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Abstract

Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis
(RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the
established non-HLA CD and RA risk loci (out of 26 loci for each disease) are shared between both diseases. We
hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS) data
from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two
published GWAS on CD (4,533 cases and 10,750 controls) and RA (5,539 cases and 17,231 controls). After genotyping the
top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs
demonstrated P,561028 in a combined analysis of all 50,266 samples, including four SNPs that have not been previously
confirmed in either disease: rs10892279 near the DDX6 gene (Pcombined = 1.2610212), rs864537 near CD247
(Pcombined = 2.2610211), rs2298428 near UBE2L3 (Pcombined = 2.5610210), and rs11203203 near UBASH3A (Pcombined

= 1.161028). We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other
autoimmune disease at combined P,561028 (SH2B3, 8q24, STAT4, and TRAF1-C5). From the 14 shared gene loci, 7 SNPs
showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD) block
around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease
pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with
pleiotropic effects between two clinically distinct diseases.
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Introduction

Autoimmune disorders, including rheumatoid arthritis (RA) and

celiac disease (CD), affect about 5% of the population and have a

complex genetic background. Family-based epidemiology studies

suggest that there is a shared genetic basis between the two

autoimmune diseases [1]. Recent genome-wide association studies

(GWAS) have confirmed HLA and identified at least 26 other non-

HLA genetic loci with common alleles associated to each disease

(Table S1 and S2) [2,3]. The strongest genetic risk factor is the

HLA locus [2,3], where different alleles confer risk of the two

diseases. Six other risk loci outside of the HLA locus are shared

between CD and RA and include MMEL/TNFRSF14 [2,4], REL

[2,5,6], ICOS-CTLA4 [2,3,5,7], IL2-IL21 [2,3,8,9,10], TNFAIP3

[2,3,6,11], and TAGAP [2,3,8], (Chen et al, submitted) (Table 1

and Figure 1). These shared risk loci have emerged by simple

cross-comparison across published studies, rather than a rigorous

and systematic analysis of an integrated dataset. Because of the

nature of these reports, it is unknown whether the other CD and

RA risk alleles confer risk of both diseases. Moreover, it is

unknown whether there are additional shared risk alleles that have

not yet been discovered in any one disease.

A major challenge in identifying common alleles of modest

effect is the sample size required to have sufficient power to obtain

associations at a stringent level of statistical significance. Recent

studies of height [12], lipids [13] and body mass index [14] have

shown quite convincingly that very large sample sizes – more than

100,000 individuals – yield reproducible SNP associations for

common alleles of modest effect size. For diseases such as CD and

RA, which are relatively uncommon in the general population

(prevalence ,0.5–1% for each disease), similar sized cohorts are

difficult to ascertain. One solution to this problem is to combine

two phenotypes to search for pleiotropic risk alleles. So far this

approach has only been done for closely related phenotypes, such

as the Crohn’s disease and ulcerative colitis (together known as

inflammatory bowel disease (IBD)) [15], or for medical traits that

are known risk factors for disease (e.g., lipids and coronary artery

disease, obesity and type 2 diabetes) [13,16].

Another challenge is how to interpret statistical significance of

SNP associations in combined analysis of two clinically distinct

phenotypes. In a GWAS of common variants for a single pheno-

type, most consider P,561028 as statistically significant, as any

SNP at random from the genome has the same probability of being

associated with the phenotype and there are approximately 1

million uncorrelated common SNPs in the human genome [17].

However, this P-value threshold does not take into consideration

that (a) many common SNPs, not just a single SNP, are associated

with disease, and (b) the pleiotropy of risk alleles for related diseases

should, in theory, increase the prior probability that an allele is a

true-positive. In the case of autoimmunity, alleles often contribute to

risk of more than one autoimmune disease [18]. Accordingly, a SNP

with a confirmed association in one autoimmune disease has a

higher prior probability of being associated with another autoim-

mune disease. This principle has been used to declare that SNPs are

confirmed disease associations, if the SNP does not reach a stringent

level of significance (e.g., P,561028) in the other autoimmune

disease [7,19]. Nonetheless, there are no formal criteria for assigning

increased prior probabilities for SNPs across autoimmune diseases.

Table 1. Comparison of CD and RA risk alleles at seven shared risk loci.

Locus Locus name Top CD SNP Top RA SNP
LD between CD and
RA SNPs (D’ and r2) Comment

1p36.3 MMEL1/TNFRSF14 rs3890745 [2] rs3748816 [3] 1 0.93 Same allele, same direction

2p16.1 REL rs13003464 [2] rs13031237 [5] 0.11 0.01 Different alleles

2q33.2 ICOS/CTLA4 rs4675374 [2] rs3087243 [3] 0.80 0.12 Incomplete LD

4q27 IL2/IL21 rs13151961 [2] rs6822844 [10] [3] 1 0.90 Same allele, same direction

6p21 HLA rs2187668 (DQA1*0501-DQB1*0201 tag) [2] rs6910071 (DRB1*0401 tag) [3] 1 0.04 Different alleles

