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Abstract
This paper focuses on the impact of selection bias in the context of extended, community-based
prevention trials that attempt to “unpack” intervention effects and analyze mechanisms of change.
Relying on dose-response analyses as the most general form of such efforts, this study provides
two examples of how selection bias can affect the estimation of treatment effects. In Example 1,
we describe an actual intervention in which selection bias was believed to influence the dose-
response relation of an adaptive component in a preventive intervention for young children with
severe behavior problems. In Example 2, we conduct a series of Monte Carlo simulations to
illustrate just how severely selection bias can affect estimates in a dose-response analysis when the
factors that affect dose are not recorded. We also assess the extent to which selection bias is
ameliorated by the use of pretreatment covariates. We examine the implications of these examples
and review trial design, data collection, and data analysis factors that can reduce selection bias in
efforts to understand how preventive interventions have the effects they do.
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As preventive interventions become larger and more complex, researchers are increasingly
likely to examine the outcomes of randomized control designs as well as investigate possible
mechanisms of change. These implementation studies focus on how differences in factors
such as intervention dose, therapeutic process, or fidelity might account for differences in
participant outcomes. However, these efforts to “unpack” intervention effects are vulnerable
to selection biases (Winship & Mare, 1992), which occur when either known or unknown
compositional differences among subgroups of participants – rather than factors related to
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the intervention itself – account for final observed differences (Rosenbaum, 2002). For
example, the conscientiousness and competence that compel a teacher to administer an
intervention as intended might affect other ways in which she or he teaches, so that children
in that classroom would do well, almost regardless of the study condition to which they were
assigned. Unfortunately, such selection biases are rarely acknowledged and adequately
addressed (see studies included in the review of implementation research by Durlak &
DuPre, 2008).

Selection Bias and Dose-Response Analyses
Problems with selection bias are not new and apply to most studies of intervention
implementation. The threat selection bias poses to internal validity as well as to external
validity has been discussed at length elsewhere (e.g., Shadish et al., 2002). The key feature
of selection bias is that there is some systematic difference between those participants who
partake in some aspect of treatment and those participants who do not. Researchers
commonly think of selection bias that results from pretreatment differences, but selection
bias also can result from known or unknown differences that arise during the study period as
the result of variation in treatment adherence, quality of implementation, and attrition. This
threat to validity is known as unreliability of treatment implementation or selection by
treatment interactions (Shadish et al., 2002); it can be especially problematic whenever
investigators seek to understand what happened within the treatment condition of a
preventive intervention trial.

In those cases when selection bias occurs after the start of an intervention, features of study
design, like random assignment, will be insufficient to control the bias. Likewise, unless the
confounder is a stable trait that is known and measureable and exerts all its influence prior to
the beginning of the intervention, the use of pretreatment covariates will be insufficient to
control the bias. In those cases when the confounder varies over time, only more
sophisticated statistical analyses can be used to reduce its influence (e.g., Rosenbaum,
1984a, 1984b; Rosenbaum & Rubin, 1983; Winship & Mare, 1992).

Although problems with selection bias apply to most studies of intervention processes, these
problems are most apparent in dose-response analyses. Such analyses examine the
fundamental logic model underlying preventive interventions – that participants must
receive services to improve (Cicchetti & Hinshaw, 2002; Domitrovich & Greenberg, 2000).
In such analyses, dose does not represent the hypothesized mechanisms of change, like the
factors studied in mediation analyses; rather dose is a coarse indicator of how much
treatment was received in which to acquire those mechanisms of change.

The strongest design for a planned dose-response analysis would be to randomize different
levels of dose among participants, as randomization limits the possibility that there are
compositional differences between the subgroups assigned to different doses. Whenever
dose is not randomized, or when the randomized dose is not adhered to, variables that affect
selection of the dose received produce compositional differences between the subgroups. If
these variables also affect the outcome, the observed dose-response relation confounds the
effects of these compositional differences with the true dose-response relation. For example,
motivation is a confounder if more motivated participants adhere more closely to the
recommended dose and exhibit better outcomes than less motivated participants, or family
disorganization is a confounder if children who are frequently absent receive fewer sessions
of a school-based curriculum and exhibit worse outcomes than children who attend
regularly. In both cases, better outcomes are associated with higher dose; the selection bias
is positive and the observed dose-response relation appears stronger than the true relation.
However, if a counselor decides to schedule an extra session of treatment for a family in
crisis or extra tutoring is provided to those children who are failing a class, then worse

McGowan et al. Page 2

Prev Sci. Author manuscript; available in PMC 2011 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



outcomes would be associated with a higher dose; the selection bias would be negative and
the observed dose-response relation would appear weaker than the true relation.

The Present Research
This paper focuses on the impact of selection bias in the context of extended, community-
based preventive intervention trials. It demonstrates how selection bias can affect estimation
of treatment effects when confounders are unknown or incompletely recorded and therefore
cannot be controlled via analysis. In particular, this paper offers two detailed examples in
which confounding makes treatment appear less effective than it might be or even
iatrogenic. In Example 1, we describe an actual intervention in which selection bias was
believed to play havoc in estimates of the dose-response analysis of a preventive
intervention for young children with severe behavior problems. In Example 2, a series of
Monte Carlo simulations illustrate how severely selection bias can affect estimates in a dose-
response analysis when dose is tailored to participants’ need but when the reasons for
tailoring dose are unrecorded. In the final section of the paper, we examine the implications
of these examples and review trial design, data collection, and data analysis factors that can
reduce selection bias in implementation studies, such as dose-response analyses, of
preventive interventions.

