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Purpose: To describe the clinical and genetic findings in two Chinese families with aniridia and other ocular abnormalities.
Methods: Two unrelated families were examined clinically. After informed consent was obtained, genomic DNA was
extracted from the venous blood of all participants. Mutation screening of all exons of the PAX6 (paired box gene 6) gene
was performed by direct sequencing of PCR-amplified DNA fragments. Multiplex ligation-dependent probe amplification
(MLPA) was performed to detect large deletions. Linkage analysis was used to validate the large deletions revealed by
MLPA in all available family members.
Results: Clinical examination and pedigree analysis revealed one four-generation family (85) and one three- generation
family (86) with total aniridia, congenital cataracts, foveal hypoplasia, and glaucoma. No mutation in PAX6 was identified
after PCR-sequencing. Through MLPA analysis, a large deletion including the whole PAX6 gene, DKFZp686k1684
(hypothetical LOC440034), and the RCN1 (reticulocalbin 1) gene was detected in family 85; a 3′ deletion to the PAX6
gene including the ELP4 (elongator complex protein 4) and the DCDC1 (doublecortin domain containing 1) gene was
identified in family 86.The two large deletions were confirmed with linkage analysis and the “loss of heterozygous” in
the different PAX6 regions were co-segregated with the phenotype of the two families, respectively.
Conclusions: Patients with the PAX6 contiguous gene deletion, including the RCN1 gene, presented more severe vision
impairments than those carrying the PAX6 3′ deletion. Large deletions may account for several Chinese families and
sporadic cases with aniridia and screening for these kinds of alterations should be included in aniridia patients’ analyses.

Aniridia (AN; OMIM 106210) is a rare congenital
disorder characterized by the complete or partial absence of
the iris. The incidence of AN in the general population is about
1 in 64,000 to 96,000 [1]. Vision is usually impaired by other
ocular abnormalities such as corneal opacification, cataract,
glaucoma, fovea and optic nerve hypoplasia, and nystagmus
[1]. About two-thirds of AN cases are families with an
autosomal dominant mode of inheritance. In the remaining
third no family history is found.

The aniridia gene was first mapped on chromosome
11p13 by linkage analysis, and then isolated by positional
cloning in 1991 [2]. The PAX6 (paired box gene 6) gene spans
22 kilobases and contains 14 exons, including an alternatively
splicing exon5a. Therefore, there are two isoforms: PAX6
(−5a), comprising 422 amino acids, and PAX6 (+5a),
comprising 436 amino acids [2,3]. PAX6 encodes a
transcription factor that is involved in several development
pathways and is expressed early in the development of the eye,
numerous regions of the brain, and the pancreas. PAX6
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contains an NH2-terminal paired domain, a homeodomain
separated by a glycine-rich linker sequence, and a COOH-
terminal proline-serine-threonine rich transregulatory domain
[2,3]. Most aniridia cases are caused by intragenic mutations
of PAX6, which include nonsense mutations, splicing
mutations, frame-shifting insertions or deletions, in-frame
insertions or deletions, missense mutations, and run-on
mutations [2-7]. A small numbers of aniridia cases can be due
to large chromosomal deletions or rearrangements [2,8].
Aniridia generally occurs in isolation or accompanied by other
ocular malformations, but it occurs, more rarely, as part of the
WAGR (Wilms’ tumor, aniridia, genitourinary abnormalities,
and mental retardation) syndrome (OMIM 194072) [9].
WAGR is usually caused by deletions of chromosome 11p13,
which include PAX6 and WT1 (Wilms tumor 1) [9]. As large
deletions could not be identified by the routine PCR-
sequencing mutation detection method, only a few isolated
aniridia patients with the large deletions in the PAX6 region
have been documented and the most of them are sporadic
cases [2,8-18].

In this study, we describe the clinical findings in two
Chinese families with two different large deletions in the
region of PAX6.

Molecular Vision 2011; 17:548-557 <http://www.molvis.org/molvis/v17/a63>
Received 29 September 2010 | Accepted 14 February 2011 | Published 19 February 2011

© 2011 Molecular Vision

548

http://www.ncbi.nlm.nih.gov/omim/106210
http://www.ncbi.nlm.nih.gov/omim/194072
http://www.molvis.org/molvis/v17/a63


METHODS

Patients and DNA sample collection: This study was
performed according to the tenets of the Declaration of
Helsinki for research involving human subjects. This study
was approved by the Beijing Tongren Hospital Joint
Committee on Clinical Investigation, Beijing, China. After
informed consents were obtained, participants underwent
ophthalmologic examination including bilateral best
corrected visual acuity using E decimal charts, slit-lamp
biomicroscopy inspection of the anterior chamber, intraocular
pressure (IOP) measurement by applanation tonometry
(Goldmann), and fundus examination with a 66-diopter
VOLK lens. Some patients underwent electroretinography
(ERG) and A/B ultrasonic scan examination.