6q23.3 TNFAIP3 rs2327832 [2] rs6920220 [3] 1 1 Same allele, same direction

6q25.3 TAGAP rs1738074 [2] rs212389 (Chen et al, submitted) 0.56 0.27 Different alleles

Columns Top SNP CD and Top SNP RA – best reported SNP in the locus, as indicated in the reference paper. Association is indicated to the same allele if the r2 between
CD and RA SNP is above 0.9.
doi:10.1371/journal.pgen.1002004.t001
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In the current study, we hypothesized that there are additional

alleles that influence risk of both CD and RA in a pleiotropic

manner. To increase power to detect these alleles, we combined

two previously published GWAS of each disease, followed by

replication in both CD and RA. We use our GWAS data to arrive

at an empirical threshold for declaring SNPs as shared risk alleles

for the two diseases. In doing so, we identified fourteen shared

CD-RA risk alleles, which point to T-cell receptor signaling as a

key shared pathway of disease pathogenesis.

Results

Comparing known risk alleles across diseases
We first aimed to investigate the status of established CD and

RA loci across these two diseases using genotype data from

published GWAS datasets of CD (4,533 cases, 10,750 controls) [2]

and RA (5,539 autoantibody positive RA cases and 17,231

controls) [3] (See Materials and Methods for description of both

cohorts). We considered only those reported loci with at least

one risk allele associated at P,561028 with confirmation in

independent samples. There are 26 non-HLA loci from each

disease that satisfy this stringent criterion, representing 46 distinct

risk loci (Tables S1 and S2). We investigated the association of the

26 non-HLA CD SNPs in RA, and the 26 non-HLA RA SNPs in

CD. Figure 1A and 1B show the OR and 95% CI of the 52 SNPs

and the association statistics within the two diseases. Of the 26 CD

SNPs, 11 are associated with risk of RA at P,0.05 (Table S1).

Similarly, from 26 RA SNPs, 9 are associated with risk of CD at

P,0.05 (Table S2). After excluding the six loci established in both

diseases, this distribution remains non-random (P,261024,

Fisher’s test), indicating additional sharing of risk loci between

the two diseases.

Comparing distribution of putative risk alleles across
diseases

To provide additional evidence that there are shared risk alleles,

we analyzed the distribution of moderately associated SNPs from

the GWAS datasets (i.e., putative risk alleles) across the two

autoimmune diseases. We investigated whether the subset of SNPs

associated with CD at P,0.001 in the CD-GWAS are randomly

distributed in the RA GWAS results, and vice-versa. After

removing the established CD and RA risk loci, we performed

association analysis on a set of independent SNPs for each disease.

In CD, 70,520 SNPs remained after pruning SNPs in linkage

disequilibrium (LD) (see Materials and Methods for details), of

which 342 were associated with CD at P,0.001. In RA, 70,812

SNPs remained after LD-pruning, of which 282 were associated

with RA at P,0.001. Using Fisher’s test, we observed a non-

random distribution of association with CD in the subset of

P,0.001 RA GWAS SNPs, as well as a non-random distribution

of association with RA in the subset of P,0.001 CD GWAS SNPs

(P,561025 for both diseases; see Figure 2 and Table S3A).

Similar results were obtained when we used the Wilcoxon rank

sum and Kolmogorov-Smirnov tests to analyze the distributions of

SNP associations across diseases (Table S3B). From this analysis,

we conclude that a SNP associated with risk of CD at P,0.001 has

an increased prior probability of being associated with RA, and a

SNP associated with risk of RA at P,0.001 has an increased prior

probability of being associated with CD.

GWAS and replication—same allele, same direction
While the analyses described above indicate that additional

shared risk alleles remain to be discovered, these analyses do not

identify which specific SNPs influence risk of both disease. To

identify new shared risk alleles, we performed an inverse variance

weighted meta-analysis [20] in which we assumed that the same

allele confers risk of both diseases. A total of 472,854 SNPs outside

the HLA (Chr6: 20–40 MB) overlapped between the two GWAS

datasets and were included in the meta-analysis. We did not

exclude the established CD and RA loci outside of the HLA region

from the meta-analysis, as we considered the possibility that there

may be novel risk alleles within these loci. The Q-Q plot of

CD+RA meta-anlaysis P-values (Pcombined) shows an enrichment

of non-HLA associated SNPs in the tail of the distribution

(Figure 3A), with no evidence for systematic bias across all SNPs

(lGC = 1.011). A similar result was obtained after excluding known

associated loci for both diseases (Figure 3A). The Manhattan plot

indicates loci where significance increased in the combined cohort

(Figure S1).

Sixty-five SNPs from 21 distinct genomic regions were

associated with both CD and RA in the combined analysis with

Pcombined,161025, and with disease-specific P,0.01 (Tables S4

and S5). Of these 21 loci, five are established in both diseases

(TNFAIP3, CTLA4/ICOS, IL2/IL21, REL and MMEL1/

TNFRSF14); five are established CD loci (SH2B3, PTPN2,

8q24.2, SOCS1, ICOSLG); and four are established RA loci

(ANKRD55, STAT4, TRAF1/C5 and PRKCQ). The remaining 7

have not been previously confirmed in either disease (Table 2,

Table S5).

