical benefit may derive from earlier recognition and treatment.

In addition, the propagation of electronic medical records will allow refinement of
automated surveillance systems that improve recognition of high-risk patients and patients
with early lung injury and, along with increased protocol driven care, increase the use of
earlier interventions to reduce rates of progression to ALI. Better characterization of risk
factors across diverse subgroups of patients at risk for ALI may allow more targeted
interventions in specific patient populations. Finally, improved recognition of the important
role that transfusion of blood products plays in initiation and exacerbation of lung injury will
lead to wider adoption of evidence-based guidelines to manage transfusion practices in
critically ill patients.
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Figure 1. Approach to early identification and management of patients at risk for acute lung
injury
Improved recognition of at-risk patients (‘priming’ events) and risk modifiers (comorbid
conditions) via automated surveillance and the Lung Injury Prediction Score, as well as
potentiators of lung injury (transfusions of blood products, mechanical ventilation,
aspiration, and so on), may allow early interventions to attenuate early injury and prevent
the development of ALI. In addition, establishing validated clinical criteria for early but
existing ALI in spontaneously breathing patients will provide novel cohorts for future
clinical trials of treatments (possibly statins, antiplatelet agents or aerosolized β-agonists)
prior to onset of respiratory failure. Initiating treatment earlier in the progression of lung
injury may identify a therapeutic window and an opportunity to improve outcomes not
attained when treatment is delayed until after the onset of respiratory failure and need for
mechanical ventilation. ALI: Acute lung injury; ARDS: Acute respiratory distress
syndrome.
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Table 1
Multivariate analysis of risk factors for progression to acute lung injury in patients with
evidence of existing lung injury on chest radiograph

Risk factor OR 95% CI p-value

>2 l/min supplemental O2
† 8.1 2.7–24.5 0.0002

Modified REMS (per 1 point increase) 1.2 1.0–1.4 0.07

Immunosuppression‡ 2.6 0.9–7.4 0.07

Airspace opacity beyond bases§ 1.3 0.4–3.8 0.68

SIRS 0.9 0.2–4.0 0.88

†
>2 l/min nasal cannula: amount of supplemental oxygen required to maintain an oxygen saturation >90%.

‡
Immunosuppression: active immunosuppression as defined by APACHE II.

§
Airspace opacity beyond bases: airspace opacities on chest radiograph beyond bases compared with bibasilar opacities or diffuse interstitial

edema.

APACHE II: Acute Physiologic and Chronic Health Evaluation II; OR: Odds ratio; REMS: Rapid Emergency Medicine Score; SIRS: Systemic
inflammatory response syndrome.

Reprinted from [40] with permission of the American College of Chest Physicians.
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Table 2
Multivariate regression analysis of risk factors for acute lung injury

Predisposing conditions OR† 95% CI† p-value

Shock 2.2 1.2–3.7 0.008

Aspiration 2.2 1.1–4.3 0.02

Sepsis 1.4 0.9–2.4 0.14

Pneumonia 0.3 0.02–1.7 0.3

High-risk surgery

Thoracic (noncardiac) 0.9 0.1–3.2 0.9

Orthopedic spine 2.1 0.9–4.6 0.07

Acute abdomen 2.5 1.1– 5.6 0.03

Cardiac 3.7 2.0–7.1 <0.001

Aortic vascular 5.9 2.5–13.0 <0.001

High-risk trauma

Traumatic brain injury 3.6 2.0–6.8 <0.001

Smoke inhalation 2.5 0.8–4.1 0.44

Near drowning 5.4 0.06–6.6 0.50

Lung contusion 1.5 0.6–3.4 0.36

Multiple fractures 1.9 0.8–4.1 0.12

Risk modifiers

Male gender 1.0 0.7–1.5 0.91

Alcohol abuse 1.7 0.9–2.9 0.08

Obesity (BMI >30) 1.8 1.2–2.5 0.004

Chemotherapy 1.6 0.6–3.6 0.32

Diabetes mellitus‡ 0.6 0.2–1.2 0.14

Smoking 1.1 0.7–1.5 0.4

Emergency surgery 3.1 1.6–5.9 <0.01

Tachypnea (RR >30/min) 2.0 1.1–3.5 0.02

SpO2 <95% 1.4 1.0–2.1 0.08

FiO2 >0.35 (>4 l/min) 2.8 1.9–4.1 <0.001

Hypoalbuminemia 1.6 1.0–2.4 0.03

Acidosis (pH <7.35) 1.7 1.1–2.7 0.02

†
Logistic regression coefficients presented in original table converted to ORs in this reproduction.

‡
Only in sepsis.

OR: Odds ratio.

Reprinted from [41] with permission of the American Thoracic Society.
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