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The bZIP Transcription Factor MoAP1 Mediates the
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Abstract

Saccharomyces cerevisiae Yap1 protein is an AP1-like transcription factor involved in the regulation of the oxidative stress
response. An ortholog of Yap1, MoAP1, was recently identified from the rice blast fungus Magnaporthe oryzae genome. We
found that MoAP1 is highly expressed in conidia and during invasive hyphal growth. The Moap1 mutant was sensitive to
H,0,, similar to S. cerevisiae yap1 mutants, and MoAP1 complemented Yap1 function in resistance to H,0,, albeit partially.
The Moap1 mutant also exhibited various defects in aerial hyphal growth, mycelial branching, conidia formation, the
production of extracellular peroxidases and laccases, and melanin pigmentation. Consequently, the Moap1 mutant was
unable to infect the host plant. The MoAP1-eGFP fusion protein is localized inside the nucleus upon exposure to H,0,,
suggesting that MoAP1 also functions as a redox sensor. Moreover, through RNA sequence analysis, many MoAP1-regulated
genes were identified, including several novel ones that were also involved in pathogenicity. Disruption of respective
MGG_01662 (MoAAT) and MGG_02531 (encoding hypothetical protein) genes did not result in any detectable changes in
conidial germination and appressorium formation but reduced pathogenicity, whereas the mutant strains of MGG_01230
(MoSSADH) and MGG_15157 (MoACT) showed marketed reductions in aerial hyphal growth, mycelial branching, and loss of
conidiation as well as pathogenicity, similar to the Moap1 mutant. Taken together, our studies identify MoAP1 as a positive
transcription factor that regulates transcriptions of MGG_01662, MGG_02531, MGG_01230, and MGG_15157 that are
important in the growth, development, and pathogenicity of M. oryzae.
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Introduction

Organisms such as plants have evolved to develop many efficient
defense systems against pathogenic microbes. Among them, reactive
oxygen species (ROS), primarily superoxide and HyO,, produced
by plasma membrane-localized NADPH oxidases [1], are regarded
as one of the fastest defense reactions against pathogen attack [2].
During the plant defense response, ROS was used by apoplastic
peroxidases on the cell wall to synthesize lignin and other phenolic
polymers that prevent pathogen invasion into the host [3]. There
are reports that ROS produced at the site of an attempted invasion
may also function as a second messenger in the induction of various
plant defense-related genes and is essential for the pathogen-
associated molecular pattern (PAMP) triggered immunity (PTT)
response in plants [4,5,6,7]. Additionally, due to the toxicity, ROS
accumulated at the site of pathogen invasion can directly kill the
pathogen [8,9]. Conversely, plant pathogens have also developed
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many strategies, including enzymatic and non-enzymatic ones, to
detoxify ROS and successtully invade their hosts [10,11,12,13]. The
relative sensitivity of the fungal pathogen to ROS may also depend
on the effectiveness of its own ROS detoxification or tolerance
machinery. In fungal pathogens, transcription factor-mediated host-
derived ROS detoxification through regulation of gene expression is
important in plant-microbe interactions [14,15,16]. Detoxifying
enzymes, either preformed or inducible, including superoxide
dismutase, catalases, and peroxidases, are thought to contribute to
the tolerance of ROS in pathogenic fungi [15,17,18,19].
Saccharomyces cerevisiae transcription factor Yapl functions as one of
the most important determinants of the yeast’s response to the
oxidative stress and Yapl is responsible for transcriptional activation
of various genes mvolved in ROS detoxification [20,21,22,23,24].
Loss of Yapl function resulted in increased sensitivity to external
stresses. A comparison of AP1 transcription factors from eukaryotic
organisms revealed a conserved N-terminal basic leucine zipper
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Author Summary

Magnaporthe oryzae is a causal agent of rice blast disease
and an important model for understanding of fungal
development and pathogenicity. To examine the molec-
ular mechanisms involved in conidium formation and
appressorium development of M. oryzae, we identified the
transcriptional factor MoAP1 as a regulator of the oxidative
stress response. Our results indicated that MoAP1 is a
stage-specific regulator for conidium formation, morphol-
ogy, aerial hyphal growth, and also growth in planta.
Additionally, we identified four novel genes whose
functions were linked to MoAP1 and pathogenicity.
Disruption of MGG_01662 (encoding aminobutyrate ami-
notransferase, MoAat) and MGG_02531 (hypothetical
protein) caused minor phenotypic changes but attenuated
virulence, and disruption of MGG_01230 (encoding succi-
nic semialdehyde dehydrogenase, MoSsadh) and
MGG_15157 (encoding acetyltransferase, MoAct) resulted
in drastic reductions in the growth of aerial hyphae and
hyphal branching as well as loss of conidiation and
pathogenicity. Our studies extend the current understand-
ing of AP1 functions in fungi and reveal that the MoAP1-
mediated regulatory network is associated with the
pathogenicity of M. oryzae.

(bZIP) DNA-binding domain, consisting of a leucine zipper that
mediates dimerization [25] and an adjacent basic region that
specifically interacts with DNA sequences [24]. At the C-terminus,
the cysteine-rich domains (c-CRD) are highly conserved [26] and
play a key role in Yapl-mediated resistance to the oxidative stress
and, together with an n-CRD, for the appropriate subcellular
localization of the Yapl protein [27,28]. Additionally, mutation of
cysteine residues in Yapl resulted in increased sensitivity to a variety
of oxidizing compounds and drugs [29]. To date, Yapl homologs
were identified in several fungal pathogens [14,15,30,31,32], which
share the function in stress tolerance but differ in pathogenicity.
Yapl-mediated ROS detoxification was an essential virulence
determinant in Ustilago maydis [15), Alternana alternata [14], and
Candida albicans [31], but it had no role in virulence of Cochliobolus
heterostrophus and Aspergillus fumigatus [30,32].

Magnaporthe oryzae is a pathogen of both economical and
scientific importance [33,34]. Like most other fungal pathogens,
conidia of M. orpzae play a central role in the disease cycle. When
attached on the host surface, conidia begin to germinate and
develop appressoria from the end of the germ tubes [35]. The
mature appressorium generates enormous turgor pressure (8 MPa)
to help penetrate the plant cuticle and enter the plant cells [36].
After penetration, infection hypha spread through the rice leaf
cells and typical necrotic lesions develop on the surface of rice
leaves. Eventually, aerial conidiophores differentiate from hyphae
on the lesion and newly formed conidia are released to serve as
secondary inocula for new infections. In the past two decades,
efforts have been made to study the conidiation process, formation
of appressoria, and host plant responses to infection. Studies have
suggested that M. orpzae infectious hyphae is biotrophic and it
secretes effectors, such as biotrophy-associated secreted (BAS)
proteins that can alter host cellular defense processes [37,38]. The
availability of genome sequences for both AL orpzae and rice host
provided a new platform to identify pathogenicity-related genes
and to understand molecular pathogenesis at the genome level
[39,40].

In this study, we identified MoAP1 as a homolog of the bZIP
transcription factor AP1. We also identified four other proteins as
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the downstream targets of MoAP1, which were also involved in
conidiation and pathogenicity.

Results

Identification of MoAP1 from M. oryzae

Using S. cerevisiae Yapl sequence as trace, we identified the locus
MGG_12814 (XP_001408783) from the M. oryzae genome (http://
www.broad.mit.edu/annotation/genome/magnaporthe_grisea/
Home.html) [40]. MGG_12814 was predicted to encode a 576-
amino acid (aa) protein that shares substantial similarity (19-50%)
to a number of fungal AP1 proteins. We thus named the protein
MoAPI. Analysis of MoAPI showed several conserved domains
including a bZIP DNA-binding domain, a nuclear localization
domain near the N-terminus (aa 150-214), and a cysteine-rich
domain at the C-terminus (c-CRD; aa 492-551). Alignments of
MoAP1 with other Yapl-like proteins revealed high similarity in the
bZIP and c-CRD domains (see Figure SIA and S1B). The
alignments of the bZIP domains also revealed the most conserved
residues Q161, N162, A165, Q166, A168, F169, and R170 in the
basic region (see Figure S1A). The ¢c-CRD domain is also rich in
cysteine (C506, C530, and C539) and serine (S540) residues, and a
putative nuclear export sequence (NES) within the ¢c-CRD (aa 526—
535) is a possible binding site for the Crm1p-like exporter (see Figure
S1B) [41]. The phylogenetic relationship of MoAP1 to other AP1
proteins revealed that API-like proteins in filamentous fungi
apparently separated from those of unicellular yeasts, with M. oryzae
MoAP1 most similar to Gibberella zeae GzAP1 (XP_388976) and
Fusarium oxysporum FoAP1 (XP_388976) (see Figure S1C).

MoAP1 complemented the growth defect of a yeast yap1
mutant under oxidative conditions

To determine the function of MoAP1, we tested whether MoAP1
complements a yap! mutant of S. cerevisiae. An expression vector
pYES2 containing the full-length AMoAPI gene was transformed into
the yapl mutant. As a control, the yap! mutant was also transformed
with an empty pYES2 vector. When plated on glucose- (suppression)
or galactose-containing (induction) medium in the absence of
oxidizing agents, no growth defect was observed (see Figure S2).
However, when 0.3 mM hydrogen peroxide (H,Oy) was added, only
the wild-type strain grew on glucose-containing medium. On
medium containing both 0.3 mM HyO, and galactose, the yapl/
pYES::MoAPI formed colonies similar to the wild type, while the yap!
mutant carrying the empty pYES2 vector was significantly inhibited
(see Figure S2). This indicated that the ability of the . cerevisiae yapl
mutant to cope with HyOq stress could be complemented by the
mtroduction of MoAPI. However, judging by growth, the comple-
mentation appeared to be partial (see Figure S2).