Example 1
The purpose of Example 1 is to illustrate with real data how purported selection bias can
make it very difficult to interpret dose-response relations in an adaptive intervention.
Increasingly, preventive interventions are using adaptive designs, in which the amount or
type of an intervention component is adapted to participant need (Collins et al., 2004). The
rationale is that researchers can achieve more efficient and cost-effective interventions than
standard one-size-fits-all programs by providing more intensive treatment only when it is
warranted (Jacobson et al., 1989; Kreuter et al., 2000; Lavori et al., 2000). In the present
example, however, on-going decisions regarding the need for additional treatment most
likely results in selection bias as well. Depending on how we attempt to control for this
selection bias, we come to dramatically different conclusions about dose-response relations.

This example relies on data from Fast Track (Conduct Problems Prevention Research Group
[CPPRG], 1992), a multi-site, multi-year, randomized trial evaluating a six-component
intervention designed to prevent the development of severe conduct problems among
children exhibiting high rates of aggression at school entry. Evaluations of Fast Track
intervention effects have been published elsewhere (CPPRG, 1999; 2002). Intent-to-treat
analyses, comparing the randomized intervention and control groups, revealed a pattern of
positive intervention effects on various measures of social competence at the end of first
grade (CPPRG, 1999).

Because many treatment effects were small in magnitude and because some components of
the intervention required more resources to deliver, we were interested in conducting dose-
Selection response analyses to determine how well the various intervention components
were working. The peer pairing component was of particular interest for this study. Peer
pairing sought to enhance the impact of the social-skills training children received in the
universal classroom curriculum and small therapeutic groups by helping them generalize the
use of those new skills to individual peer interactions (Bierman et al., l996). Peer pairing
consisted of structured dyadic play sessions involving the intervention child and a rotating,
same-sex classmate who did not have behavior problems. In first grade, all children in the
intervention condition were offered one session of peer pairing per week for a total of 22
sessions. After one year of intervention, some children were exhibiting normal levels of
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social competence and aggression and were not experiencing peer rejection. Therefore, in
second grade, peer pairing was offered only to those children who still appeared to need it.

Continued need for peer pairing was based on objective criteria, measured at the end of first
grade. If children received a t-score of 65 or higher on the aggressive behavior or attention
problems syndrome of the Teacher’s Report Form (Achenbach, 1991), they were considered
to have clinically significant behavior problems that could undermine peer relations and thus
were supposed to receive peer pairing throughout second grade. T-scores between 60 and 65
were considered borderline. If children received patterns of sociometric nominations for
“like most” and “like least” indicating they were rejected by their classmates (Coie &
Dodge, 1988), they also were considered in need of an additional year of peer pairing.
Children whose sociometric nominations suggested they were controversial or neglected
were considered borderline. If children were “borderline” in terms of teacher ratings or
sociometric nominations, Fast Track allowed staff members to use their best clinical
judgment, based on their own observations and discussions with teachers, to decide whether
the child should receive peer pairing in second grade. When project guidelines specified
peer pairing or staff members determined that a child should receive peer pairing, that child
was supposed to receive peer pairing throughout the fall and spring of second grade.
However, Fast Track also allowed staff members to initiate peer pairing sessions at any
point during second grade if they noticed worrisome declines in children’s social
functioning. In addition, staff members could deliver extra peer pairing sessions if they
believed the sessions would be helpful. The number of peer pairing sessions children
received ranged from 0 to 43.

Measures
For this study, dose is the total number of peer pairing sessions that each child received
during second grade, based on weekly records kept by clinical staff members. Response is
the child’s social competence, as rated by teachers at the end of second grade. Social
competence was measured using the Social Health Profile, a questionnaire developed for
Fast Track, which consisted of nine items, such as “Friendly” and “Controls temper when
there is a disagreement.” Each item was rated on a 6-point Likert scale, with response
options ranging from “almost never” to “almost always” (Cronbach a > .80). Pre-second
grade covariates included social competence (using the Social Health Profile) measured at
the end of first grade, as well as study cohort, study site, child race, and child sex.

Analyses
Regression analyses of intervention-control group differences among children who were
promoted to second grade and entered the adaptive phase of peer pairing intervention (n =
410 and 403 in the intervention and control groups, respectively) revealed a small and
marginally significant effect of being in Fast Track on growth in social competence during
second grade, after controlling for end-of-first-grade social competence scores, cohort, site,
race, and sex: Standardized β (for treatment) = 0.06, p = 0.06 (unstandardized parameter
estimate = 0.12, F [n = 745, df = 9 and 735] = 15.07, p < 0.001, R2 = 0.16).1 Relations like
this – suggesting that children in the intervention condition were doing better than children
in the control condition but that the adjusted mean difference was less than one-tenth of one
standard deviation – often motivate efforts to examine intervention effects in greater depth
to understand exactly what might be happening.

1Although necessary to examine what happened in second grade, it should be noted that biases might be introduced by stratifying on a
post-randomization variable, such as promotion to second grade. The children in the intervention group who were promoted after
receiving a year of intensive Fast Track services might be quite different than the children in the control group who were promoted
without such services.
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Dose-response analysis 1: All intervention children who were promoted to
second grade—Our first implementation analyses relied on data from the children in the
intervention group only to examine whether the dose of peer pairing in second grade
affected their growth in social competence. Controlling for end-of-first-grade social
competence scores, cohort, site, race, and sex, a linear regression equation revealed a
marginally significant negative association between the peer pairing dose and the social
competence outcome: β (for dose of peer pairing) = −0.09, p = 0.07 (unstandardized
parameter estimate = −0.01, F [n = 383, df = 9 and 373] = 8.94, p < 0.001, R2 = 0.18).