Mutation screening of PAX6: Peripheral blood was obtained
by venipuncture and genomic DNA was extracted according
to standard protocols. The 14 exons of PAX6 were amplified
by polymerase chain reaction (PCR) from genomic DNA.
Thirteen pairs of primers for PAX6 were used (Table 1),
according to the article previously published [17]. For direct
sequencing, PCR products were purified (Shenneng Bocai
PCR purification kit; Shenneng, Shanghai, China). An
automatic fluorescence DNA sequencer (ABI, Prism 373A;
Perkin Elmer, Foster City, CA), used according to the
manufacturer’s instructions, sequenced the purified PCR
products in both forward and reverse directions. DNAssit,
version 1.0 compared nucleotide sequences with the published
DNA sequence of PAX6 (GenBank NM_001604.3).

TABLE 1. PAX6 PCR PRIMERS USED IN THIS STUDY

Primer Forward (5'-3') Reverse (5'-3') Tm (°C) Product size (bp)
exon1 AGGGAACCGTGGCTCGGC GGGTGAGGGAAGTGGCTGC 62 207
exon2 TTATCTCTCACTCTCCAGCC GGAGACCTGTCTGAATATTGC 54 307
exon3 TCAGAGAGCCCATGGACGTAT CTGTTTGTGGGTTTTGAGCC 58 193
exon4 AGTTCAGGCCTACCTGATGC GTCGCGAGTCCCTGTGTC 58 201
exon5 CTCCCTCATCTTCCTCTTCC GGGGTCCATAATTAGCATCG 58 327
exon6-7 GGGCTACAAATGTAATTTTAAGAAA AGAGAGGGTGGGAGGAGGTA 56 509
exon8 GAGCTGAGATGGGTGACTG GAGAGTAGGGGACAGGCAAA 58 300
exon9 AGACTACACCAGGCCCCTTT TGAAGATGTGGCATTTACTTTGA 58 291
exon10 GGAACCAGTTTGATGCACAG ACTCTGTACAAGCACCTCTGTCTC 58 243
exon11 GGGCTCGACGTAGACACAGT GGAAACTGAGGGCAAGAGAA 56 300
exon12 CGGGCTCTGACTCTCACTCT GCCACTCCTCACTTCTCTGG 60 220
exon13 GCTGTGGCTGTGTGATGTGT AGGAGATTCTGTTTGGGTA 52 281
exon14 TCCATGTCTGTTTCTCAAAGG TCAACTGTTGTGTCCCCATAG 56 219

Figure 1. Schematic representation of WT1/ RCN1/ DKFZ p686k1684/PAX6/ ELP4/ DCDC1 on chromosome 11p13 and the relative positions
of the microsatellite markers and single nucleotide polymorphism (SNP) used in linkage and real-time quantitative PCR analysis. D presents
DKFZ p686k1684. Brown arrows below the each gene indicated the transcription direction for each gene. The region between the two blue
vertical lines presents the deleted region (407 Kb) of family 85, the region between the two purple vertical lines presents the deleted region
(527 Kb) of family 86.
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Multiplex ligation-dependent probe amplification (MLPA
analysis): MLPA was performed with SALSA MLPA Kits
P219 (Amsterdam, the Netherlands) according to the
manufacturer’s instructions. In brief, 100 ng DNA was
denatured and hybridized with the SALSA probe mix
overnight at 60 °C. The samples with ligase 65 were incubated
for 15 min at 54 °C, after which PCR amplification was
performed with the specific SALSA FAM PCR primers. The
PCR products were separated by capillary electrophoresis on
an automatic fluorescence DNA sequencer (ABI, Prism 373A;
Perkin Elmer). Data analysis was performed by exporting the
peak areas to a Microsoft Excel (Microsoft Corporation,
Redmond, WA) file. Each peak was first normalized as
described elsewhere [17] and the normalized peak was then
divided by the mean of that peak in the control samples. The
ratios outside the range of 0.7–1.3 times the control peak area
were considered abnormal, with those below 0.7 representing
deletions and those above 1.3 representing duplications. For
each MLPA analysis, several normal controls were included
and the standard deviation for the normal samples was usually
less than 10% of the mean. Each result was confirmed by two
independent tests.
Linkage analysis: To validate the large deletions detected by
MLPA, genotyping for families 85 and 86 was performed with
the following 8 microsatellite markers: D11S905, D11S1776,
GDB.250586, PAX6.CA/GT, D11S995, D11S2001,
D11S4156, and D11S904. The fine mapping primer
sequences were obtained from the GDB (Human Genome
Database). The positions of these markers related to WT1,
RCN1 (reticulocalbin 1), DKFZ p686k1684 (hypothetical
LOC440034), PAX6, ELP4 (elongator complex protein 4),
and DCDC1 (doublecortin domain containing 1) are shown in
Figure 1.
Real-Time Quantitative PCR analysis: To define the relative
exact break point of the deletions, real-time quantitative PCR
was performed in the affected members of the two families
round the three regions (3′ to RCN1, 3′ to PAX6, and near the
D11S4156 locus). Real-time quantitative PCR reactions were
performed on the Rotor-Gene 6000 (Corbett Research,
Mortlake, NSW, Australia) in a final volume of 10 μl,
containing 300 nM primers and 1 μl (100 ng) genomic DNA,
using the Eva green PCR Master Mix (Bio-Rad Laboratories,
Hercules, CA). The primers in the analysis are shown in Table
2. Each assay was done in triplicate. The relative quantitation
(RQ) of target gene was accomplished using RQ manager
software (Bio Rad systems) and was calculated using the 2-