MoAP1 is highly expressed in conidia and in invasive
hyphae

To explore the function of MoAP1, we examined its expression
in M. orpzae by quantitative real-time polymerase chain reaction
(qRT-PCR, see Figure S3A). The abundance of MoAPI transcripts
during vegetative growth in liquid CM was relatively lower than in
conidia, when compared with the expression of the control actin
gene (MGG_03982.5) (avg. dCt =6.0). In the invasive growth
planta, MoAPI mRNA accumulation decreased almost two-fold at
8 hrs and 11-fold at 24 hrs post-inoculation (hpi) on rice leaves,
compared with that of conidia at 0 hpi. However, the transcript
abundance began to increase after 24 hpi, reaching almost the
same level as that of conidia at 72 hpi (see Figure S3A). Thus, we
concluded that the MoAPI was highly activated during conidiation
and infection.
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MoAP1 is necessary for aerial hyphal growth but not

mycelial radial growth

To understand the role of MoAPI in growth, we generated a
Moap! mutant strain using the Moap! disruption allele linked to a
hygromycin resistance marker gene (see Figure S3B). Linear DNA
fragments amplified from the Moap! disruption allele were used to
transform the protoplasts of the wild type strain Guyll. Putative
transformants were screened on hygromycin media and verified by
PCR amplification (see Figure S3C). The mutants were also
confirmed by RT-PCR (see Figure S3D) and Southern blotting
analysis (see Figure S3E and S3F). Two deletion mutants, Moap1-9
and Moapl-20, were selected for further analysis. To complement
the mutant strain, the genomic DNA sequence of MoAP! containing
a 2-kb promoter region was reintroduced into the Moap! mutant
and verified using PCR amplification (see Figure S3C and S3D).

On CM medium for 5 days at 28°C, the Moapl mutants showed no
apparent defect in radial growth, but presented as a flat colony due to the
reduced aerial hyphal growth (Figure 1A and 1B) with altered
pigmentation (Figure 1D). We further incubated Guy11, Moap! mutants,
and the complemented strain in liquid CM for 48 hrs and found that the
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mutant strains formed compact mycelia masses, in contrast to the sparse
ones formed by the wild-type and complemented strains (Figure 1C). We
also compared hyphal branching patterns of the Moap! mutants with the
control strains using Calcofluor white (CFW) staining and found that the
hyphal branching was severely reduced in the Moap! mutant (see Figure
S4A). Together, these results indicated that MoAP1 is essential for
proper growth and hyphal branching.

MoAP1 disruption resulted in abnormal conidium
morphology and reduction in conidia formation

Conidia, which are borne on specialized stalks called conidio-
phores, play an important role in the disease cycle of rice blast [42].
Given that the Moap! mutant showed reduced hyphal growth, we
investigated the role of MoAP1 in conidia formation. Conidiation of
the wild-type strain (Guyl1), Moap! mutants (Moapl-9 and Moap1-
20), and the complement strain (Moap/API) was determined in 10
day old RDC cultures [43]. The most striking finding was that
conidiation was dramatically reduced by approximately 30 to 40-
fold in Moapl deletion mutants (Moapi-9, 30-fold; Moapl-20, 40-
fold),

compared with the wild-type and complement strains

Moap1/AP1

Moap1/AP1

Figure 1. The effect of MoAP1 on mycelia growth. (A) Mycelial growth is not altered in the Moap1 deletion mutant. The Moap1 mutants, the
wild type strain (Guy11) and complemented strain (Moap1/AP1) were inoculated on CM medium and cultured at 28°C in darkness for 5 days. (B) Aerial
hyphae growth is reduced in the Moap1 mutants. Strains were grown under the same conditions as above and colony side views are displayed. (C)
Phenotype of mycelia growth in liquid CM medium. The Moap1 mutants, Guy11, and the complemented strains were inoculated in liquid CM
medium for 48 hrs at 28°C in darkness and then photographed. (D). Colony pigmentation is compromised in the Moap1 mutants. The testing strains

were cultured as described in Figure 1A and photographed.
doi:10.1371/journal.ppat.1001302.g001
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(Figure 2A and 2B). Of the few conidia that formed in Moap!-9 and
Moap1-20, most exhibited abnormal, elongated, and spindly
morphology (Figure 2C and 2D). Combined with the expression
profiles of MoAPI by qRT-PCR that showed a much higher level of
MoAPI expression in conidia (see Figure S3A), we concluded that
MoAP1 plays an important role in conidial formation.

MoAP1 disruption leads to hypersensitivity to the
oxidative stress

S. cerevisiae Yapl was involved in the oxidative stress response
[21,22]. To investigate whether MoAPl exhibits the same
function, the wide-type, Moap! mutants, and the complemented
(Moap1/API) strains were exposed to HoOy. The mycelia growth
of the Moapl mutants was apparently affected (Figure 3A and 3B).
Exposure to 2.5 and 5 mM HyOs, respectively, led to an average
19% (2.5 mM) or 22% (5 mM) greater growth inhibition rate than
the wild-type strain (Figure 3B). The involvement of the AMoAP!
gene in HyOy resistance was confirmed by genetic complemen-
tation in which the complemented strain (Moapl/API) was as
resistant to HyOy as the wild-type strain (Figure 3A and 3B).

MoAP1 disruption led to excess oxidative bursts during

conidiation and germination

In fission yeast Schizosaccharomyces pombe, the transcription factor
Papl, together with another transcription factor SpAtfl, regulates the
genes involved in ROS homeostasis and the response to the extrinsic
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oxidative stress [44,45]. Intracellular ROS is known to have multiple
functions in fungal pathogenicity [14,15,30,32,46]. In M. oryzae,
intracellular ROS is the key to its virulence in rice seedlings, and the
NADPH oxidase mutants lost virulence on the susceptible rice cultivar
CO-39 because of their obstructed ROS production [46]. Thus,
visualization of ROS accumulation was performed to investigate ROS
metabolism during conidiation and germination in Moapl mutants. We
first investigated the production of ROS using dihydrorhodamine 123,
which exhibits green fluorescence during reduction by superoxide
radicals. Using this technique, it appeared that the Moap! conidium
accumulated higher amounts of superoxide than the wild-type
(Figure 4A). Such increased accumulation of superoxide was also
detected in the Moapl mutants during conidia germination. Green
fluorescence was typically more intense in the germ tubes and mature
appressoria of the Moap] mutants than the wild-type strain or the
complemented Moapl/API strain (Figure 4A). To further confirm
enhanced accumulation of ROS in the Moap! mutants, another kind of
reactive oxygen species detection probe, nitroblue tetrazolium (NBT),
which forms a dark-blue water-insoluble formazan precipitate on
reduction by superoxide radicals, was used. Using this procedure, we
found that the Moap! mutants accumulated higher amounts of
superoxide, with more intense formazan precipitates in the germ tubes
and mature appressoria (Figure 4B). In contrast, the appressoria and
infection hyphae of the wild type strain had less formazan precipitates
than the Moapl mutants (Figure 4B). Thus, both staining results
indicated that MoAPI disruption leads to excess oxidative bursts in
conidiation and germination.
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Figure 2. MoAP1 disruption leads to abnormal conidial morphology and reduced conidiation. (A) Development of conidia on
conidiophores is affected by Moap1 deletion. Strains grown on RDC medium for 7 days were examined by light microscopy. Bars equal 100 um. (B)
Statistical analysis of conidia production. The conidia produced by the wild type strain (Guy11), the mutants and complemented strains grown on
RDC medium for 10 days were collected, counted, and analyzed by Duncan analysis (p<<0.01). Asterisks indicate significant differences among Guy11,
the Moap1 mutants and complemented strains. Error bar represents standard deviation. (C) Conidium morphology. Conidia were harvested from RDC
medium, diluted to 1.0x10° spore/ml, and observed by light microscopy. Bars equal 10 um. (D) Conidia size comparison. The conidia sizes were
determined as width by length from 150 conidia of each strain. Asterisks indicate that the difference is statistically significant. Error bars represent

standard deviations.
doi:10.1371/journal.ppat.1001302.9002
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Figure 3. The Moap1 deletion mutants are hypersensitive to H,0,. (A) Mycelia growth of the Moap1 mutants under oxidative stress. The wild
type strain Guy11, Moap1 mutants and the complemented strain were inoculated on CM medium with or without 2.5 or 5 mM H,0, and cultured at
28°C for 5 days. (B) The colony diameters of the testing strains were measured and subjected to statistical analysis. The growth inhibition rate is

relative to the growth rate of each untreated control [Inhibition rate

(the diameter of untreated strain - the diameter of treated strain)/(the

diameter of untreated strain x100%)]. Three repeats were performed and similar results obtained. Error bars represent the standard deviations and

asterisks represent significant differences (p<<0.01).
doi:10.1371/journal.ppat.1001302.g003

Subcellular localization of MoAP1 is modulated by H,0,

AP1 proteins are translocated from the cytoplasm to the nucleus
following the oxidative stress [14,15,27,30]. To analyze if this is
also true for MoAPI1, we generated a C-terminal MoAPI::eGFP
fusion gene under the drive of the 77pC promoter and introduced
the fusion gene into the wild-type strain. Conidia of the
MoAPI::eGFP containing transformants were harvested and
observed under a fluorescence microscope. In the absence of the
oxidative stress, the MoAP1::eGFP fusion protein was distributed
throughout the cell and was apparently excluded from nuclei (see
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Figure S5). In contrast, fluorescence was concentrated in a single
spot after exposure to 2 mM HyO, for 2 hrs, as shown by the
colocalization of the eGIFP and DAPI fluorescence signals (see
Figure S5), indicating the nuclear localization of MoAP1::eGFP in
response to the oxidative stress.

MoAP1 is required for invasive hyphae growth and
pathogenicity

To determine whether MoAP1 was involved in pathogenicity,
conidial suspensions (1x10° conidia/ml) of both the Moap! mutant

February 2011 | Volume 7 | Issue 2 | €1001302
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Figure 4. The ROS accumulation is compromised in the Moap7 mutant during infection. (A) Detection of the superoxide by
dihydrorhodamine 123 staining. Conidia were inoculated on coverslips and incubated in a moist chamber at 28°C for 0, 2 and 24 hrs before being
stained for 2 hrs, rinsed twice with PBS and viewed by epifluorescence microscopy. Fluorescence images were captured using a 100-ms exposure for
absorbed light using a GFP filter. Representative bright-field images at each time point are shown. (Scale bars =10 um). (B) Detection of the
superoxide by NBT staining. Conidia were prepared as above, stained with a 0.3 mM NBT aqueous solution for 1 hr and viewed by light microscopy.
Multiple observations were made and the representative figures were presented (Scale bars =10 pum).

doi:10.1371/journal.ppat.1001302.9004

and wild-type strains were sprayed onto 4-week-old rice seedlings
(Oryza sativa cv CGO-39). At 5 days after inoculation, symptoms had
fully emerged on rice leaves inoculated with the wide-type strain,
but no lesion on the Moap! mutant inoculated rice leaves (see
Figure 8). When observation was made at 7 days post infection,
there were still no typical lesions developed on Moap! mutant
infected leaves. Only small necrotic-like dark brown spots were
observed occasionally (Figure 5A). The loss of pathogenicity was
complemented by reintroducing the MoAPI gene into the Moap!
mutant (Figure 5A). Similarly, pathogenicity test with conidia
suspension or mycelial plug on barley leaves displayed very similar
result (see Figure S6A and S6A).