In hindsight, the emergence of this negative effect is not surprising: By design, the children
who were displaying the most problems and the least social competence were provided the
highest doses of peer pairing. From a theoretical and clinical standpoint, it seems highly
unlikely that peer pairing actually had a negative effect on children’s growth in social
competence. The overall positive effect of the Fast Track intervention on social competence
also argues against this interpretation. Thus, it is plausible that the negative estimated effect
of peer pairing is being driven by systematic differences between those children receiving
more peer pairing and those receiving less – in other words, by selection bias.

There are many analytic methods available for dealing with such bias, and we employed
several as a follow-up to the above dose-response analysis. When pretreatment
characteristics affect the quantity of dose (i.e., when selection bias is the result of
pretreatment differences between those children receiving different doses), it is common to
adjust for the relevant pretreatment covariates in the regression model. Indeed, we
conducted additional analyses adjusting for up to 15 relevant covariates assessed at the
beginning and end of first grade, and a negative association between peer paring dose and
the social competence response still emerged. This suggests that controlling for both distal
pre-first grade covariates and more proximal end-of-first grade covariates was not enough to
ameliorate the confounding.

Again, in hindsight this is not surprising: The dose of peer pairing was adapted to each child
not only at the beginning of second grade but also during second grade, based on the child’s
functioning. Unfortunately, variables that may have factored into the use of clinical
judgment to adapt and re-adapt the dose of peer pairing during second grade were not
recorded. Because these time-varying confounders were not recorded, the use of methods for
dealing with them was precluded.

Dose-response analysis 2: Intervention children who were promoted to
second grade, were determined to need peer pairing, and actually received it
—Another way of controlling for confounding is to focus only on the dose-response relation
within a subgroup of participants who are subject to a reduced level of selection bias. For
example, in the Fast Track intervention, one potential source of selection bias was the
aforementioned use of clinical judgment which was used to supplement and modify
assessments of child functioning to determine a child’s need for peer pairing. According to
Fast Track guidelines regarding teacher behavior ratings and sociometric nominations at the
end of first grade, 240 children were supposed to receive peer pairing throughout second
grade. Of these children, however, only 159 actually received peer pairing in both spring and
fall; the other 81 did not, primarily because of moves out of core schools, feasibility issues,
or staff members’ idiosyncratic decisions that peer pairing was no longer needed. Because
we believed that selection bias due to clinical judgment would be least at work among this
subsample of 159 children for whom staff members’ judgment did not override project
guidelines, we conducted a second dose-response analysis which focused only on them.
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In this regression equation we again controlled for end-of-first-grade social competence
scores, cohort, site, race, and sex. Interestingly, the dose-response relation within this
subsample of children – for whom we expected selection bias due to clinical judgment to
have the least impact – was positive: β (for dose of peer pairing) = 0.18, p = 0.02
(unstandardized parameter estimate = 0.03, F [n = 157, df = 9 and 147] = 2.93, p < 0.003, R2

= 0.15). In this subsample only, children who received more peer pairing appeared to show
greater gains in social competence during second grade.

Discussion of Example 1
Did peer pairing in second grade reduce or improve children’s social competence in Fast
Track? In the end, this question really cannot be addressed by our analyses. Individual
researchers might put different emphasis on the credibility of the two dose-response
analyses and come to different conclusions. The first dose-response analysis suggests that
the gains in social competence that emerged when comparing the randomized intervention
and control groups might have been the result of some other components of the Fast Track
intervention, not peer Selection Bias in Dose-Response Analyses 12 pairing. In fact, peer
pairing might have even worked against those broad gains that resulted from the other
components of the intervention. The second dose-response analysis, however, suggests that
peer pairing might have improved social competence, at least for those children who were in
need of the intervention component and actually received it as planned. It is important to
remember, however, that in each analysis we cannot be sure of our ability to control for the
selection bias that exists or to avoid introducing new bias by stratifying on post-
randomization variables to choose a sub-group for analysis.

Selection bias in dose-response analyses exists for a variety of reasons. Recall that selection
bias occurs when there are common factors for why a child received treatment and the
child’s outcome, and these factors are unknown, improperly measured, or not controlled in
the analysis. In Fast Track these factors are likely due to both the use of clinical judgment in
the adaptation and re-adaptation of peer pairing, and to feasibility issues in the delivery of
services.

Clinical judgment, presumably based on more proximal, but unrecorded, assessments of
child functioning, contributed to selection bias in Fast Track because it affected whether
children did or did not receive peer pairing in a large proportion of cases. Clinical judgment
was supposed to be used in recommending whether those children who were “borderline” in
terms of objective indicators of need received peer pairing in second grade. However, staff
members also were allowed to initiate peer pairing during second grade if they observed
new problems. Some staff members also provided extra peer pairing (up to 43 sessions)
when they thought it was especially helpful for a particular child. And, in some instances
staff members made the unsanctioned decision to withhold peer pairing when they thought it
was unnecessary or might be stigmatizing for a particular child.