ddCt method [19]. All experimental samples were normalized
using human GAPDH as an internal control. The significance
of the difference with a reference experiment was calculated
with Student’s t-test.

RESULTS
Clinical findings: We have identified one four-generation
family (#85) and one three- generation family (#86) with

aniridia. The inheritance pattern in the families was autosomal
dominant (Figure 2). After clinical examinations and a review
of hospital records, 11 individuals in family 85 were found to
have aniridia. All patients presented bilateral complete
absence of iris, severe congenital nystagmus, and congenital
cataracts (Figure 3A,C). Foveal hypoplasia was observed in
all fourth-generation patients except (IV-6; Figure 3D). The
ERG of patient IV-7 showed slight cone cell dysfunction. The
proband (III-4), her father, and her brother presented high
intraocular pressure (IOP) and late stage glaucoma changes in
the optic disc (Figure 3B). Due to the progressive density of
the lens opacification, the fovea of patients in the second and
third- generation and patient IV-6 could not be observed
clearly. In family 86, five patients were identified and all
patients had bilateral complete absence of iris and congenital
cataracts (Figure 3E,G). Neither mental retardation nor other
general abnormalities was observed or documented in all
patients from the two families. Their detailed clinical features
are summarized in Table 3.
Mutation analysis: By the direct sequencing of 14 exons of
PAX6, no mutation was detected in the two families.
MLPA Results: Using the MLPA Kits P219, two different
deletions were detected in the two families (Figure 4). In
family 85, a deletion of the whole PAX6 gene, the DKFZ
p686k1684 gene, and the RCN1 gene was found; in family 86,
a deletion of the ELP4 gene and the DCDC1 gene, which is
located in the 3′ region of the PAX6 gene, was identified.
Genotyping Results: The two families were genotyped with
several STRP markers located around PAX6 in the
chromosome 11p13 region. The linkage analysis results were
highly informative for the two families. For family 85, all
patients display “loss of heterozygosis” at marker PAX6 CA/
GT, which is located inside the PAX6 gene. All patients in
family 86 show “loss of heterozygosis” at markers D11S995
and D11S2001, which is closed to ELP4 and DCDC1 (Figure
2).
Real-Time Quantitative PCR analysis results: This study set
up a real-time quantitative PCR assay to define the relative
breakpoint of the deletions. GAPDH (glyceraldehyde-3-
phosphate dehydrogenase) was used to normalize PAX6
values. Assay for exon 8 of PAX6 were set up by using the
patients in family 85 with the PAX6 deletion. The
amplification plots are shown in Figure 5A,B, and the patient
had about a half RQ value with respect to the normal control
Figure 5C. Thus this study used this assay to analyze several
single nucleotide polymorphisms (SNPs) around RCN1,
PAX6, ELP4, and DCN1. The results were summarized in
Table2. The relative exact breakpoints for the two families
were showed in Figure 1.