To investigate possible reasons for the lost pathogenicity, an
onion epidermis penetration assay was performed. At 48 hours
post-inoculation, both the wild-type and the Moap! mutant strains
could penetrate the onion epidermis cell, but the invasive hyphae
of the wild type strain freely expanded into the onion epidermis
cells, in contrast to the restricted growth of the Moapl strain
(Figure 5B). The deficiency of hyphae expansion could be
complemented by reintroduction of the MoAPI gene (Figure 5B).
Further assay using the rice leaf sheath generated the similar
results (Figure 5C). Moreover, DAB staining showed the
accumulation of ROS at the infection site of the Moap! mutant,
but not the wild type and complemented strains (Figure 5D).
These results indicated that MoAP1 is required for invasive
hyphae growth and the defect in invasive hyphae might be
responsible, at least in part, for the loss of pathogenicity.

MoAP1 disruption attenuates the activity of extracellular

peroxidases and laccases

In M. orpzae, defects in cell wall composition can influence
appressorium formation and impair successful infection of rice
host [47,48,49,50]. Congo Red (CR), which binds to cell wall
component B-1,4-glucan [51], is commonly used to detect cell wall
integrity. To determine whether MoAP1 has a role in cell wall
integrity, CR was added to CM medium (200 ug/ml). No
difference was found in the growth of mycelium between the
Moap! mutant (15% inhibition) and the wild-type strain (16%
inhibition). However, the degradation halo of CR by the Moap!
mutant was not as apparent as the wild type (Figure 6A). This
indicated a deficiency of the CR-degrading activity in the AMoapl
mutant. An enzyme activity assay using culture filtrates further
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indicated that the Moap! mutant nearly lost all of the peroxidase
activity (Figure 6D). Moreover, we determined the activity of
additional extracellular enzyme laccases in either solid or liquid
CM medium, and found that, in each case, the decreased laccase
activity was observed in the Moap! mutant, with less oxidized dark
purple stain around its colony and lower levels of laccase activity in
the culture filtrate, compared with the wild-type strain (Figure 6B
and 6C). These data suggest that MoAP! disruption resulted in a
decreased peroxidase and laccase activities.

Addition of copper sulfate to the Moap1 mutant restores
laccase activity and complements pigmentation

We observed altered pigmentation of the Moap! mutants on
CM medium, with a yellowish-brown color to the mutant strains
compared with a dark pigmentation of the wild-type strain
(Figure 1D). It is well known that copper sulfate can stimulate the
biosynthesis of melanin by inducing the laccase activity [52,53].
When copper sulfate was added to CM medium at 1 mM, which
did not affect mycelial growth of either the Moap! mutants or the
wild-type strain, the laccase activity was restored to the Moapl
mutants, as indicated by dark pigmentation (see Figure S7).
Combined with the accumulation of reactive oxygen species in
conidia and mycelia, we hypothesized that the Moap! mutant was
likely in a hyperoxidative state, which may, in turn, lead to
reduced oxidative cross-linking of melanin, and which could be
compensated for by an increase in the laccase activity.

Differential expression of pathogenicity-associated genes
revealed genes linked to MoAP1

To understand reasons for phenotypic changes and the loss of
pathogenicity in the Moap! mutants, we generated serial analysis of
gene expression (SAGE) libraries for the wild-type strain (Guyl1,
4,924,107 tags) and the Moap! mutant (4,690,301 tags) using
mycelia grown in liquid CM medium. To confirm gene expression
patterns derived from the SAGE libraries, 10 down-regulated
genes in the Moap! mutant were randomly selected and validated
by qRT-PCR. The results showed that each gene expression
pattern was consistent with that in the SAGE data (Figure 7A and
Table S1), despite the discrepancy of the fold-change being higher
in qRT-PCR than in SAGE data.

To identify genes that were subjected to regulation by MoAP1,
we compared the gene expression profiles between the wild-type
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Figure 5. Pathogenicity of the Moap7 mutant strain. (A) The Moap1 deletion mutants lost pathogenicity on rice leaves. 4 ml of conidial
suspension (1 x10° conidia/ml) for each strain was sprayed on 4-week-old rice seedlings (O. sativa cv CO-39) and 60 healthy rice plants were used in
each independent experiment. Diseased leaves were harvested 7 days after inoculation. (B) Onion epidermis cell penetration assay of the Moap1
mutant. The assay was performed by inoculating 30 ul conidia suspension obtained from Guy11, Moap7-9 and the complemented strain. Light
microscopic image examination was performed and recorded. Arrows indicate appressoria or invasive hyphae inside cells. (Scale bars =20 um). (C)
Rice leaf sheath penetration assay indicating severely confined growth of the Moap1 mutant hyphae at 48 hpi. (Scale bars =20 pum). (D) DAB staining
indicated the ROS accumulation at the infection site on the rice leaf sheath by the Moap? mutant at 48 hpi but not by the wild type and

complemented strains. (Scale bars =20 um).
doi:10.1371/journal.ppat.1001302.g005

strain and the Moap! mutant. In total, 497 genes were up-
regulated and 682 genes were down-regulated (Figure 7B). These
genes were functionally grouped into GO categories based on
manual curation, as described in Materials and Methods. We
found that 69 genes related to redox-homeostasis were altered in
expression and 5/6 of those genes, either with the signal peptide or
not, were down-regulated in the Moap! mutant (Figure 7C). We
also noted a significant decrease in the expression of genes
involved in transcriptional regulation, protein degradation, lipid
metabolism, secondary metabolism, cellular transportation, and
cell development (Figure 7C).

Since the Moapl mutants were non-pathogenic due to the
confinement of its invasive hyphae within the originally penetrated
onion skin cells and rice leaf sheath cells, we examined the putative
target genes of MoAP1 based on their previously defined roles and
identified seven genes that were previously characterized to
regulate virulence (Table 1). Because of the severely decreased
conidiation of the Moap! mutants, we screened the SAGE
database to identify genes that were involved in conidiation. A
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previously defined gene MoCOS! (MGG_03977) involved in
conidiophore stalk formation [54] and a novel vitamin B6
synthesis amidotransferase-encoding gene (MGG_05981) [55] were
found to be also significantly down-regulated in the Moapl mutant
(see Table 1 and Figure S8A). Additionally, three laccase-encoding
genes (MGG_15464, MGG_11608, and MGG_09139) were also
found to be severely down-regulated (see Table 1 and Figure S8B).

MoAP1 regulates the expression of four genes involved
in pathogenicity

Among MoAPI regulated genes, we selected 10 whose expression
was severely down regulated, and of which 7 contained the putative
AP1 binding sites (Figure 8, Table 2 and Table S1), and characterized
their functions by generating individual gene disruption mutants.
Among the deletion mutants, we compared the phenotypes in
mycelial growth, conidiation, appressorium formation, and pathoge-
nicity on rice, and found that disruption of the transcription factor
MoOefC (MGG_10422), the hypothetical protein-encoding gene
(MGG_15654), the laccase protein-encoding gene (MGG_15464), the
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Figure 6. Decreased extracellular laccase and peroxidase
activities in the Moap7 mutants. (A) Strains of Guyl11, Moapl
mutants and complemented strain were inoculated on CM medium
containing Congo Red dye at a final concentration of 200 pug/ml. The
discoloration of Congo Red was observed after incubation for 5 days. (B)
The laccase activity was monitored in complete media supplemented
with 0.2 mM ABTS after 3 days of incubation. (C and D) Guy11, Moap1
mutants and complemented strains were inoculated in CM liquid
medium and the laccase activity (C) and the peroxidase activity (D) were
measured in the filtrate cultures through ABTS oxidization test with or
without H,0,. Dark column indicates Guy11, both white and light grey
column equal indicates the Moap! mutant, and dark gray column
indicates the Moap1/AP1 complement strain. Error bars represent the
standard deviations and asterisks represent significant differences
among the strains tested (p<<0.01).
doi:10.1371/journal.ppat.1001302.9006

glutamate decarboxylase 1-encoding gene (MGG_02378), the me-
talloproteinase 1l-encoding gene (MGG_03817), and the chitin
deacetylase precursor-encoding gene (MGG_14966) did not alter
the above-mentioned morphological phenotypes or pathogenicity
(Figure 8). However, the disruption of the minor extracellular
protease-encoding gene (MGG_02531, MoVPR) or the 4-aminobuty-
rate aminotransferase-encoding gene (MGG_01662, MoAAT) led to
attenuated virulence on the rice cultivar CO-39. The Movpr mutants
also had an abnormal morphology on CM medium and retarded
mycelial growth (Figure 8). Furthermore, two mutants containing
deletion of alleles encoding succinate-semialdehyde dehydrogenase
(MGG_01230, MoSSADH) and acetyltransferase (MGG_15157,
MoACT), were identified as losing the ability to generate aerial
hyphae and conidia, and inability to cause infection. All these
findings were summarized in Figure 8. Finally, we also found that
both Mossadh and Moact mutant strains displayed no lesions on
barley leaves infected with mycelial plugs 7 days post inoculation
(see Figure S6C).

MoSsadh and MoAct are required for appressorium-like
structure-mediated penetration

Generally, M. oryzae infects rice aerial organs, such as leaves and
stems, through appressoria, which develops from conidia.
However, hyphae can also invade rice roots [56] and wounded
leaf tissue [57]. Previous studies suggested that the hyphae tips can
also form an appressorium-like structure to break the rice leaf
cuticle and cause disease [54,58]. As both the Mossadh and Moact
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mutants lost pathogenicity on rice leaves, we hypothesized that the
lost pathogenicity might be due to the lack of the ability to breach
the rice leaf cuticle. Given that successful lesion development
requires the development of appressoria, we examined appresso-
rium formation on the onion skin using microscopy and found that
both the wild-type and the mutants developed appressorium-like
structures at the hyphal tips (Figure 9A and 9C). However, the
appressorium-like structures formed by the Mossadh (Figure 9E)
and Moact mutants (Figure 9F) were significantly fewer than that
formed by the wild-type strain (34%). Furthermore, those
appressorium-like structures could not penetrate the onion skin
cells, compared with the easy penetration of the cells by the wild-
type strain (Figure 9B and 9D). The penetration assay using the
rice leaf sheath generated similar results (Figure 9G). These results
indicate that both MoSsadh and MoAct are required for
appressorium-like structure formation, as well as penetration.