Feasibility issues also might have contributed to selection bias in Fast Track. Like many
community-based preventive interventions targeting early-starting conduct problems (e.g.,
Rohrbach et al., l993), we encountered real-world obstacles in implementation. Over 29% of
intervention children transferred schools by the end of second grade, and many children
were absent on the days they were supposed to receive peer pairing.2 In our case, feasibility
issues could have resulted in positive selection bias if unknown factors positively related to
children’s social competence, such as child cooperativeness, affected the ease with which

2Additional analyses that excluded the large percentage of children who transferred schools revealed the same pattern of findings as
the analyses presented here; therefore it is unlikely that compositional differences between children receiving different doses of peer
pairing were related to residential mobility only.
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staff members could deliver peer pairing. On the other hand, feasibility issues could have
resulted in negative selection bias if staff members strove harder to overcome logistical
barriers when they were especially concerned about a particular child or when they believed
that peer pairing was an especially important component of intervention for a particular
child.

Thus, Example 1 highlights, with real-world data, how selection bias affects our ability to
unpack intervention effects in prevention programs. Depending on our success in reducing
selection bias – and our success in not introducing additional bias in the process, a feat we
rarely can be certain of – our conclusions about dose effectiveness can change dramatically.

Example 2
In Example 2, a series of Monte Carlo simulations illustrate the degree to which
confounding can impair the interpretation of intervention effects when conducting
implementation studies of preventive interventions. We wanted to determine whether we
could reproduce a similar pattern of results to what we observed in Example 1. Because real
data were used in Example 1, we could not know with certainty what the true effect of peer
pairing dose was. Through simulations, however, we could generate data with specific dose-
response relations and assess our ability to detect them. In Example 2, we demonstrate the
frequency with which confounding might contribute to an incorrect assessment of the dose-
response relation, illustrate the extent to which the duration of the preventive intervention
affects the degree of selection bias, and examine the conditions under which including
pretreatment covariate controls might attenuate selection bias.

The simulated data mimic aspects of the Fast Track example. The maximal dose was set at
one session per week for 22 weeks, but the receipt of treatment was variable from week to
week, thereby modeling actual variation in child attendance and participation. We simulate
data with a time-varying confounder that positively affects the received dose and negatively
affects child outcome. This variable represents factors such as time-varying clinical
judgment that might operate to increase the participation of higher risk children in the
intervention and decrease the participation of lower risk children. To mimic that aspect of
Fast Track in which the time-varying confounder was unrecorded, we used a time-varying
confounder to generate our simulated datasets, and then we deleted that variable before
conducting any analyses.

Data Generation
Figure 1 provides a pictorial representation as well as the generative models used to create
each of the variables for these simulations. (Programming code for these simulations is
available at http://www.stat.lsa.umich.edu/~samurphy/papers/McGowanSimCode.txt.) We
generated each participant’s data by first drawing a variable (X) that represents a recorded
pretreatment variable. Next, we drew an indicator of receipt of the first intervention dose
(D1), which could be affected by this pretreatment variable. For each of the remaining time
points (t = 2,…,22), we drew a time-varying confounder (Ct) prior to each intervention
session, which represents an unrecorded covariate that affects both the dose and the
outcome. An indicator that dose was either received at session t (Dt = 1) or not (Dt = 0) was
then generated. Finally, after 22 sessions the outcome (Y) was generated. The continuous
variables (X, Ct, and Y) were standardized to have a mean of 0 and a standard deviation of 1.

As seen in Figure 1, the effect of cumulative dose ( ) on the outcome (Y) is given by β.
Also seen in Figure 1, the strength of the confounding was represented by the product of the
relation between the confounder and dose (γt) and the relation between the confounder and
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the response (ϕ). The direction of these relations was set so that the selection bias was
negative: Those participants with higher values of Ct received a higher dose of treatment (γt
> 0) but had worse outcomes (ϕ< 0). In an adaptive intervention, negative selection bias like
this occurs when higher doses are provided for participants with more serious problems, as
was the case with Fast Track in Example 1. The magnitude of the relation between the
confounder and dose (γt) was set to .14 or .39, and the magnitude of the relation between the
confounder and the outcome (ϕ) was set to −.14 or −.39, so that the product of standardized
versions of these two parameters (γt * ϕ) was equal to one of two negative values, −0.02 or
−0.15 (i.e., .14 * −.14 = −.02 and .39 * −.39 = −.15). These values indicate that the
confounding would account for less than one-half of 1% of the variance in the outcome or
for about 2% of the variance in the outcome, respectively.3 According to Cohen (1988),
even our larger value would only correspond to a conventional small effect, for the
conversion of an R2 statistic in a multiple regression equation. We purposefully chose levels
of confounding that most prevention researchers would consider negligible to illustrate the
degree of selection bias that can affect the dose-response relation.

Simulation Design
Three simulations, A, B, and C, each of 1,000 data sets with 400 participants, were
generated. The sample size for each simulated data set was selected to be similar to the size
of the intervention group from Fast Track.

For simplicity, in Simulations A and B, data were generated so that all participants were
homogenous prior to treatment (e.g., there was no effect of the pretreatment covariate X, γ0
= d0 = 0). Simulation A was designed so there was no effect of cumulative dose (β = 0) to
determine whether a null treatment effect could be overpowered by selection bias, resulting
in a negative estimated treatment coefficient. In Simulation B there was a true positive effect
of cumulative dose (β > 0). The purpose was to examine whether even a true positive effect
could be overpowered by selection bias, resulting in an estimated negative effect of
cumulative dose, as we suspected was happening in Fast Track. In both simulations, we

analyzed the data by a simple linear regression of Y on the cumulative treatment dose .
The slope in this regression equation will be our estimator of β. (Recall that Ct has been
discarded from the analyzed data so as to mimic Example 1, and that we did not need to
include the pretreatment covariate [X] in these analyses because the data were generated so
that X had no effect on Y.)