To determine which of these loci are associated with both

diseases – particularly those 7 loci not previously implicated in

either disease and 9 loci established as risk alleles in either CD or

RA alone – we selected from each of these 16 loci one most

associated SNP for replication in additional 2,169 CD cases and

2,255 controls, and 2,845 autoantibody positive RA cases and

4,944 controls (see Materials and Methods for sample informa-

tion). Five out of 16 SNPs were previously genotyped in samples

Author Summary

Celiac disease (CD) and rheumatoid arthritis (RA) are two
autoimmune diseases characterized by distinct clinical
features but increased co-occurrence in families and
individuals. Genome-wide association studies (GWAS)
performed in CD and RA have identified the HLA region
and 26 non-HLA genetic risk loci in each disease. Of the 26
CD and 26 RA risk loci, previous studies have shown that
six are shared between the two diseases. In this study we
aimed to identify additional shared risk alleles and, in
doing so, gain more insight into shared disease patho-
genesis. We first empirically investigated the distribution
of putative risk alleles from GWAS across both diseases
(after removing known risk loci for both diseases). We
found that CD risk alleles are non-randomly distributed in
the RA GWAS (and vice versa), indicating that CD risk
alleles have an increased prior probability of being
associated with RA (and vice versa). Next, we performed
a GWAS meta-analysis to search for shared risk alleles by
combing the RA and CD GWAS, performing both
directional and opposite allelic effect analyses, followed
by replication testing in independent case-control datasets
in both diseases. In addition to the already established six
non-HLA shared risk loci, we observed statistically robust
associations at eight SNPs, thereby increasing the number
of shared non-HLA risk loci to fourteen. Finally, we used
gene expression studies and pathway analysis tools to
identify the plausible candidate genes in the fourteen
associated loci. We observed remarkable overrepresenta-
tion of T-cell signaling molecules among the shared genes.

Meta-Analysis of CD and RA
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Figure 1. Established CD and RA SNPs and their association across diseases. (A) Known CD SNPs in RA. The figure represents OR and CI for
the established CD SNPs (p,561028, one SNP per locus) in RA meta-analysis (5,539 auto-anbitody positive cases and 17,231 controls). (B) Known RA
SNPs in CD. The figure represents OR and CI for the established RA SNPs (p,561028, one SNP per locus) in CD meta-analysis (4,533 cases and 10,750
controls). For the six shared loci established in both diseases, figure 1A includes the top CD SNP and figure 1B the top RA SNP. From six shared loci,
three (TNFRSF14, IL2/IL21 and TNFAIP3) are associated with same SNP or a good proxy (r2.0.9) in both diseases; in other three loci – CTLA4, REL and
TAGAP – the most associated SNPs in CD and RA are not in strong LD with each other (r2,0.3), which is reflected in moderate association (CTLA4) or
no association (REL) of these SNPs in the second disease. The TAGAP SNPs show association to opposite alleles in CD and RA.
doi:10.1371/journal.pgen.1002004.g001

Meta-Analysis of CD and RA
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that overlapped with our replication samples [2,3], and are

included here for completeness. Two SNPs – rs7283760 in the

CD-established ICOSLG locus and rs2181622 in the RA-

established PRKCQ locus – were not genotyped in the replication

samples for technical reasons. We did not attempt replication of

SNPs from the five established loci associated with risk of both CD

and RA. We conducted association tests of the 14 SNPs in the

replication and combined cohorts with inverse variance weighted

meta-analysis, where we analyzed CD-only samples [replication

(PCD-repl) and GWAS+replication (PCD)], RA-only samples [rep-

lication (PRA-repl) and GWAS+replication (PRA)], and RA+CD

samples [all GWAS+replication samples together (Poverall)].

As shown in Table 2, of the 4 established CD risk SNPs, two

replicated in the RA samples with PRA-repl,0.05 and obtained

PRA,0.001 in all available RA case-control samples (SH2B3

(12q24.1) and an intergenic region on 8q24.2, PRA = 1.561025

and 9.161025 respectively). Similarly, of the 3 established RA risk

SNPs tested in our study, two replicated in the CD samples with

PCD-rep,0.05 and obtained PCD,0.001 in all available CD case-

control samples (STAT4 (2q32.3) and TRAF1-C5 (9q33.2),

PCD = 9.761024 and 9.361024 respectively). All four of these

SNPs have Poverall,561028 in analysis of all 50,266 CD and RA

samples.

Of the 7 SNPs not previously established as genome-wide

significant in either CD or RA, four were significantly replicated in

both diseases at PCD-repl,0.05 and PRA-repl,0.05, were associated

to each disease with PCD,0.001 and PRA,0.001 and achieved

Poverall,561028 in the combined CD-RA cohort (CD247 (1q24.2),

UBE2L3 (22q11.2), DDX6 (11q23.3) and UBASH3A (21q22.3); see

Table 2). The strongest signal in the combined analysis was

observed from the DDX6 locus (rs10892279, Poverall = 1.2610212).

This SNP achieved genome-wide significance PRA = 1.161028

in the RA cohort alone, and PCD = 2.061025 in the CD cohort.