MoSsadh and MoAct are equally required for invasive
hyphae growth

The results above indicated that Mossadh and Moact mutants lost
the ability to penetrate the plant cell. If these results are the main
reason for the lost pathogenicity, given the conditions, abraded rice
leaves should restore pathogenicity to the mutants. To examine this,
we inoculated wounded rice leaves with agar plugs containing
mycelial tips to evaluate pathogenicity. Both the Mossadh and Moact
mutants were unable to cause symptoms, while the wild-type strain
produced visible diffuse lesions on rice leaves 5 days after inoculation
(Figure 10A and 10B). The similar result was found when the
observation was made at 7 days post infection (dpi) (see Figure S9B).

To further investigate the loss of pathogenicity, we injected the
mycelial fragments into rice leaves using a syringe. The wild-type
strain caused typical necrotic symptoms along the injection site
and formed developmental lesions at 5 dpi (Figure 10C). However,
the Mossadh mutant caused no necrotic symptoms, while the Moact
mutant caused severely restricted necrosis (Figure 10C). These
results suggested that the loss of pathogenicity in Mossadh and
Moact mutants is not only due to failure in penetration, but also to
the lost ability of forming invasive hyphae. Similar results were
observed at 7 dpi (see Figure SOA).

Mossadh and Moact mutants are both hypersensitive to
H,0,

The stress-tolerance mechanisms of plant pathogens play an
important role in virulence [14,15,59,60]. To assess whether the
putative MoAP1 targets MoSsadh and MoAct play an active role
in the tolerance to exogenous HyOy, the mutant strains were
moculated on HyOg-containing CM medium. The assay results
showed that both type of mutants were more sensitive to HyOg
than the wild-type strain (Figure 11A and 11C). The mycelial
growth of the Mossadh mutant was severely inhibited on CM
medium containing 5 mM HyOo, with 20% (Mossadh-4) and 17%
(Mossadh-8) greater inhibition rates than the wild-type strain
(Figure 11B). Meanwhile, the Moact mutants displayed higher
sensitivity to HoOy than either the Moap! mutants or the Mossadh
mutants, with an average 18% greater mycelial growth inhibition
rate than the wild-type strain at 2 mM Hy,O, and 61% at 5 mM
HyOs. The sensitivity of the mutants to HyO9 was complemented
by reintrodution of the respective wild type genes (Figure 11D).

Mossadh and Moact mutants displayed similar
morphological phenotypes to Moap1 mutants

To further investigate the roles of MoSsadh and MoAct on
hyphal growth, we compared their growth on CM and RDC
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Figure 7. Differential gene expression analysis on transcriptomes of the Moap7 mutant and Guy11 strains. (A) Real time RT-PCR
validated the RNA-SEQ results. Real time RT-PCR was carried out to confirm the RNA-SEQ results through random selection of genes that were down-
regulated in the Moap1 mutant. Laccase genes (1), extracellular peroxidase gene (Il), and genes involved in the redox homeostasis (Ill) were down-
regulated in the Moap1 mutant. IV and V indicated MGG_01230 (Mossadh) and MGG_10315 (MoMpg1) that were down-regulated. (B) Numbers of
altered genes expression in Moap1 mutants. Gene expression profiles were analyzed and 682 genes were down-regulated while 497 genes were
upregulated in Moap1 mutants in comparison to the wild type strain (Guy11). Genes whose expression were up or down as indicated by expression
profiling were chosen based on the log2 ratio (Moap1/Guy11) values that were either 1.5- fold more or - less. DR and UR denote down- and up-
regulation. (C) Functional grouping of genes up- or down-regulated in Moap mutants. The up-regulated (in purple) and the down-regulated (in
cyan) genes were divided into 23 groups according to their putative functions as described in Materials and Methods.

doi:10.1371/journal.ppat.1001302.g007

medium. The Mossadh and Moact mutants exhibited reduced
growth (see Figure S10), and the aerial hyphae was also sparser
and thinner, compared with Guyl1 (Figure 12A). When observed
by light microscopy, no conidia were found (Figure 12C). The
colonies of the two mutants were also smooth appearing and
displayed 5-10 radial folds in each colony, similar to the Moap!
mutants (Figure 8 and 12A). To further understand possible
reasons for this, we grew the Moap! mutants in liquid CM medium
and found that it could form compact mycelia mat, in contrast to
the sparse one formed by the wild-type and the complemented
strain (Figure 12B). Meanwhile, the hyphal branching patterns of
Guyll, the Mossadh mutants, the Moact mutants, and the
complemented strains were examined using CFW staining, which
revealed that hyphal branching was severely reduced in the
Mossadh and Moact mutants (see Figure S4B and S4C). Moreover,
the colonies of the Mossadh and Moact mutants were less pigmented
than the wild-type and complemented strains (see Figure S10A
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and S10B). Combined with the results of the Moap! mutants, these
results further indicated that MoAP1 controls the morphological
phenotypes of M. orpzae by regulating genes including MoSSADH
and MoACT.

Disruption of MoSSADH and MoACT attenuated
peroxidase and laccase activities

To functionally analyze possible reasons for attenuated
virulence of both the Mossadh and Moact mutants in rice, we
examined the cell wall integrity, which is regarded as the most
important factor affecting appressorium formation in M. oryzae
[47,48,49,50]. By the addition of CR to CM medium at 200 pg/
ml, the mycelial growth of both the Mossadh mutants (average 17%
inhibition rate) and Moact mutants (average 16% inhibition rate)
was similar to that of the wild-type strain (average 16% inhibition
rate). However, no degradation halo of CR on either the Mossadh
or Moact mutant plates was present in comparison to the wild type
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and complemented strains, which displayed a visible degradation
halo of CR (see Figure S11A). To test for secreted peroxidases,
culture filtrates of the Mossadh mutant, Moact mutant, wild-type
Guyl1, and complemented strains were collected and assayed for
secretion of extracellular peroxidases. The results showed that
both the Mossadh and Moact mutants were deficient in peroxidase
activities (see Figure S11C and S11E). For the altered pigmenta-
tion in the Mossadh and Moact mutants, we again compared the
laccase activity, hypothesizing that the polyphenol oxidase
function may be impaired in both these mutants. The oxidation
of the laccase substrate 2,2'-azino-di-3-ethylbenzthiazoline- 6-
sulfonate (ABTS) showed that the laccase activity was reduced in
both the Mossadh and Moact mutants. The oxidized dark-purple
stain around the colonies of the Mossadh and Moact mutants was
less than that of Guyll (see Figure S11B). Similarly, the laccase
activity in the filtrates of the Mossadh and Moact mutants was also
reduced (see Figure S11D and S11F). These data suggested that
the deletion of either Mossadh or Moact equally results in decreased
activity of peroxidases and laccases in M. oryzae, similar to the
Moapl mutants.

Discussion

In this study, we have characterized M. orpzae MoAP1 as a
homolog of fungal AP1 protein, such as S. cerevisiae Yapl and Schiz.
pombe Papl. Similar to other members of the AP1 family [12,29],
MoAP! contains a bZIP domain at the N-terminal, a nuclear
localization motif, and c-CRD and/or n-CRD domains that are
vital for cellular localization of Yapl and resistance to oxidative
damages [20]. In both filamentous and unicellular fungi, the
nuclear localization of APl under the oxidative stress is a crucial
step for the function of transcription regulation [27], and
intramolecular disulfide bridge formation by two cysteine residues
from the c-CRD and n-CRD regions is thought to be necessary for
its nuclear translocation [41,61]. It has also been established that
the AP proteins are translocated in the nucleus in response to the
oxidative stress [20,62]. We have found that MoAPl could
partially complement the HyOo-sensitive phenotype of a yeast yap!
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Table 1. SAGE data for genes encoding known pathogenicity factors or pathogenicity-associated functions.
Putative MoAP1 binding
Gene_ID Description ELSD® (Moap1/WT) p-Value Reference sites
MGG_10315 Hydrophobin (Mpg1) —9.72 0 [89] Yes
MGG_07536 Metalloprotease/Zn amino- =2 5.36E-05 [55] No
peptidase
MGG_09312 Transcription factor Zn2Cys6 —1.781 4.46E-45 [55] No
MGG_00111 P-type ATPase (Pde1) —1.58 0.00043 [102] Yes
MGG_05344 Snodprot1 homolog (Msp1) —-1.39 0 [103] No
MGG_06424 PEX3-peroxisome =1 0.01 [55] No
MGG_09898 Adenylate cyclase (Mac) =1 0.027 [104] No
MGG_03977 Putative Zinc-Finger Protein —4.52 3.29E-48 [54] No
MGG_05981 vitamin B6 synthesis —2.70 2.74E-243 [55] Yes
amidotransferase
MGG_13464 laccase —7.61 0 Unpublished Yes
MGG_11608 laccase-2 —3.40 4.20E-159 Unpublished No
MGG_09139 laccase-1 —232 1.44E-13 Unpublished Yes
@E|SD indicated expression level in SAGE database.
®ryes' indicating at least one putative MoAP1 binding site was identified in the promoter region of the gene while ‘No’ stand for non putative MoAP1 binding site was
identified in the promoter region.
doi:10.1371/journal.ppat.1001302.t001

mutant, Moapl deletion mutants were sensitive to HyO,, and
MOoAP1 localized in the nucleus when exposed to HyO,, all
suggesting that MoAP1 is vital for resistance to the oxidative
damage in M. oryzae.