In Simulation C, data were generated so that a pretreatment covariate (X) explains some of
the confounding (γ0 > 0, d0 > 0), and there was no effect of treatment (β = 0). This
simulation was designed to assess the extent to which adjusting for pretreatment covariates
in the estimated regression model can reduce selection bias. To analyze the data in
Simulation C, we again used linear regression, but this time we regressed Y on both the

cumulative treatment dose ( ) and the pretreatment covariate X. In this model, the
regression coefficient of cumulative treatment dose represents the effect of cumulative dose
controlling for X.4

3As a frame of reference to help understand the magnitude of the confounding on the response, consider the case of the linear
regression of a standardized response (Ystd = [Y − Ȳ] / sY) on a single standardized predictor (Xstd = [X − X̄] / sX. The regression
model for standardized variables is intercept free: Ystd = βstd * Xstd + ε, where ε~N(0,1). For this model, the standardized coefficient
(βstd)2 is equal to R2 (Neter, et. al., 1996). Under this frame of reference, a standardized coefficient of −0.02 corresponds to an R2
value of (−0.02)2 = 0.0004, and a standardized coefficient of −0.15 corresponds to an R2 value of (−0.15)2 = 0.0225.
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Findings from the Simulations
Table 1 lists the results for all of the simulations. The left and right columns under each
simulation provide results for when the strength of the confounding was very small (γt * ϕ =
− 0.02) or small (γt * ϕ= −0.15).

Simulation A—In Simulation A, when there was no effect of cumulative dose (β= 0) and
the strength of the confounding (γt * ϕ) was −0.02, the average standardized estimate of β
was −0.04. In the absence of a true treatment effect, with no selection bias, and using a 0.05
significance level for a two-sided test of the null hypothesis, we would expect to make a
Type I error and estimate a non-zero treatment effect in only 5% of the simulations.
However, a test for zero treatment effect was rejected in 12% of the simulated data sets. This
means that, even with an almost trivial amount of confounding, the selection bias is not
insubstantial: We were more than twice as likely to make a Type I error. The situation was
much worse when the level of confounding (γt * ϕ) was −0.15. Here, the average
standardized estimate of β was −0.23, and the Type I error rate escalated to over 99%. Thus,
even a small amount of confounding virtually guarantees that, in the absence of a true
treatment effect, a statistically significant estimate of a false negative treatment effect will
emerge.

To determine the extent to which the level of selection bias depends on the number of
intervention sessions, Simulation A was re-run specifying fewer intervention sessions,
ranging from 2 to 20. The relations among the Type I error rate, the number of intervention
sessions, and the different levels of confounding are depicted in Figure 2. It appears that the
impact of selection bias shows modest growth over time when the strength of the
confounding (γt * ϕ) is −0.02, as represented by the solid line. The Type I error rate doubles
by the time there are 16 intervention sessions. The impact of selection bias was much more
striking, however, when the strength of confounding was −0.15, as represented by the
dashed line. The Type I error rate more than doubles after only 2 intervention sessions and
reaches 90% by 10 intervention sessions.

Simulation B—Table 1 also lists the results for Simulation B, in which there was a true
positive effect of cumulative dose (β > 0). For both the left and right columns of Table 1, the
true standardized β was set at 0.15, corresponding to a conventional small effect for an F-test
in a multiple regression equation (Cohen, 1988), and representative of the size of the
intervention effects in many preventive interventions. The power of the test H0: β = 0 versus
HA: β > 0 represents the proportion of simulated data sets in which the positive effect of the
treatment was detected. With no confounding (γt* ϕ= 0), the power of this test is greater than
0.80 (not shown in Table 1). When the strength of the confounding was −0.02, the average
standardized estimate of β was 0.11, and the power of the test was only 0.69. When the
strength of the confounding was −0.15, the average standardized estimate of β was −0.08,
far from what we knew the true value to be, and the power of the test was 0.00. It appears as
though a small amount of confounding can completely overwhelm a small true effect of
cumulative dose.

To see what would happen if our true effect of cumulative dose were larger, we also ran
Simulation B with a true standardized β of 0.36, which would correspond to a medium effect
size (Cohen, 1988). These results are not shown in Table 1. With no confounding (γt * ϕ =
0), the power of this test is 1.00. When the strength of the confounding was −0.02, the

4For each simulation, we also fit a non-parametric model that included one predictor for every value of cumulative dose, which fit the
data perfectly. We regressed Y on a series of polynomials that were orthogonal in cumulative dose, to avoid problems with colinearity.
Bias was of similar magnitude to that reported in each simulation, suggesting that the bias illustrated in these simulations is due solely
to selection bias, not problems with lack of fit in the models.
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average standardized estimate of β was 0.32 and the power of the test was still 1.00.
However, when the strength of the confounding was −0.15, the average standardized
estimate of β was 0.13 – less than half of what we know the true dose effect to be – and the
power of the test was 0.82. Thus, even when the true dose effect was medium in size, a
small amount of confounding appears to result in a severe underestimation of that dose
effect.

Simulation C—Simulation C was similar in design to Example 1 in that there was a
pretreatment covariate (X) that most likely was correlated with an unrecorded confounder
(Ct). However, for Simulation C, there was no true effect of dose (β = 0). The pretreatment
covariate (X) influenced the unrecorded confounder through the value of d0. In our
simulation, this relation was perfect (d0 = 1), indicating that the covariate accounted for all
of the confounding prior to the beginning of treatment. The covariate influenced dose at the
first session through the value of γ0, as shown in Figure 1. The overall effect of this
covariate was reflected by the product of the standardized values of these two parameters (d0
* γ0).