SNPs near CD247 and UBE2L3 were previously suggestively

associated in both CD and RA [2,3]. The replication data

presented here, together with the combined analysis of Poverall,

561028, demonstrate that these SNPs are indeed true positive

associations for CD and RA. Of note, SNPs in the UBE2L3 are also

associated with risk of systemic lupus erythematosus [21] and

Crohn’s disease [22], and the CD247 locus is associated with

systemic sclerosis [23].

Figure 2. QQ plot of CD associated SNPs in RA and RA
associated SNPs in CD. QQ plot of CD associated SNPs (p,0.001) in
RA (green) and RA associated SNPs (p,0.001) in CD (black). The most
strongly associated SNPs (after removing known risk loci) in one disease
were further filtered for P,0.001, and the resulting LD-pruned SNP sets
were then tested for their distribution of association in the other
disease. The QQ-plots indicate excess sharing of moderately associated
SNPs across CD and RA.
doi:10.1371/journal.pgen.1002004.g002

Figure 3. QQ plot of CD-RA meta-analysis by directional method and opposite allelic effect. CD-RA inverse variance weighted meta-
analysis assuming allelic effects in the same direction in the two diseases (panel A) and opposite allelic effects (panel B). Black – all loci except the
MHC region (chr. 6: 20–40 Mb). Green – all loci except MHC and established CD and RA regions (1 MB around previously validated SNPs excluded).
doi:10.1371/journal.pgen.1002004.g003

Meta-Analysis of CD and RA
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GWAS and replication—same allele, opposite direction
There is increasing evidence that alleles conferring risk of one

autoimmune disease confer protection to another autoimmune

disease [3,7,8,24,25,26]. We therefore performed an analysis of

alleles that conferred risk in either CD or RA, but protection in the

other disease (Figure 3B), followed by independent testing in our

replication cohort. Nine loci were identified using the same criteria

as above (Pcombined,161025, and disease-specific P,0.01; see

Tables S6 and S7). The strongest shared signal from this analysis

was at the TAGAP locus (6q25.3, rs212388 Pcombined = 5.4610212),

an established risk locus in both CD and RA [2,3,8] (Chen, et al,

submitted). Another locus that had an apparent opposite allelic

effect was REL (2p16.1), although it shows a more complex pattern

of association. From the three SNPs in the REL locus that were

associated to both diseases with Pcombined,161025, and disease-

specific P,0.01, two SNPs showed similar direction of association

with CD and RA, whereas one SNP showed opposite direction-

ality of association (Tables S4 and Table S6). Of the remaining

SNPs, no single SNP replicated in both diseases at P,0.05 and

achieved P,561028 in an overall analysis of all data. We

observed a trend of an association at the chromosome 2p23.1

(near the LBH gene) locus (rs7579944, PCD = 9.761026 and

PRA = 2.361024 in the CD and RA cohorts, respectively;

Poverall = 1.161028 in the combined analysis, but no formal

replication in RA cohort (PRA-repl = 0.13)) (Table 3). Although

these data strongly suggest that chromosome 2p23.1 is a shared

CD-RA risk locus, additional replication will be required.

Selecting most likely causal gene near associated SNP
We used two methods to identify the most likely causal gene in

the region of the 14 shared non-HLA risk loci. First, we used a

computational algorithm, GRAIL, which systematically searches

for gene relationships across risk loci using PubMed abstracts [27].

In total, 14 shared loci contain 51 genes; 16 of these scored P,0.1

by GRAIL (Table S8). Second, we analyzed each shared SNP for

evidence of cis-acting gene expression in peripheral blood cells

derived from 1,469 individuals (Fehrmann et al, submitted). From

14 shared SNPs, 7 showed a significant (genome-wide FDR

corrected ,0.05) effect on expression of one or more transcripts in

the LD block around the SNP (Table S9, Figure S2A-S2P). It is

interesting to note that of the four novel SNP associations

identified from this study, three show convincing effects on the

expression of nearby genes, in particular rs864537-CD247

(P = 3.5610211), rs2298428-UBE2L3 (P = 2.0610299) and

rs11203203-UBASH3A (P = 8.7610210) (Table S9, Figure S2).

Based on these two methods, 23 genes located in the 14 shared loci

were selected as plausible candidates for shared CD-RA

pathogenesis (Table 4 and Table S10).

Discussion

In this study we demonstrate that there are 14 loci that

contribute to risk of both RA and CD: 6 previously established risk

loci and 8 loci identified in our study. Of the 8 new loci, 4 had not

been associated previously with either disease at genome-wide

significance (CD247, UBE2L3, DDX6, and UBASH3A) and 4 had

been established in one but not the other autoimmune disease

(SH2B3, 8q24.2, STAT4, and TRAF1-C5). Our study represents the

first systematic effort to compare the genetic basis of CD and RA

in a very large sample set – more than 50,000 combined case-

control samples – to identify risk alleles with pleiotropic effects on

two clinically distinct autoimmune diseases.