To survive, fungi have evolved sophisticated mechanisms for
adapting to stresses from intracellular or extracellular sources.
During developmental processes, a fungus encounters various
stresses, including the toxic by-products of its metabolism and the
oxidative stress generated through aerobic respiration [63,64]. It
has also been documented that the cellular environment within
host plants also serves as one of the major sources of stress to
invading fungal pathogens [65,66]. To evade the stress, fungi need
specialized adaptation mechanisms. It is known that the API
transcription factors are one of the major regulators to activate
genes in responding to the exogenous oxidative stress. In Schiz.
pombe, two parallel HyOg-responsive pathways exist. The tran-
scription factor Papl, together with the MAP kinase Styl pathway,
regulate gene expression in response to the oxidase stress [67]. In
S. cerevisiae and Candida albicans, deletion of YAPI leads to reduced
tolerance to the oxidative stress and/or attenuated virulence
[21,22,62]. Studies of U. maydis also showed that Yapl plays a
critical role in the HyOy detoxification system and in the infection
of maize plants [15]. A similar role was also found for A. alternata
AaAP1 [14]. In C. heterostrophus and A. fumigatus, the AP1 proteins
ChAP1 and AfAP1 mediate HyO, response but are not required
for pathogenicity [14]. This indicates that the AP1 proteins are
conserved regulators of the oxidative stress, but their roles in
virulence are diverged. The M. oryzae AP1 protein appears to be
close to U. maydis APl and AaAP1 in that it is required for both
HyO, resistance and pathogenicity. As a step to further advance
our knowledge of APl proteins, we utilized the transcription
analysis by the SAGE approach to identify genes involved in redox
homeostasis whose expression is also down-regulated due to Moap!
mutation. Based on our results, we hypothesize that MoAP1 is a
key factor in regulating genes involved in the detoxification of
HyOy, and that the severely restricted infectious hyphal growth of
the Moap! mutants may be due to the reduced tolerance of the
oxidative stress, which is responsible for the loss of pathogenicity.

February 2011 | Volume 7 | Issue 2 | €1001302



MoAP1 is Required for Pathogenicity

Log, Ratio Phenotype on Putative MoAP1
(MIG)? Target gene Description cM * CoP AP® Pathogenicity® binding sites®
= =
Guy11 [WT] VI V,?f;_;% ::%
= &
Moap1
MGG _12514:6 [Magnaporthe oryzae] Y Y _ Y

Succinate-semialdehyde
-4.1 MGG_01230.6 dehydrogenase (Mossadh)
[M. oryzae]

-4.91 MGG 15157.6 Acetyltransferase (Moact)
- [M. oryzae]

Minor extracellular protease

;E_A 'H = —
380  MGG_02531.6  \ur (Movpr) [M. oryzas) v oy M N

Chitin deacetylase precursor

-8.53 MGG_14966.6 M. oryzae)

.7.61 MGG_13464.6 Laccase [M. oryzae]

4-aminobutyrate amino-

517  MGG_01662.6 transferase (Moaat) Y v Y
[M. oryzae]

4.4 MGG 02378.6 Glutamate decarboxylase S e,

. - -1 [M. oryzae] Yo v Efﬂ £ Y
e 5

C6 transcription factor

-3.81 MGG_104226 5 - (M. oryzae] Y Y Y

=

Hypothetical protein

959  MGG_136546 [ orysas) | Yoy N

; Metalloprotease 1
6.88 MGG_03817.6 M. oryzae]

B

Figure 8. Phenotype observation and pathogenicity assay of targeted gene deletion mutants. Ten down-regulated genes in the Moap1
mutant were selected for gene deletion and the phenotype of each mutant was compared and displayed. Gene ID numbers were sourced from www.
broad.mit.edu/annotation/genome/magnaporthe_grisea/. ® Log, ratio (Moap1/Guy11) value stands for gene expression fold differences in the Moap1
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Table 2. AP1 binding motif in the promoter region of the down-regulated genes.

Gene_ID Description ELSD"® (Moap1/WT) p-Value Putative MoAP1 binding sequence

MGG_12814.6 Conserved hypothetical protein (MoAP1) le-75 GCTTACTTC

MGG_01230.6 Succinate-semialdehyde dehydrogenase —4.11 0.0 GTACTAA, TGAGTAT, AGACTAA
(MoSsadh)

MGG_15157.6 Acetyltransferase (MoAct) —4.91 3e-20 ATACTAA, TTACTCA

MGG_13464.6 Laccase —7.61 0.0 CAAGTCAGC

MGG_01662.6 4-aminobutyrate aminotransferase —5.17 0.0 ACTGACTAG, TTAGTAAAG, TTACTCC

MGG_02378.6 Glutamate decarboxylase 1 —445 0.0 TGAGTAA, TGACTAT

MGG_10422.6 C6 transcription factor OefC —3.81 8e-54 TTAGTAAGT

MGG_03817.6 Metalloprotease —6.88 4e-26 AGAGTAA

@E|SD indicated expression level in SAGE database.

®)sequences in the table indicating the putative MoAP1 binding site that identified in the promoter region of the gene.

doi:10.1371/journal.ppat.1001302.t002
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Mossadh/SSADH

Figure 9. The appressorium-like structure is unable to penetrate the onion epidermis or rice leaf sheath cells. (A and C) The
appressorium-like structure develops at the hyphal tips. The appressorium-like structure was induced by placing the mycelia blocks on the onion
epidermis cell for 24 hrs. (Scale bars equal 20 um). (B and D) Onion epidermis cell penetration assay. The hyphae blocks were inoculated on the onion
skin cells for 48 hrs. Penetration was observed using DIC microscopy. (Scale bars equal 20 um). (E and F) Statistical analysis of appressorium-like
structure development. A total of 300 hyphal tips were examined and counted. Dark column indicates Guy11, white column indicates the Mossadh or
Moact mutant, and gray column indicates the Mossadh/SSADH or Moact/ACT complement strain. Error bar represents standard deviations and
asterisks indicate that the differences were significant. (G) Rice leaf sheath penetration assay. Appressorium like structure formed by the Mossadh
mutant and Moact mutant are incapable of penetration into the rice leaf sheath cells 48 hrs post injection (Scale bars =20 um).
doi:10.1371/journal.ppat.1001302.9g009
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Figure 10. Pathogenicity test of Mossadh and Moact mutant strains on the wounded rice leaves. (A) Pathogenicity test of Mossadh
mutants on the wounded rice leaves. The mycelia blocks of the wild type strain Guy11, Mossadh mutants, and the complemented strain were
inoculated on the wounded rice leaves and then cultured under moist conditions with 28°C for 5 days. The wounded rice leaves with the CM agar
plugs on was used as negative control. This experiment was performed three times with 10 pieces of rice leaves for each strain. Similar results were
obtained in each test and this picture showed the representative result. (B) Pathogenicity test of Moact mutants on the wounded rice leaves. The
mycelia blocks of Guy11, Moact mutants and the complemented strain were inoculated on the wounded rice leaves and observations made as above.
(C) Pathogenicity test of the mutant strain by injection of hyphae fragments. The hyphae fragments of Guy11, the mutant strains and respective
complemented strains were prepared as described in Materials and Methods. From left to right, leaves injected with water, wild type strain, Mossadh
mutant, and Moact mutant. The arrowheads in black indicate injection sites with necrosis, while the arrowheads in white indicate injection sites
without necrosis.

doi:10.1371/journal.ppat.1001302.g010
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Figure 11. Mossadh and Moact are hypersensitive to H,0,. (A)
Phenotype of the Mossadh mutants under the oxidative stress. The wild
type strain, Mossadh mutants and the complemented strain were
inoculated on CM agar medium with or without 5 mM H,0, and
cultured at 28°C for 5 days. (B) Statistical analysis of mycelia growth rate
with or without H,0,. The analysis was similar to Figure 3B. Error bars
represent the standard deviations, and asterisks represent significant
differences among Guy11, Mossadh mutants and the complemented
strain (p<<0.01). (C) Phenotype of the Moact mutant strains under the
oxidative stress. Guy11, Moact mutants, and the complemented strain
were inoculated on CM agar medium with or without 2 to 5 mM H,0,
and cultured at 28°C for 3 days. (D) Statistical analysis of mycelia
growth. Error bars represent the standard deviations, and asterisks
indicate that the differences among Guy11, Moact mutants and the
complemented strain were statistically significant (p<<0.01).
doi:10.1371/journal.ppat.1001302.g011
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ROS production serves many functions in eukaryotic cells,
including those in cellular defense [13,68,69]. Its role in host
resistance and pathogen invasion is highly dependent on the types
of plant pathogen and host interaction [9,70,71,72]. In plants, the
generation of ROS is regarded as one of the first responses to
fungal invasion [9]. For pathogens and entophytes, the production
of ROS also has an important role and the disruption of
intracellular ROS homeostasis can result in functional defects. In
the endophytic fungus FEpickloé festucae, ROS acts as a negative
regulator to prohibit excessive fungal proliferation and, thus, allow
the fungus to maintain a mutualistic relationship with its host plant
[73]. Furthermore, the deletion of NOXA encoding NADPH
oxidase or its regulatory subunit RacA leads to defects in ROS
production, but the mutant remains highly pathogenic [73,74].
However, the deletion of the NOX-like gene in the ergot fungus
Claviceps purpurea yields mutants with reduced conidial formation
and pathogenicity [75]. Moreover, the NADPH oxidases of both
M. orpzae and the gray mold fungus Botrylis cinerea are key for the
generation of intracellular ROS and their deletions make them
lose pathogenicity on host plants [46,76]. Conversely, deletion of
the AbTMPL gene encoding a transmembrane protein in 4.
brassicicola led to hypersensitivity to the oxidative stress and excess
oxidative bursts during conidiation and plant invasion, and
ultimately impaired the virulence on green cabbage [77]. Thus,
ROS generation seems to have different effects during fungi and
plant interactions, and the regulation of ROS levels is essential for
fungal development as well as virulence [46,69,72,73,76,77,78]. In
this study, we highlighted the significance of intracellular ROS
homeostasis in relation to fungal development. Because AMoAP!
was highly expressed in conidiation and the Moapl mutant
exhibited abnormal conidiogenesis, excess ROS accumulation in
conidia, and loss of pathogenicity, we concluded that MoAP1 is
involved in important mechanisms for balancing ROS levels
during conidiation, and the disruption of intracellular ROS
homeostasis 1s responsible for the loss of virulence.