When the strength of the confounding (γt * ϕ) was set at −0.02, and there was no effect of
the pretreatment covariate (specifically, there was no relation between the pretreatment
covariate and the confounder [d0 = 0]), the average standardized estimate of β was −0.04,
and the Type I error rate was 13.6% (not shown in Table 1). However, as presented in the
left column of Simulation C in Table 1, when the effect of the pretreatment covariate (d0 *
γ0) was set to 0.14, the average standardized estimate of β was −0.008 and the Type I error
rate was an acceptable 5.1%. In this case of very small confounding, adjusting for the
pretreatment covariate appears successful in removing the selection bias.

When the strength of the confounding (γt * ϕ) was set to −0.15, and there was no effect of
the pretreatment covariate (d0 = 0), the average standardized estimate of β was −0.23, and
the Type I error rate was 99.3% (not shown in Table 1). But, as presented in the right
column of Simulation C in Table 1, when the effect of the pretreatment covariate (d0 * γ0)
was set to 0.39, the average standardized estimate of the treatment effect was −0.07 and the
corresponding Type I error rate was 24%. Thus, even when the strength of the confounding
was small, the use of the distal pretreatment covariate could not ameliorate the selection bias
completely.

In Simulation C, the effect of the pretreatment covariate (X) on the outcome (Y) had to
operate indirectly through the confounder and dose. When we allowed a medium or large
direct relation between the pretreatment covariate and the outcome – as most investigators
would expect when they have a pre- and post-intervention assessment of the same construct
– the results of Simulation C were virtually identical.

Discussion of Example 2
These simulations highlight the potential impact of selection bias. Simulation A
demonstrates that selection bias could lead a researcher to believe that there was a negative
treatment effect when there was, in fact, no treatment effect. The remaining simulations
illustrate just how bad the selection bias can be, overshadowing true treatment effects, as in
Simulation B, and persisting even with the use of a pretreatment covariate, as in Simulation
C.

The impact of selection bias depends heavily upon the strength of the confounding. When a
very small amount of selection bias (accounting for less than one-half of 1% of the variance
in the outcome) was introduced in the absence of a treatment effect, Type I error rates
increased two-fold. When a small amount of selection bias (accounting for 2% of the
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variance in the outcome) was introduced in the absence of a treatment effect, false positive
treatment effects were almost certain, occurring in over 99% of the simulations.

Somewhat surprisingly, a small amount of confounding can cause bias in the estimated
dose-response relation, even in the presence of a true positive effect of dose. (This might
have been what we observed with Fast Track in Example 1.) With a true small treatment
effect, a small amount of confounding can lead to a severe underestimation of the treatment
effect and a reduction in power. With a true medium treatment effect, a small amount of
confounding still can lead to severe underestimation of the treatment effect.

The length of the intervention program also affects the impact of confounding on
conclusions. When the confounding is very small and there is no true treatment effect, the
Type I error rate climbs in a linear fashion with each successive intervention session. With a
small amount of confounding and no true treatment effect, the Type I error rate doubled
after only two intervention sessions and reached 90% by 10 sessions.

In some cases, pretreatment covariates may successfully reduce the effects of selection bias.
In our simulation, this occurred when the effect of the confounder was very small and the
pretreatment covariate was related to the confounder. When the confounding was stronger,
or when there was no relation between the pretreatment covariate and the unrecorded
confounder, the use of the pretreatment covariate did not offer this protection.

Thus, the results of Example 2 illustrate how studies seeking to unpack intervention effects
using a dose-response analysis are highly susceptible to inaccurate interpretations when the
reasons for assigning dose at each time point are unrecorded (i.e., when selection bias exists
due to unmeasured time-varying confounders). Even when the strength of the confounding is
very small, the impact of selection bias is such that researchers cannot have confidence in
estimates of significant relations – or lack thereof – in most dose-response analyses.

Summary and Recommendations
To make optimal progress in the prevention and treatment of mental health or behavior
problems, we must determine not only which intervention programs are effective but also
how they work (Silverman, 2006). Implementation studies, such as dose-response analyses
and examinations of fidelity, are invaluable in this regard. They have been used to assess the
theory of change and determine whether exposure to the experimental manipulation of the
intervention is related to degree of improvement (Hill et al., 2003; Lyons-Ruth & Melnick,
2004). In addition, they have been recommended when investigators are trying to determine
whether null or weak treatment effects reflect implementation difficulties, such that few
participants got the intervention as intended (Rohrbach et al., l993). As with other
descriptive or correlational studies, however, efforts to peer inside the “black box” of
preventive interventions can be susceptible to selection biases (Shadish et al., 2002). Even if
the preventive intervention itself is experimental, implementation studies, such as dose-
response analyses, typically are not.

This paper highlights the significant risk of confounding when conducting dose-response
analyses, particularly when the reasons why dose is adapted – or why assigned dose is not
adhered to – are unrecorded. The “real-life” example of the Fast Track peer pairing
component, along with the simulation studies, demonstrate that even minimal confounding
cannot be ignored, as it increases the chance of falsely detecting a treatment effect when
there is none or failing to detect a treatment effect when one exists. Fortunately, these
examples suggest a number of methodological features that might guard against
confounding and foster the capacity to use implementation studies to learn more about
mechanisms of change.
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Controlling Selection Bias Through Design
Obviously, the best solution to the threat of confounding is through experimental design.
This is the only certain means to address problems associated with unknown and
unmeasured confounders. If researchers are specifically interested in using dose-response
relations to discern potential thresholds of participation necessary to achieve specific
outcomes, an ideal study design would involve the random assignment of dose, and the
analysis of “assigned dose” levels, rather than dose levels actually received (Feinstein,
1991).