To identify the shared risk loci, we performed two types of

analyses. First, we compared the distribution of established and

putative risk alleles across both autoimmune diseases. Both

distributions were non-random, providing empirical evidence that

the genetic basis of the two autoimmune diseases overlaps. Second,

we combined GWAS data and performed independent replication

to search for specific SNPs associated with both diseases. We

performed the GWAS meta-analysis under a genetic model in

which the same allele conferred risk of both autoimmune diseases,

as well as a model in which the same allele conferred risk to one

disease and protection from the other disease. Of the newly

identified 8 shared risk alleles, all 8 confer same risk direction on

both CD and RA.

Our study represents one of the first GWAS meta-analysis of

clinically distinct but epidemiologically related diseases. This

approach has appeal for diseases in which there is thought to

be a shared genetic basis, as it adds power to detect alleles of

modest effect size. A GWAS meta-analysis has been conducted

on early onset inflammatory bowel disease (IBD), which include

Crohn’s disease (CrD) and ulcerative colitis (UC) [15]. CrD and

UC are clinically similar diseases both affecting bowel, and often

can not be distinguished between each other (presented as

undifferentiated IBD), especially in children. In contrast to the

IBD study, our GWAS meta-analysis combined phenotypes with

different clinical presentations (enteropathy and inflammatory

arthritis).

In combining GWAS data across clinically distinct phenotypes,

an important question is how to interpret statistical significance

and therefore how to declare a SNP as a confirmed association for

each disease. In our study, we empirically demonstrated that SNPs

associated with risk of either CD or RA have a higher probability

of being associated with the other autoimmune – even if the SNP is

not yet a confirmed association in either disease (Figure 2). We

observed that a SNP associated with risk of CD at P,0.001 has an

increased prior probability of being associated with RA, and a

SNP associated with risk of RA at P,0.001 has an increased prior

probability of being associated with CD. Based upon these

analyses, we propose objective criteria for declaring a SNP as a

shared CD – RA risk SNP in our study: it must achieve

Poverall,561028 in combined analysis of CD&RA, with the

additional requirement of P,0.05 in an independent replication

dataset and P,0.001 for each disease. Applying these criteria to

our meta-analysis results we conclude that there are 14 non-HLA

shared CD and RA risk loci (Table 1 and Table 2).

We applied two methods to select the most likely causal gene in

the region of the 14 shared non-HLA risk loci, and in doing so

gain insight into shared RA-CD pathogenesis: (1) a computational

algorithm, GRAIL, which systematically searches for gene

relationships across risk loci using PubMed abstracts [27] and (2)

a dataset of cis-acting gene expression in peripheral blood cells

derived from 1,469 individuals [27] (Fehrmann et al, submitted).

Using these methods we prioritized 23 genes located in the 14

shared loci as plausible functional candidates. Interestingly, two

out of four novel loci function in T-cell activation/signalling:

CD247, which encodes for the zeta chain of the T-cell receptor-

CD3 complex, and UBASH3A, which is a suppressor of T-cell

receptor signaling, underscoring antigen presentation to T-cells as

a critical shared mechanism of disease pathogenesis [28,29]. This

observation is consistent with the known functions of several of the

other shared RA-CD risk loci which were highlighted in GRAIL

and expression analysis (CTLA4, ICOS, TAGAP, SH2B3, and

STAT4). These genes are known to modulate T-cell activation

and/or differentiation: CTLA4 is a negative regulator of T-cell

activation [30], ICOS is a T-cell co-stimulator molecule [31],

TAGAP is up-regulated upon T-cell activation[32], SH2B3 (LNK) is

an adaptor protein involved in T-cell activation [33], and STAT4
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is transcription factor important in differentiation of T helper

cells [34].

How might these 14 loci influence risk of two clinically distinct

autoimmune diseases? MHC class II alleles, the strongest risk

factor in both diseases, are notably different between the two

diseases: HLA-DQ*A1 and *B1 alleles in CD and HLA-DRB1

‘‘shared epitope’’ alleles in RA. Under a model in which MHC

class II molecules confer risk by preferentially presenting disease-

specific antigens (gluten in CD, most likely citrullinated antigens in

RA) to autoreactive T-cells, then disease specificity is determined

in large part by the inheritance of specific HLA alleles and

exposure to disease-specific antigens. Our genetic data extends this

model to implicate downstream signaling events common to both

diseases that may lead to altered T-cell activation and differen-

tiation. Whether abnormal T-cell signaling occurs in the thymus

(where autoreactive T-cells undergo negative selection), in the

peripheral circulation (where autoreactive T-cells exert their

effects), or in another manner remains to be determined.

There are several limitations of our study. First, we did not

search for loci in which an allele contributes to risk of one

autoimmune disease and an independent allele contributes to risk

of the other autoimmune disease. The REL locus provides an

example in which the risk alleles for the two autoimmune diseases

appear distinct [2,5,6]. Second, our study is underpowered to

detect shared risk alleles of more modest effect size, despite a

combined sample size of .50,000 case-control samples. As more

samples and SNPs are genotyped between these diseases,

additional risk alleles will be discovered. Third, we did not

attempt to fine-map the 26 established risk loci for both

autoimmune diseases to determine if a single allele is responsible

for risk in both autoimmune diseases. And fourth, we made no

attempt to search for low-frequency or rare variants that are

shared between RA and CD. Implementation of newer sequencing

technologies will be required to search for rare risk variants.