In M. oryzae, deletion of the catalase-encoding gene (MoCATB)
caused reduced pigmentation, which is similar to the Moap!
mutants because of its hyperoxidant state [49]. In this study, we
also observed that the activity of the secreted laccase was reduced
in Moap! mutants, and that the addition of copper sulfate
stimulated the laccase activity and restored melanin biosynthesis
to the Moapl mutants. This indicated that the decreased laccase
activity and the excess ROS levels resulted in less pigmentation in
the Moapl mutants.

In fungi, secreted peroxidases are regarded as an important
component in helping pathogens to detoxify host-derived ROS
during plant-microbe interactions [15,16,60]. Recently, it was
shown that the decreased expression of peroxidase genes likely
resulted in a reduced ability to scavenge host-derived ROS and,
thus, an attenuation of virulence [15,16,60]. We detected a
deficiency of secreted peroxidase activity in the Moap! mutant by
comparing CR discoloration and assaying the peroxidase activity
in culture filtrates. In the comparison of the SAGE data, we
identified several extracellular peroxidase-encoding genes display-
ing significant reductions in transcription (see Table S1), which
suggested that these may result in the decreased peroxidase activity
in the Moapl mutants. Furthermore, the activity of the laccase,
which is involved in pathogenicity of certain fungi [79], was
severely reduced in the Moap! mutants. Moreover, we also
identified that the laccase activity was similarly decreased in the
Mossadh and Moact mutants. Such results prompted us to question
whether the decreased laccase activity in the Mossadh and Moact
mutants was associated with that displayed in the Moap! mutant.
Expression of two laccase genes (MGG_15464 and MGG_11608)
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Figure 12. Mossadh and Moact mutants displayed phenotypes similar to the Moap7 mutants. (A) Aerial hyphae growth reduction in
Mossadh and Moact mutants. The wild type, Mossadh mutants, Moact mutants, and respective complemented strains were inoculated on CM medium
and cultured at 28°C for 5 days. The aerial hypha was photographed. (B) The phenotype of mycelia grown in liquid CM medium. Strains tested were
grown and observed as described in Figure 1C. (C) Development of conidia on conidiophores. Light microscopic observation was performed on

strains grown on RDC medium for 7 days. Bars =100 pum.
doi:10.1371/journal.ppat.1001302.9012

was indeed down-regulated in the Moap! mutants (see Figure S8B).
Based on these results, we postulated that the decreased expression
of MoSSADH and MoACT is responsible for the reduced laccase
activity in the Moapl mutants.

The identification of MoAP1-regulated genes by SAGE analysis
revealed similar functional categories of genes that are down-
regulated in the AMoap! mutant. Among these genes were some
well-studied ones directly involved in pathogenicity and novel ones
such as MGG_01230 and MGG_15157, which are likely to be
involved in HyOy tolerance. Disruption of either gene showed the
complete loss of pathogenicity. The individual mutants also
displayed similar morphogenesis defects, including less aerial
hyphae but more compact mycelial growth, hypersensitivity to
Hy0O,, decreased or loss of extracellular laccases and peroxidases
activity, and reduced hyphal branching. These phenotypes are
consistent with those observed in the Moap! mutants, indicating
that the MoAP1 has a direct role in regulating genes such as
MGG_01230 and MGG_15157 to control growth and morpholo-
gies, as well as tolerance to HyOy and ultimately pathogenicity.
Likewise, disruption of MoAPI function may also affect other
aspects such as protein translation and degradation, and secondary
metabolism as evidenced by the SAGE data (see Table S1) that
lead to the defect in pathogenicity.

Like most fungal pathogens, conidiogenesis and appressorium
development are key steps in the colonization of host plants by M.
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orpzae. After attaching to the host surface, the conidia began to
produce germ tubes and then developed a specialized infection
structure, an appressorium with 8 MPa turgor pressure at the tip
of the tube, to help the fungus penetrate host cell barriers [36].
The above processes are controlled by a precise developmental
program in response to stimuli from the host and environment. In
this program, conidiogenesis is a complex process that involves a
cascade of morphological events. In M. oryzae, MoAPI disruption
did not affect the developmental stages, such as hyphal growth,
appressorium formation and penetration, but severely affected the
ability to produce conidia and infectious hyphae growth. This
observation was consistent with the results of qRT-PCR, which
suggests that MoAP]1 is a stage-specific regulator during conidia-
tion and infection. In an effort to fully understand the
developmental defects of the Moap! mutants, we screened the
SAGE data and found that the zinc finger transcription factor
MoCOS1 [54], a determinant of conidiophore formation, was also
severely down-regulated in the AMoap! mutants (see Figure S8A),
indicating the possibility that it is responsible for decreased
conidiation. A detailed analysis of the AMoAPI downstream genes
revealed that the mutation of either Mossadh or Moact gene caused
complete loss of the ability to generate conidia. Taken together,
these findings suggest that the transcriptional factor MoAPI
controls conidiation via a complex mechanism, involving the
regulation of MoCOSI, MoSSADH, and MoACT expression.
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Certainly, we still could not rule out the possibility that some
unknown gene(s) regulated by MoAP1 are also responsible for the
conidiation in M. oryzae.

Because both the Mossadh and Moact mutants lost the ability to
produce conidia, the pathogenicity assay was performed through
inoculation of the hyphal tip plug that showed the complete loss of
pathogenicity for the two mutants. It is known that appressorium-
mediated penetration is required for full virulence of M. oryzae
[80,81,82,83,84]. Recent studies of MoCosl and other transcrip-
tion factors revealed that the hyphae tips of the MoCos/ mutant
could develop appressorium-like structures on the host surface and
cause infection [54,58]. It was presumed that these transcription
factors might play a role in an unknown mechanism in mycelia-
mediated infection. To fully understand the loss of pathogenicity,
we compared the formation of the appressorium at the hyphae tips
between the wild-type strain and the two mutants, and found that
all of them could form such appressorium-like structures. This
finding is similar to the results of Kim et al. [58]. However, such
hyphae-driven appressoria by the AMossadh and Moact deletion
mutants were severely limited in their ability to penetrate into
onion skin cells and rice leaf sheath cells and cause disease
symptoms on leaves. This indicates that the hyphae-driven
appressoria-mediated penetration may be functionally similar to
penetration by normal appressoria. In the Mossadh and Moact
mutants, the loss of pathogenicity might be due to the loss in the
penetration ability.

The y-aminobutyrate (GABA) shunt is a metabolic pathway that
bypasses two successive steps of the tricarboxylic acid (TCA) cycle
and is present in many organisms [85,86,87]. In plants, the activity
of this pathway is predominantly associated with the response to
biotic and abiotic stresses [88]. Previous reports have considered
that a mutation of AtSSADH in Arabidopsis thaliana leads to growth
abnormalities, hypersensitivity to the environmental stress, and
ROS accumulation on the trichomes [87]. However, the cellular
function of succinic semialdehyde dehydrogenase is still unchar-
acterized in fungal pathogens. In M. orpzae, our findings revealed
that the Mossadh mutant displayed retarded mycelial growth,
hypersensitivity to oxidative stress, and dramatically reduced aerial
hyphae. Further, the mutant completely lost the ability to cause
infections. We initially suspected that the lost of pathogenicity in
the Mossadh mutant might be due to the inability to penetrate the
host cell, but after injection of mycelial fragments in the rice leaf
cell, the Mossadh mutant still could cause necrosis around the
injection site. Together with the fact that stress-tolerance
mechanisms of plant pathogens play an important role in virulence
[14,15,16,60] and the sensitivity of the Mossadh mutants to HyO,,
we postulated that M. orpzae MoSsadh might be responsible
for both the penetration and invasive growth i planta, and the
defects in stress-tolerance may be a result of the restriction of
invasive hyphae growth in planta, causing the complete loss of
pathogenicity.

Materials and Methods

Fungal strains and growth conditions

M. oryzae strain Guyll was used as wild type throughout this
work. Both Guyll and its derivative mutants were cultured on
complete medium (CM) [89] for 3-15 days at 28°C to assess the
growth and colony characteristics. Fungal mycelia were harvested
from liquid CM and used for genomic DNA and RNA extractions.
To observe the vegetative growth under the oxidative stress
condition, HyOy (Aldrich, 323381, 3 wt. %) was mixed in solid
CM, and diameters of fungal colonies were measured after 3 to 5
days as indicated. For the activation of the laccase activity in the
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Moap] mutants, copper sulphate was amended in the CM medium
for 1 mM at final concentration. Cell wall integrity assay was
performed by growing strains in Congo Red (CR, Aldrich,
860956) amended CM medium (200 pg/ml) for 5 days. For
conidia collection, strains were normally maintained on corn meal
(RDC) medium [43] at 28°C for 10 days and then transferred to
constant fluorescent light condition to promote conidiation for
another 3-5 days. Conidia were obtained by rubbing mycelia with
water followed by filtration through Miracloth (Calbiochem, San
Diego, USA). For mycelial growth assay, strains were inoculated in
the liquid complete medium for 48 hrs and then transferred to the
Petri dish for photograph. To observe conidiophore development
and conidiation, strains were inoculated on RDC for 5 days and
mycelia were rubbed with a glass rod before transferring to the
constant fluorescent light condition to promote conidiation for
another 2 days. S. cerevisiae strains were grown in SD medium
supplemented with appropriate amino acids and with glucose (3%
(w/v)) or galactose (2% (w/v)). All growth assays were repeated for
three times, with three replicates each time.

Characterization of gene disruption mutants

Vegetative growth of Moap! mutants was measured on complete
agar medium for 5 days, while the vegetative growth of Mossadh
and Moact mutants were measured on the same medium for 4
days. All the experiments were performed with triple replicates in
three independent experiments. The ability to produce conidia
was measured by counting the numbers of conidia from 10-day old
RDC plates as described previously [43]. Conidia were collected
by rubbing the plate with 5 ml of sterilized distilled water. Conidia
were counted using a hemacytometer under a microscope and
conidial morphology was visualized under an Olympus inversion
microscope at 40X magnification. Conidial germination and
appressorium formation were measured on a hydrophobic
coverslip. Conidial suspensions of 30 ul (1x10° spores/ml) were
dropped onto a coverslip and placed in a moistened box at 28°C.
After 8 hrs of incubation, the percentage of conidia germinating
and germinated conidia-forming appressoria was determined by
microscopic examination of at least 100 conidia. This test was
done at least three times, each with three replications.