DISCUSSION
In this study, we described two Chinese families with aniridia
and other ocular abnormalities. Using MLPA, a large deletion,
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Figure 2. Family structure and haplotype analysis of two Chinese families with aniridia. Pedigree and haplotype analysis of family 85 and 86
with aniridia showed “loss of heterozygous” segregation with the microsatellite marker PAX6.CA/GT (family 85), D11S995, and D11S2001
(family 86), respectively. All markers are on chromosome 11, listed in descending order from the centromeric end. Squares indicate males;
circles indicate females; slashed symbols indicate deceased; solid symbols indicate affected; open symbols indicate unaffected.
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Figure 3. Ophthalmological findings in patients from the two families. A: Photograph of anterior segment of patient III-4 of 85 with complete
absence of iris and the progressing dense congenital cataract. B: Fundus images of patient III-4 showed late-stage glaucomatous cupping of
the optic disc. C: Complete hypoplasia of the iris and congenital cataract were observed in patient IV-7 of family 85. D: Fundus images of
patient IV-7 showing foveal hypoplasia. E: Photograph of anterior segment of patient II-4 of family 86 with complete absence of iris and
congenital cataract. F: Fundus image of patient II-4 showing a tessellated appearance. G: Photograph of the anterior segment of patient III-3
of family 86 with complete absence of iris and mild cataract. H: Fundus image of patient III-3 showing a normal foveal reflex.
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including PAX6, DKFZ p686k1684, and RCN1, was identified
in family 85; a deletion of ELP4 and DCDC1, leaving PAX6
intact, was found in family 86. The two deletions were co-
segregated with the phenotype in the families, respectively.

Until now, almost 300 intragenic mutations of PAX6 have
been documented in the PAX6 allelic variation database
[2-7]. Most of the intragenic mutations lead to premature
protein truncation, which is likely to be acted on by nonsense-
mediated decay (NMD). By reviewing the literature on
genotype-phenotype correlation studies, the mutations that
introduce premature terminated codons (PTCs) are
consistently associated with aniridia or closely related
phenotypes [6,7]. The patient carrying the complete deletion

of PAX6, observed by Vincent et al. [15], did not present
distinctive or more severe clinical manifestations than those
associated with nonsense mutations. However, more severe
bilateral visual impairment was observed in all the patients of
family 85. The proband’s father and brother totally lost their
sight at the age of 40 due to glaucoma. Several patients showed
foveal hypoplasia. The large deletion detected in family 85
was novel and contained not only the complete PAX6 gene but
also DKFZ p686k1684 and RCN1, which are located about
300 kb upstream of PAX6. RCN1 (reticulocalbin 1), resident
in the endoplasmic reticulum, is a Ca2+ binding protein that
participates in the secretory pathway and is expressed in the
eye [20].Linkage between Pax6 and Rcn1 has been conserved

Figure 4. The normalized MLPA results
of the probands of the two families. A:
The normalized MLPA result of III-4 of
family 85. B: The result of II-4 of family
86. The height of the columns represents
of the dosage of the respective segments
in the genomic DNA with two alleles.
The light blue columns represent
chromosome 11p13 specific probes.
The orange columns represent the
deleted probes. The dark blue columns
represent the control probes. The allele
dosage of the deleted probes was found
in the range of about 0.5–0.7 of normal
control, which corresponds to one allele.
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in mice, humans, and fish [21]. Pax6 was originally isolated
in the mouse and mutations in the gene are responsible for the
small eye phenotypes. The mouse small eye phenotype had
already been suggested through homology mapping to be the
mouse counterpart of human aniridia [22]. Recently, Favel et
al. [21] observed that the mouse, carrying a heterozygous
Pax6 and Rcn1 contiguous deletion, presented an extreme
microphthalmia phenotype. They inferred that Rcn1 might
directly or indirectly contribute to the eye phenotype in
Pax6 contiguous gene deletions. The severe visual
impairment observed in family 85 seemed to be consistent
with the phenotypes found in the mouse described by Favel et
al. [21]. DKFZ p686k1684, located between PAX6 and
RCN1, is a non-coding RNA with its function unclear[23].

The 3′ deletion identified in family 86 contained ELP4
and DCD4, which are located downstream of PAX6. The
deletions in this region, which contains 3′ regulatory elements
for PAX6, were documented in several earlier studies
[12-18]. Most patients harboring the 3′ deletions had only
aniridia and other ocular abnormalities, which is similar to the
phenotype observed in most nonsense mutations patients. The
patients in family 86 showed mild vision impairments due to
aniridia and congenital cataracts. Davis et al. [18] described a
patient carrying a 1.3 Mb deletion, including several

additional genes expressed in the brain, who also presented
with autism and mental retardation.

In this study, the aniridia in both families was caused by
large deletions in the PAX6 region. In general, patients with
PAX6 contiguous deletion, including RCN1, may have
relatively severe phenotypes. Large deletions may account for
several Chinese families and sporadic cases with aniridia and
screening for these kinds of alterations should be included in
the aniridia patient’s analysis.
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