In summary, our study adds four novel loci to established RA

and CD risk loci (CD247, UBE2L3, DDX6, and UBASH3A). It also

adds four loci previously established in one or the other disease to

the list of shared CD-RA risk loci (SH2B3, 8q24.2, STAT4, and

TRAF1-C5). With six previously established CD-RA risk loci, there

are now 14 shared CD-RA risk loci, out of 50 established loci for

either of the two autoimmune diseases. We emphasize that these

are conservative estimates of shared risk loci between the two

diseases, as our study may be underpowered to detect common

alleles of modest effect size, and we have not considered genetic

models in which different alleles within one locus contribute to risk

of the two diseases. In addition to the HLA associations, these

shared risk loci clearly point to the critical role of antigen

presentation via MHC class II molecules to the T-cell receptor,

and subsequent activation and differentiation of T-cells in shared

disease pathogenesis.

Materials and Methods

Ethics statement
Institutional review boards at each collection site approved the

study, and all individuals gave their informed consent.

Sample collection
CD GWAS dataset. CD case-control GWA study included

15,283 individuals (4533 cases, 10750 controls) from 5

populations: Finnish (FIN) (674 cases, 647 controls), Italian (IT)

(541 cases, 497 controls), Dutch (NL, 876 cases, 803 controls), and

two collections from UK population, UK1 (737 cases, 2596

controls) and UK3 (1922 cases, 1849 controls) (described in details

in[2]).The genotyping of all cohorts except UK1 cases was done

on Illumina platforms including 550K SNPs (either Illumina

Hap550, or Illumina 610 or 670 Quad, or Illumina 1.2 M). The

genotyping of UK1 cases (n = 737) was done on Illumina 317K

arrays. The subset of SNPs successfully genotyped on Illumina 550

and Quadr platforms, but not on Hap300 platform (n = 196860)

was further imputed in the UK1 dataset, using Plink and HapMap

Phase 2 European CEU founders as a reference panel [35].

RA GWAS dataset. The RA meta-analysis includes 5,539

autoantibody positive RA cases and 17,231 controls of European

ancestry as described previously [3]. This study comprises six

GWAS case-control collections, genotyped on various platforms.

The imputation was conducted on GWAS genotype data for each

GWAS collection separately, using the IMPUTE software [36]

and haplotype-phased HapMap Phase 2 European CEU founders

as a reference panel. In total, 2.56 million SNPs were imputed.

Identity by state (IBS) analysis was run on controls from both CD

and RA GWAS datasets. The overlapping controls genotyped in

both CD and RA datasets were excluded from the RA analysis.

Replication cohorts. The replication cohorts included 2,169

CD cases and 2,255 controls, and 2,845 antibody-positive RA

cases and 4,944 controls. The CD replication cohorts included

three case-control collections from Ireland, Italy and Poland; all

collections were geographically matched and are described

previously [2]. The five RA replication collections included (1)

CCP or RF positive Dutch cases from Groningen and Nijmegen,

together with geographically matched controls (Replication cohort

1, R1); (2) CCP positive white individuals from North America

(Replication cohort 2, R2; this collection is called i2b2); (3) North

American RF positive cases and controls matched on gender,

age, and grandparental country of origin from the Genomics

Collaborative Initiative (GCI, Replication cohort 3, R3); (4) CCP

or RF positive Dutch cases and controls from Leiden University

Medical Center (LUMC; Replication cohort 4, R4); and (5) CCP

positive cases drawn from North American clinics and controls

from the New York Cancer Project (together this collection is

called NARAC-II), matched on ancestry informative markers data

(Replication cohort 5, R5). All cohorts except i2b2 were described

in detail in [3], whereas i2b2 is described in [37]. Summary

information on these samples is presented in Table S11.

Genotyping
Replication analysis of 15 SNPs was performed on the Sequenom

iPlex platform in three centers – (1) Broad institute (all CD cases and

controls, and RA replication cohorts R1 and R2); (2) Celera

Diagnostics (Alameda California, USA; RA replication cohort R3

and R4); and (3) National Institute of Arthritis and Musculoskeletal

and Skin Diseases (NIAMS, RA replication cohort R5). (See Table

S11 for details). If the SNPs could not be designed into the iPLEX

pool, then a proxy SNP was included. Information on the iPLEX

design, proxies and cohorts genotyped in different centers is

presented in Tables S11 and S12. We excluded SNPs in each

replication collection if they were missing .10% genotype data,

,1% MAF and PHWE,1023. For 5 out of the 20 SNPs that satisfied

the replication criteria in either the directional or opposite allelic

effect analysis, replication results were already available for CD and

RA samples from the studies Dubois et al [2] and Stahl et al[3],

respectively. For these 5 SNPs, we included genotype data from all

replication samples available in these studies.