Yeast yap1 mutant complementation

S. cerevisiae BY4741 AYMLOO7w (yapl) and the strain from which
it was derived, BY4741 (MATa his341 leu240 met240 ura340)
were obtained from Euroscarf. The full-length of M. oryzae Moap1
cDNA (1.7 kb) was amplified using primers pairs FL2700(F)/
FL2701(R). The PCR products, digested with FEcoRI and Sphl,
were cloned into pYES2 (Invitrogen) and transformed into
BY4741AYMLOO7w. Colonies were selected on SD medium
lacking uracil, and the wild type yeast strains BY4741 as well as the
yapl deletion mutant BY4741AYMLOO7w transformed with
empty pYES2 vector were used as a control. Transformed yeast
cells were grown on SD medium without uracil containing either
glucose 3% (w/v) or 2% galactose respectively. Five-microliter
drops from serial dilutions from cultures with an OD600 of 0.5
were spotted on plates with and without 0.3 mM HyO, and grown
for 3 days at 30°C.

Targeted gene disruption and complementation of
MoAP1 and MoAP1 target genes

For constructing the Moapl gene replacement construct, a 1.0-
kb upstream flanking sequence fragment and 0.9-kb downstream
flanking sequence was amplified from M. oryzae genomic DNA by
PCR using primer pairs FL1992(F)/FL1993(R) and FL1994(F)/
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FL1995(R), respectively (Table S2). The two flanking sequences
were joined together by overlap PCR with primer pair FL.1992(F)
and FL1995(R), and the amplified ~2 kb fragments were purified
and cloned into a pMDI19-T vector (Takara Co, China) to
generate plasmid pMDT-Moapl. The Hygromycin resistance
gene cassette [90] was prepared by PCR amplification with primer
pair FL1111(F)/FL1112(R) (Table S2) and inserted in the plasmid
pMDT-Moapl at the Pmel enzyme site to generate the final
disruption construct pMD-Moap-HPH. The 3.4-kb fragment was
amplified with FLI1992(F) and FLI995(R) primers and trans-
formed into Guyll protoplasts. The protoplast-mediated trans-
formation of M. orpzae Guyll was carried out as described [88].
Transformants were selected on solid CM agar medium
supplemented with 300 ug/ml hygromycin B. To identify the
gene-deleted mutants, Hygromycin B resistant transformants were
screened using primers FL2382(F)/FL2383(R) (Table S2). The
mutants were further verified by Southern hybridization. To
generate the complementation of the Moap! mutant, a 4.4 kb
DNA fragment including the putative promoter and the coding
sequence was amplified and inserted into the plasmid pCB1532,
according to Zhang et al [88]. Disruption of MoAPI target genes
was performed similarly with primer pairs listed in the Table S2.

Nucleic acid manipulation and Southern blotting

DNA extraction was performed as described by Talbot and
associates [88], while gel electrophoresis, restriction enzyme
digestion, ligation, and Southern blot hybridization were per-
formed using standard procedures [91]. DNA hybridization
probes were random primer labeled with digoxigenin-11-dUTP
using DIG-High prime according to the manufacturer’s instruc-
tions for digoxigenin high-prime DNA labeling and the detection
starter kit (Roche Applied Science, Penzberg, Germany). Total
RNA was isolated from frozen fungal mycelia using the RNA
extraction kit (Macherey-Nagel, Bethlehem, PA, USA) following
the manufacturer’s instructions. To measure the relative abun-
dance of gene transcripts, RNAs were extracted from mycelia
grown in CM liquid medium for 2 days at 28°C in a 150-rpm
orbital shaker. To measure the relative abundance of AMoAP!
transcripts during diverse fungal developmental stages, the total
RNA samples were extracted from mycelia grow in CM liquid
medium, conidia and plants inoculated with the conidia of Guyl1
(1x10® spores ml™") for 8, 24, 48 and 72 hrs, respectively, by the
method described above. The primer sets used to detect transcripts
of MoAPI and its related genes from M. orpzae are listed in Table
S2.

Quantitative RT-PCR, RT-PCR, and gene expression
analysis

For RT-PCR and quantitative real time RT-PCR (QRT-PCR),
5 pg of total RNA were reverse transcribed into first-strand cDNA
using the oligo(dT) primer and M-MLV Reverse Transcriptase
(Invitrogen). Confirmation of deletions and reintroduction of
MoAPI, MoSSADH and MoACT genes were made with primer
pairs FL2382(F)/FL2383(R), FL6745(F)/FL6746(R), and FL6749
(F)/FL6750R) (Table S2). 32 cycles of RT-PCR were run on a
Bio-Rad PTC0200 Peltier Thermal Cycler. The stable expression
actin gene (MGG_03982.5) amplified by primer pairs FL474(F)/
FL475(R) (Table S2) was used as internal control.

qRT-PCR reactions were performed following previously estab-
lished procedures [16]. To compare the relative abundance of target
gene transcripts, the average threshold cycle (Ct) was normalized to
that of actin gene for each of the treated samples as 274% Wwhere
-ACt = (Cy rget gene"Ci, acin gene)- Fold changes during fungal
development and infectious growth in liquid CM were calculated as
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27Act: where -ACt = (Ct, target gene” Ct, actin gene) test cnnditinn'(ct, WT~
C¢ acin gene) CM [16]. qRT-PCR was performed with three
independent pools of tissues in three sets of experimental replicates
and primers pairs used in this section were listed in Table S2.

Plant infection assays

Onion epidermis penetration assays were performed using the
method as previously described [43]. Plant infection assays were
performed on four-week old susceptible rice seedlings (O. sativa)
CO-39 or seven-day old barley seedlings (Four arris) by spraying
4 ml of the conidial suspensions with a sprayer. Inoculated plants
were placed in a moist chamber at 28°C for first 24 hrs in
darkness, and then transferred back to another moist chamber
with a photoperiod of 12 hrs under fluorescent lights. The disease
severity was assessed at 5 or 7 days after inoculation.
Approximately six centimeter long diseased rice blades were
photographed to evaluate the virulence of the mutants. For
determining the pathogenicity of the mutants without conidia,
mycelia tip plugs of the wild type strain Guyll, Mossadh and
Moact mutants were inoculated on the healthy or wounded rice
leaves or barley leaves for 5 or 7 days and kept in the same
condition as described above. For the infiltration infection assay,
0.1 gram mycelia of the tested strains was broken into pieces
using a glass rod and 50 pl of each suspension were injected into
the leaves of 4-week-old rice plants and cultured for 5 or 7 days
under the condition as described above. These experiments were
all replicated three times.

ROS and superoxide detection

Intracellular ROS levels of M. oryzae were monitored during the
infection related structure formation using the oxidant-sensitive
probe dihydrohodamine-123 (Molecular Probes, Carlsbad, CA)
and nitroblue tetrazolium (NBT) as previously described [16]. For
dihydrorhodamine-123 staining, drops of conidial suspension
(30 ul) were placed on the coverslips and cultured for up to
24 hrs. At each interval, the water surrounding the conidia was
removed carefully and replaced with final concentration of 50 uM
dihydrorhodamine-123 (Merck, Whitehouse Station, NJ) at 28°C
for 2 hrs, then rinsed twice with phosphate-buffered saline and
viewed under a fluorescence microscope (Olympus IX71)
equipped with a digital camera by short exposure to UV light.
NBT staining was performed as described [92]. Superoxide
production during conidia germination and infection related
structure formation was viewed by microscopy.

Measurement of the extracellular enzyme activities
Laccase activity on solid medium was measured as described
[92] with little modification. A 5x5 mm hyphal tip plug was
inoculated on CM medium supplemented with 0.2 mM 2, 2'-
azino-di-3-ethylbenzathiazoline- 6-sulfonate (ABT'S, Sigma) for 3
days. The assay for the activation of the laccase activity was
performed by addition of 1 mM copper sulphate to the CM
medium containing 0.2 mM ABTS and cultured under 28°C for 4
days. For detection of peroxidase secretion, a 5x5 mm hyphal tip
plug was placed on CM medium containing 200 pg/ml Congo
Red for 5 days. The measurement of peroxidase and laccase
activities in culture filtrates was performed as described [88].

CFW and DAPI staining

Calcofluor staining using Fluorescent Brightener 28 (10 pg/ml,
Sigma-Aldrich) for the microscopy of mycelial branches was
performed as described [93]. Both the mutants and the wild type
were inoculated on the coverslips that contain a thin layer of agar
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medium and cultured for 48 hrs. Mycelial tip plugs were removed
and stained with 10 pg/ml CFW for 10 min in darkness, rinsed
twice with PBS and viewed under a fluorescence microscope
(Olympus IX71). For the localization of MoAP1, conidia of Guyll
transformed with plasmid pCB1532::TipC::Moapl::eGFP  was
treated with 2 mM HyO,, stained with DAPI (50 pg/ml, Sigma)
for 10 min, and visualized under a microscope (Olympus IX71).
GFP fluorescence was detected using a 450 to 490-nm excitation
filter and a 520-nm barrier filter and the DAPI fluorescence was
detected under UV light using a 360 to 400 nm excitation filter.

Bioinformatics analysis

The full sequence of MoAPI was downloaded from the AL oryzae
database  (www.broadinstitute.org/annotation/genome/ magnaporthe_
grisea). Yapl homology sequences from different organisms were
obtained from GenBank (www.nchinlm.nih.gov/BLAST) using the
BLAST algorithm [94]. Sequence alignments were performed using the
Clustal_ W program [95] and the phylogenetic tree was viewed using
Mega3.0Beta program [96]. Orthologs were identified between M. oryzae
predicted proteins and proteins in the GO database [97] via searching
reciprocal best hits with the following cut-offs; e-value, 1.0e-3, and
identity, 20%. Results from local alignment using BLAST and prediction
of signal peptides from SignalP 3.0 software [98] and a manual literature
review were used to make final assignments to GO functional categories.
Primers used in this study were designed by using Primer3 Input (version
0.4.0) and commercially synthesized (Invitrogen Co., Shanghai, China).
To predict APl binding sites, yeast APl binding motif
sequences (MTTACGTAAK, TTAGTMAGC and TTASTMA)
[99,100,101] were used to search in the 1000 bp- upstream sequences
set of the up- and down-regulated genes from SAGE, and no more than
one mismatch was allowed.