The relation between dose and response also can be assessed through some natural
experiments. For example, in a study of the effects of a special program for adolescent
mothers (Seitz et al., 1991), dose was determined by the month of delivery, a factor that,
although not random, was unlikely to be related to pertinent confounders.

If researchers are interested in the impact of one part of a multi-component intervention –
like peer pairing within the larger Fast Track project – they might consider factorial designs,
which can be more powerful and more efficient than typical two-group designs (Shadish et
al., 2002; Trochim, 2006; Box et. al., 1978). Similarly, there are dismantling studies in
which a specific component is isolated and tested against the effects of a more
comprehensive intervention (e.g., Dimidjian et al., 2006; Dobson et al., 2008). The
Multiphase Optimization Strategy (Collins et al., 2005; Collins et al., 2007) provides explicit
instruction on how to use experimental design to systematically investigate which
combinations of intervention components might be most effective in bringing about change.

Controlling Selection Bias Through the Use of Covariates
Most implementation studies are undertaken in a post-hoc fashion to examine mechanisms
of change operating within a randomized control trial. It is rarely adequate, however, to
simply assess dose or some other aspect of implementation quality and examine relations to
outcomes (Pocock & Abdalla, 1998). Instead, researchers must rely on the careful selection,
collection, and use of relevant covariates to control for selection biases.

Careful selection of relevant covariates at the point of program design might allow
researchers to identify and determine appropriate measures of potentially important time-
varying confounding variables so they may be utilized during analysis. Researchers should
pay special attention to those variables that have been related to motivation, participation in
intervention, or adherence to intervention protocols in previous studies, as well as variables
that were predictive of response to treatment. In the case of adaptive interventions,
researchers also should consider those variables that would be expected to influence staff
members’ clinical judgment regarding need for services (Collins et al., 2004), such as a
global assessment of functioning (Hall, 1995) or some indicator of a primary outcome, like
social competence and aggression in Fast Track. To assist in the identification of important
potential confounding variables, it would be beneficial for prevention researchers to report
the strongest predictors of dose received, project guidelines regarding how and when dose
was adjusted, and characteristics of those participants most likely to respond to services.

Just as with any construct, it is critical to assess covariates with psychometrically-sound
measures. Ideally, these would rely on objective informants or methods that are independent
of participants’ or staff members’ decisions to adjust dose.

Careful collection of relevant covariates requires assessment each time a decision to change
dose is made. When participants in the intervention make those decisions on their own – by
choosing to attend or miss an intervention session – it will be difficult to conduct perfectly-
timed assessments. In that case, it might make sense to conduct brief, frequent assessments
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throughout the intervention. In adaptive interventions, it is best to time assessments so they
coincide with staff members’ decisions to alter dose. In Fast Track, it was not useful to have
covariates at the end of kindergarten or even first grade because decisions to adjust the dose
of peer pairing were made throughout second grade. It would have been preferable if staff
members had completed brief ratings of social competence and aggression on every child in
their caseload at the end of each week in second grade; staff members also could have
checked in with teachers more systematically and recorded their impressions. Regardless of
who makes the decision to change dose, it is critical to conduct assessments on all
participants in the intervention, regardless of whether a particular participant’s dose was
changed or not.

When investigators collect measures prior to the start and throughout the duration of the
intervention, they will be in a much better position to evaluate and control for the impact of
selection bias (Wilkinson & the Task Force on Statistical Inference, 1999). There exist a
number of well-documented analytic techniques that can reduce the effects of selection bias
due to pretreatment confounders, such as inclusion of pretreatment covariates in the
regression model, use of propensity scores techniques (e.g., Rosenbaum & Rubin, 1983;
Rubin, 1997), or use of the Heckman estimator (Heckman, 1976). The goal of any of these
analytic techniques is the same: To compare subjects with similar characteristics across the
range of covariates who differ only with respect to dose received. It has been shown that, if
treatment assignment is independent of the response after accounting for the covariates (i.e.,
if treatment assignment is strongly ignorable, in the language of causal inference), then
unbiased estimates of the treatment effect can be found (Rosenbaum & Rubin, 1983). Like
any analytic technique, however, each of these statistical models depends on certain
assumptions and will only be successful in controlling selection bias to the extent that the
assumptions are satisfied.

When dose is adapted and readapted at multiple time points, either informally as indicated
by participants’ variable attendance or by formal design according to participants’ assessed
need, pretreatment covariates are unlikely to be sufficient predictors of dose. Additional
mid-intervention assessments of outcomes and individual characteristics that function as
time-varying confounders are required to adequately predict which participants will receive
more intervention services.