Data analysis
GWAS meta-analysis. The meta-analysis of CD and RA

datasets was performed using an inverse variance-weighted

method. Analysis was performed in R package as described

Meta-Analysis of CD and RA
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previously. [20,38] To detect associations of the same and opposite

directions, two tests were performed. First, the directional meta-

analysis was done; second, the direction of association was flipped

in RA dataset and an opposite-allelic effect analysis was

performed. In total, 477,662 SNPs either directly genotyped on

the Illumina Hap550 platform, or genotyped on Hap300 and

imputed in UK1 cases were included in the analysis; all SNPs

overlapped with genotype or imputed SNPs from the RA dataset.

In both diseases the genomic control corrected results were used

for the meta-analysis.

Replication analysis. Replication and combined analyses

were done with an inverse variance-weighted method. Combined

(GWAS + replication) analysis within one disease (CD or RA) was

done with a directional method. Replication association tests were

one-tailed, for the same allele being risk or protective as in the

GWAS meta-analysis. Combined analysis of all CD and RA

samples was done for the same (directional or opposite) allelic

effect as was estimated in GWAS meta-analysis.

Distribution of risk alleles in GWAS. For the analysis of

distribution of risk alleles, we excluded SNPs located within 1 MB

around each of the most associated SNPs (26 in each disease); for

the MHC and PTPN22 loci, we excluded 20 Mb and 2 Mb,

respectively (chr. 6: 20–40 Mb and chr. 1: 113–115 Mb). The

pruning of SNPs in linkage disequilibrium (LD) was done by

selecting SNPs to retain and then removing all SNPs with r2.0.1

in the HapMap2 reference panel. Pairwise LD tables were

generated from the HapMap2 release 24 phased haplotype data

distributed with the IMPUTE software; r2 values were calculated

for all SNPs within 1 Mb of each other. For a given analysis, the

most strongly associated SNPs (after removing 1 Mb around

known associated SNPs) in one disease were retained. We also

filtered for SNPs with P,0.001. The resulting LD-pruned SNP

sets were then tested for non-random distributions of association

in the other disease. Fisher’s rule for combining P-values

({2
Pn

i~1 ln(Pi)~xx
2
2n) (22 gln(P) ,x2

2n) was used to test the null

hypothesis of a uniform distribution of P-values for association

with a given disease. Kolmogorov-Smirnov and Wilcoxon rank

sum tests were performed to test for overall difference and

difference in location, respectively, of the distributions of P-values

in a given disease, for SNPs with P,0.001 versus P$0.001 in the

other disease. One-sided tests were conducted, with the alternative

hypothesis that SNPs associated with one disease would also show

evidence of association with the other.

Gene expression. The analysis of gene expression was done

on PBMC of 1,469 individuals, as previously described [2]. In this

dataset, we included SNPs with genotyping call-rate $95%,

Hardy-Weinberg P-value $0.001, and MAF $5%. Expression

data was quantile normalized, centered to the mean and scaled

such that all probes had a standard deviation of 1. Principal

component analysis was performed over the sample correlation

matrix, in order to capture non-genetic variation. The variation

described within the first 50 principal components was sub-

sequently subtracted from the expression data as described by

Fehrmann et al (Fehrmann et al, submitted). Effects were deemed

cis-effects, when the mid-probe to SNP distance was #250 kb.

False discovery rate was controlled at 5%, by comparing observed

p-values with p-values obtained after permuting sample labels 100

times. The Fehrmann et al manuscript specifically investigated

whether SNPs in the Illumina probe sets might explain the eQTL

results: eQTL associated SNPs were checked for LD with SNPs

from 1000 genomes pilot data located within probe sequences.

Specifically for our study, we verified that none of the eQTL

associated SNPs was in high LD (r2.0.1) with any of the 1000

genome SNPs located within Illumina probe sequences.

Supporting Information

Figure S1 Manhattan plots for GWAS analysis. Manhattan plot

for GWAS in CD (A), RA (B), CD-RA with directional meta-

analysis (C) and CD-RA with opposite allelic effect (D). Figure E is a

combined picture of the four analyses. Yellow – CD; blue – RA;

green – CD-RA directional; purple – CD-RA opposite allele. In

figure E, the 14 shared CD-RA loci are annotated. The HLA locus

(chr6: 20–40 MB) is excluded from the analysis. In RA, three SNPs

in PTPN22 locus are associated at p,10-24 and therefore are

excluded from the plot for the purpose of scale. The PTPN22 SNPs

excluded from RA plot are: rs2476601 P(RA) = 3.6610268,

rs2358994 P(RA) = 8.2610231, and rs1230661 P(RA) = 6.1610225.

(PDF)

Figure S2 Cis eQTL genotype – expression correlation analyses

in associated SNPs. Individual level gene expression data (residual

variance after Transcriptional Components removed) from 1469

PAXgene samples. Spearman Rank Correlation coefficients and P

values are shown for HT-12 and Ref. 8 data and for meta-analysis

results. Right Y axis, average expression rank, is a measure of how

strongly the tested probe is expressed amongst all probes in the

dataset. Unannotated probes are manually plotted and localized to

the following transcripts: Probe 2810202 – PHF19, Probe 6980470

– TMPRSS3, Probe 1230242 – UBE2L3.