In the epidemiology literature, the propensity score method has been adapted for use with
time-varying confounders and is known as the marginal structural model (e.g., Robins et al.,
2000; Hernán et al., 2000; Bodnar et al., 2004). In the first step of such analyses a regression
equation, referred to as the treatment model, is estimated to predict the receipt of
intervention at time point t. The independent variables in this logistic regression equation
would include indicators of the receipt of intervention for every session prior to time point t
and measures of time-varying confounders, such as child behavior problems, assessed at
regular intervals throughout the intervention. The results of this logistic regression equation
yield a predicted probability of the receipt of intervention for each participant at time point t
conditioned on the confounders and treatment history up to that time. For example,
participants who had attended all prior sessions of the intervention would have a high
predicted probability of the receipt of that final session, whether they actually attended that
final session or not. (A modeling note: When dose at each time point is recorded as a binary
[1/0] variable according to whether a participant did or did not receive treatment at that time,
care must be taken to model the receipt of intervention [1] rather than its absence [0]. For
example, in SAS proc logistic, it is necessary to specify the ‘descending’ option in the model
statement.)
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The predicted probabilities from the treatment model are then used to calculate sample
weights (for details on how to construct these weights, see Barber et al., 2004; Cole &
Hernán, 2008; Mortimer et al., 2005). The weights are based on the inverse of the predicted
probabilities so that more weight is given to participants who are less represented in the
observed data than they would have been if assignment to intervention had been randomized
(Mortimer et al., 2005). This serves to decouple the relation between the history of
attendance and the history of time-varying confounders from the receipt of intervention at
time point t. In other words, the weights can mimic what would have happened if
participants with similar histories of attendance and similar histories of time-varying
confounders had been randomly assigned to receive intervention at time point t, balancing
participants with different histories of attendance and different histories of the time-varying
confounders across different doses of intervention.

In the final step of a marginal structural model, the weighted data are used in a typical
regression equation to assess the dose-response relation. The most important assumption
guaranteeing that the coefficient for dose provides an unbiased estimate of the treatment
effect is that there is no unmeasured confounding; this is sometimes referred to as the
sequential randomization assumption and implies that all important time-varying
confounders have been accounted for in the treatment model (Cole & Hernán, 2008;
Mortimer et al., 2005). Research has shown, however, that with a marginal structural model
selection bias is reduced, though not eliminated, even if every important time-varying
confounder is not included (Barber et al., 2004; Bray et al., 2006).

In applying a marginal structural model, it is critical to remember that bias is only reduced to
the extent that the treatment model is correctly specified. It is usually unwise to simply
“dump” all measured time-varying confounders into the treatment model; careful fitting is
necessary to determine the best form and complexity (Cole & Hernán, 2008; Mortimer et al.,
2005; for examples of how to determine the most appropriate treatment model and calculate
probability weights, see Barber et al., 2004; Cole & Hernán, 2008; Mortimer et al., 2005). It
also is critical to remember that all time-varying confounders must be assessed for all
children and families assigned to the intervention at every time point the decision to change
dose for any individual is considered. Otherwise, it will be impossible to compare
participants with similar characteristics who differ with respect to dose received.

Final Thoughts
It is important to remember that the validity of a dose-response analysis hinges on variation
in dose that is unrelated to participants’ need or to reasons why they might respond to a
particular intervention. Otherwise, dose-response analyses are likely affected by selection
bias, as illustrated in this paper.

Randomization of dose is the optimal strategy for assessing dose effects, as it avoids
selection bias, and can be extended to studies in which treatment is time-varying (Murphy et
al., 2006). Without randomization of dose, researchers can never be certain of their ability to
completely remove confounding; they can only use sensitivity analysis and bounding
methods to assess the likely magnitude of any residual bias (Robins, 1999). As with any
analysis of observational data, causal claims of treatment effectiveness must be tempered
with appropriate caution about the possibility of residual confounding.

When randomization is not possible, or when adherence to randomized dose is low,
prevention researchers can control for systematic differences between those participants
receiving different doses through the careful selection, measurement, collection, and use of
both pretreatment and time-varying confounding variables. In these post-hoc analyses, it is
only by removing systematic differences through the proper use of relevant covariates – for
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example, by using a marginal structural model – that investigators can hope to gain a less
biased understanding of what is happening inside the “black box” of preventive
interventions.
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Figure 1.
Relations Modeled in Simulations

Note:  Note: ε1, …, εT−1, ε are independent Normally distributed random

variables each with mean 0 and variance 1, and  is a
Normally distributed random variable with mean zero and variance:
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Figure 2.
Effects of Selection Bias Over Multiple Sessions
Note: The dashed line represents the effects of selection bias when the strength of the
confounding is −0.15. The solid line represents the effects of selection bias when the
strength of the confounding is −0.02. The thin, dotted line represents the expected 5% Type
I Error rate when a 0.05 significance level is used.
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Table 1

Simulation Results

Simulation A

Effect of Unrecorded Confounding Very Smallb Smallb

Mean Estimated Standardized βa −0.04 −0.23

Type I Error Rate 0.12 0.995

Standardized Parameters (t=1,…,22) β=0, γt=0.14, f= −0.14, dt=θt=1, γ0=d0=0 β=0, γt=0.39, f= −0.39, dt=θt=1, γ0=d0=0

Simulation B

Effect of Unrecorded Confounding Very Smallb Smallb

Mean Estimated Standardized βa 0.11 −0.08

Power 0.69 0

Standardized Parameters (t=1,…,22) β=0.15, γt=0.14, f= −0.14, dt=θt=1, γ0=d0=0 β=0.15, γt=0.39, f= −0.39, dt=θt=1, γ0=d0=0

Simulation C

Effect of Unrecorded Confounding Very Smallb Smallb

Mean Estimated Standardized βa −0.008 −0.07

Type I Error Rate 0.051 0.24

Standardized Parameters (t=1,…,22) β=0, γ0= γt=0.14, f= −0.14, d0=dt=θt=1 β=0, γ0= γt=0.39, f= −0.39, d0=dt=θt=1

a
Because the simulation size is large, e.g. 1000, the mean of the estimated standardized β is significantly different at the 0.05 level from the true

value.

b
A very small (or small) amount of confounding is operationalized as the product f *γt = −0.02 (f *γt = −0.15).
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