(PDF)

Table S1 Established CD SNPs and their association to RA.

Candidate genes in the blocks are mentioned. Top P-value in CD is

indicated as in the reference paper [2]. CD_P column indicates the

p-value in CD-GWAS dataset (4,533 cases and 10,750 controls);

RA_P column indicates the p-value in RA-GWAS dataset (5,539

cases and 17,231 controls). OR is given for the minor allele.

(DOC)

Table S2 Established RA SNPs and their association to CD.

Candidate genes in the blocks are mentioned. Top P-value in RA is

indicated as in the reference papers [3,4,5,10,11,39,40,41,42,43].

CD_P column indicates the p-value in CD-GWAS dataset; RA_P

column indicates the p-value in RA-GWAS dataset; OR is given for

the minor allele. The CD results for RA SNPs that were not

genotyped in CD GWAS (not present on Illumina Hap550

genotyping array), are either imputed or estimated from the best

genotyped proxy SNP (indicated in column ‘‘genotyped/imputed’’).

When proxies were used, the r2 with RA SNP is indicated in column

‘r2 for proxy’. For imputed SNPs the imputation score is annotated

in column ‘Imp. score’. * - the perfect proxy rs13017599 was

genotyped in the reference paper. + - the association in TNFRSF14

does not reach P,561028, however this locus was included as RA-

established locus as it was implicated in several independent studies

[3,39,41].

(DOC)

Table S3 Distribution of CD associated SNPs (P,0.001) in RA

dataset and RA associated SNPs (P,0.001) in CD datasets. 3a.

Goodness of fit tests of no association, using Fisher’s Rule for

combining P-values. 3b Results of Kolmogorov-Smirnov and

Wilcoxon rank sum tests for non-random distribution of associated

SNPs across diseases. N – number of SNPs associated to CD and

RA at p,0.001 after LD-pruning. Df – degrees of freedom.

(DOC)

Table S4 SNPs associated to CD-RA with P,1610-5 and CD

and RA with P,0.01; directional analysis. The table includes all

SNPs associated to CD-RA in directional GWAS meta-analysis
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with P(combined),1610-5 (column ‘CD-RA_P dir’) and P-value

per diseases P,0.01 (columns ‘CD_P’ and ‘RA_P’). OR is given

for the reference (minor) allele.

(DOC)

Table S5 CD-RA meta-analysis results, directional analysis –

one top SNP per loci. One most associated SNP per locus is

indicated. OR is given for the reference (minor) allele. Cut-off for

the P-values is the same as in Table S4. SNPs are sorted for the P-

value in CDRA meta-analysis. Loci established in both diseases

are indicated in bold.

(DOC)

Table S6 SNPs associated to CD-RA with P,1610-5 and CD and

RA with P,0.01; analysis of opposite allelic effect. The table includes

all SNPs associated to CD-RA in GWAS meta-analysis of opposite

alleleic effect with P(combined) P,1610-5 (column ‘CD-RA_P_opp’)

and P-value per diseases P,0.01 (columns CD_P and RA_P).

(DOC)

Table S7 CDRA meta-analysis results, opposite allelic effect –

one top SNP per loci. One most associated SNP per locus is

indicated. OR is given for the reference (minor) allele. Cut-off for

the P-values is the same as in Table S6. SNPs are sorted for the P-

value in CD-RA meta-analysis. Loci established in both diseases

are indicated in bold.

(DOC)

Table S8 GRAIL analysis of associated loci. The P-value for

each candidate gene is based on the number of relationships to

other associated genes listed in the third column. GRAIL is

available at http://www.broadinstitute.org/mpg/grail/.

(DOC)

Table S9 Shared CD-RA risk variants correlated with cis gene

expression. ‘HT-12’ comprise 1240 individuals with blood gene

expression assayed using Illumina Human HT-12v3 arrays, ‘Ref-

8v2’ comprise 229 individuals with blood gene expression assayed

using Illumina Human-Ref-8v2 arrays. ASpearman rank correla-

tion of genotype and residual variance in transcript expression.

Meta-analysis eQTL P value shown if both datasets had identical

probes. See Figure S2 for detailed results and Materials and

Methods for sample information and references.

(DOC)

Table S10 Characteristics of 23 candidate genes in shared loci.

(DOC)

Table S11 Information on replication cohorts. Case-control

collections included to the replication step in CD (top panel) and

RA (bottom panel). For each collection, we list the source of

controls, geographic origin, autoantibody status of RA cases,

numbers of cases and controls, genotyping platform and

genotyping center, and the strategy used to correct for case-

control population stratification. See Materials and Methods for

additional details. NIAMS – National Institute of Arthritis and

Musculoskeletal and Skin Diseases.

(DOC)

Table S12 Information on proxies used in three iPLEX pools.

R2 - r2 between GWAS and SNP pools used in replication step

(HapMap CEU, as calculated in SNAP (http://www.broadinstitute.

org/mpg/snap/)). A – iPLEX pool used in Broad institute (BI) was

used to genotype all replication cohorts for celiac disease and

replication cohorts R1 and R2 in rheumatoid arthritis, as indicated

in Table S11.

(DOC)
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