Supporting Information

Figure S1 Comparison of AP1 protein conserved domains and a
dendrogram of fungal APl proteins. (A) Comparison of the
conserved bZIP domains of fungal APl proteins arranged by
Clustal W program. Identical amino acids residues are shaded. (B)
Alignment of the conserved c-CRD domain of fungal API
proteins. Asterisks indicate the conserved cysteine residues. (C) A
dendrogram of fungal AP1 proteins. The phylogenetic tree was
created with Mega3.0 beta by the established parameter in the
program. GenBank accession numbers are as follows: M. oryzae
MoAP1 (EDKO00544), F. oxpsporum FoAPl (XP_388976), C.
heterostrophus ~ ChAP1  (AAS64313), P.  tritici-repentts  PtAP1
(XP_001931984), A. orpzae AorAP1 (BAE92562), S. sclerotiorum
SSAP1 (EDN93694), B. fuckehiana BC1G (EDN20443), G. zeae
GzAP1 (XP_388976), N. crassa NCAP1 (CAB91681), K. lactis
KLULA (AAC39320), S. pombe SpPAP1 (CAB66170), S. cerevisiae
ScYAP1 (CAA41536), A. alternata AaAP1(ACM50933), U. maydis
YAPI1 (XP_758338) and C. albicans CAP1P (EAK94712).

Found at: doi:10.1371/journal.ppat.1001302.5001 (1.75 MB TIF)

Figure 82 MOoAPI complements the Hy Oy sensitivity of a S.
cerevisiae A yapl mutant. The growth of S. cerevisiaee BY4741+
pYES2, BY4741DYMLO07w+pYES2, BY4741DYMLO07w+
pYES2::Moapl was tested on SD plates with glucose (top left
panel), galactose (top right panel), SD plates with glucose
supplemented with 0.3 mM HyO, (bottom left panel), and with
glucose supplemented with 0.3 mM HyO, (bottom right panel).

Found at: doi:10.1371/journal.ppat.1001302.s002 (1.36 MB TIF)

Figure 83 'The MoAPI phase specific expression, targeted gene
replacement and complementation. (A) The phase specific
expression of MoAPI. The expression of MoAPI was measured
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by quantitative real-time RT-PCR with cDNA from samplings for
infectious growth, vegetative growth, and conidia. The relative
abundance of Moapl transcripts during infectious growth (from
ungerminated conidia to in planta fungal cells 72 hpi) was
normalized by comparing with vegetative growth in liquid CM
(Relative transcript level = 1). Each sample was harvested from 10
plants and three independent experiments, each with three
replicates, were performed. Significant differences are presented
in the figure (P < 0.01), and the error bar represents the standard
deviation. (B) MoAPI targeted gene replacement. A 1.89-kb
fragment of the Moap! coding region was replaced with a 1.4-kb
fragment containing the hygromycin B resistance cassette to create
the Moapl mutant. The DNA fragment at the inner space of
MoAPI deletion region was used as the probe to validate the Moap!
deletion transformants by PCR amplification and Southern
hybridization analysis (scale bar = 1 kb). (C) Genomic PCR was
used to validate the deletion of Moap! gene and reintroduction of
Moapl coding region to complement the mutant strain. (D)
Semiquantitative RT-PCR was carried out to confirm the deletion
and reintroduction of MoAPI gene. Complete inactivation of
Moap1 transcription in the deletion mutants was verified by reverse
transcription (RT)-PCR using cDNA of the wild type strain, the
Moap! mutants, and the complemented strain. (E and F) Southern
hybridization analysis was used to validate the deletion of the
MoAPI gene and the addition of a single copy integration of the
HPH gene. The arrowhead in E (left) showed a single band
hybridized by the HPH gene probe in the mutant. No band was
present in the wild type strain.

Found at: doi:10.1371/journal.ppat.1001302.s003 (1.24 MB TIF)

Figure 84 Hyphal branching reduction in the Moapi, Mossadh,
and Moact mutants. (A) Branching patterns of mycelia on agar
media containing coverslips 48 hrs after incubation. Frequent
branching occurs at the mycelia of wild type while no or a few
hyphal branches were observed in the Moap! mutants. Calcofluor
white staining is used to indicate the position of the mycelia. Bar
50 pm. (B) Branching patterns of mycelia on agar media
containing coverslips 48 hours after incubation. Frequent
branching occurs at the mycelia of wild type while no or a few
hyphal branches were observed in the Mossadh mutants. Calcofluor
white staining indicates the position of the mycelia. Bar = 50 pm.
(C) Branching patterns of mycelia on agar media containing
coverslips 48 hrs after incubation. Frequent branching occurs at
the mycelia of wild type while no or a few hyphal branches were
observed in the Moact mutants. Calcofluor white staining is used as
the indicator for the position of the mycelia. Bar = 50 um.

Found at: doi:10.1371/journal.ppat.1001302.s004 (2.19 MB TIF)

Figure 85 Subcellular localization of MoAP1 in the presence of
HyO,. For green fluorescence observation, both conidia of wild type
strain Guyl1 (WT) and WT transformed with pCB1531:: TrpC::Moa-
pl:eGFP were treated with DAPI and then observed under an
Olympus microscope with a specific filter set as described in the
materials and methods. For subcellular localization, conidia of WT
transformed with pCB1531::TipC::Moap I::eGFP was treated with or
without 2 mM H,O, and then observed as described above.

Found at: doi:10.1371/journal.ppat.1001302.s005 (0.70 MB TTF)

Figure S6 Pathogenicity test of Moapl, Mossadh and Moact
mutant strains on the barley leaves. (A) Pathogenicity test of Moap!
mutant on barley leaves. 4 ml conidial suspension (1 x10° conidia/
ml) of each strain was sprayed on seven-day-old barley seedlings
(Four arris) and cultured as described in Figure 5A and the results
were observed at 7 dpi. The barley leaves spraying of gelatin was
used as negative control. (B and C). Pathogenicity test of Moapl,
Mossadh and Moact mutant on barley leaves. Mycelia blocks of the
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wild type strain Guyll, Moapl, Mossadh, Moact, and the
complemented strains were inoculated on seven-day-old barley
leaves and then cultured as described in Materials and Methods.
The barley leaves with the CM agar plugs on was used as negative
control.

Found at: doi:10.1371/journal.ppat.1001302.s006 (3.33 MB TIF)

Figure S7 Laccase activity is restored by addition of copper
sulphate. The assay for the activation of the laccase activity in the
mutants was performed by addition of 1 mM copper sulphate to
CM media that contains 0.2 mM laccase substrate ABTS and
cultured under 28°C: for 4 days to observe the phenotype. The
photo on top showed Moap! mutants inoculated on CM media
containing 0.2 mM ABTS, and the photo at middle showed Moap!
mutants inoculated on CM media amending 1 mM copper
sulphate, while the picture at bottom indicated Moap! mutants
inoculated on CM media supplemented with both 1 mM copper
sulphate and 0.2 mM ABTS.

Found at: doi:10.1371/journal.ppat.1001302.s007 (1.11 MB TTF)

Figure S8 Expression profiles of MoCOSI and putative laccase-
encoding genes in Moapl, Mossadh, and Moact mutants. (A) The
transcript levels of MoCOSI1-encoding genes in both the Moap!
mutant and the wild type strain were indicated from three
independent experiments. Error bars represent the standard
deviations. (B) The transcript levels of the two putative laccase-
encoding genes in the Moapl, Mossadh, Moact, and Guyll were
indicated from three independent experiments. Error bars
represent the standard deviations.

Found at: doi:10.1371/journal.ppat.1001302.s008 (0.37 MB TIF)

Figure 89 Pathogenicity test of Mossadh and Moact mutants on
wounded rice plants. (A) Pathogenicity test of the mutant strain by
injection of hyphal fragments. The hyphal fragments of the strains
tested were treated as described in Materials and Methods and the
results were scored at 7 dpi. (B) Pathogenicity test of Mossadh and
Moact mutants. The mycelia blocks of the strains were inoculated
on the wounded rice leaves as described above and then cultured
under moist condition at 28°C for 7 days.

Found at: doi:10.1371/journal.ppat.1001302.s009 (1.56 MB TIF)

Figure S10 Mycelia growth of Mossadh and Moact mutant strains
on two synthetic medium. (A and B) Phenotypes of Guyll,
Mossadh, Moact, and complemented strains. Strains were inoculated
on CM medium and cultured as described in the Materials and
Methods. (C and D) Phenotypes of Guyll, Mossadh, Moact
mutants, and the complemented strain on RDC media. The
strains were cultured under darkness for 7 days at 28°C. (E)
Statistical analysis of mycelia growth rate of Guyll, Mossadh, and
the complemented strains on both CM and RDC agar media.
Three independent experiments were performed and similar
results were obtained. Error bars represent the standard deviations
and asterisks represent significant differences in Guyll, Mossadh
mutants and the complemented strain (p < 0.01). (I) Statistical
analysis of mycelia growth rate of Guyll, Moact mutants and the
complemented strains on both CM and RDC agar media. Error
bars represent the standard deviation, and asterisks represent
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Figure S11 Compromised extracellular laccase and peroxidase
activity displayed by Mossadh and Moact mutants. (A) Strains of
Guyll, Mossadh, Moact, and the complemented strains were
inoculated on CM agar medium containing 200 pg/ml Congo
Red. The discoloration of Congo Red was observed after
inoculation for 5 days. (B) The laccase activities of Guyll,
Mossadh, Moact, and the complemented strains were monitored in
complete media supplemented with 0.2 mM ABTS. The oxidized
dark purple staining around the colony was observed after 3 days
of incubation. (C and D) Strains of Guyll, Mossadh, and
complemented strain were inoculated in CM liquid medium and
peroxidase (C) and laccase activities (D) were measured in culture
filtrates by ABTS oxidization test with or without HyO,. Error
bars represent the standard deviations and asterisks indicated
significant differences. (E and F) Guyll, Moact mutant, and the
complemented strain were inoculated in CM liquid medium and
peroxidase (E) and laccase (F) activities were measured as
described above. The differences among Guyl1, Moact mutants,
and the complemented strain were statistically significant (p <
0.01).

Found at: doi:10.1371/journal.ppat.1001302.s011 (4.18 MB TTF)

Figure 812 Pathogenicity test of MoAP1 target gene disruption
mutants. (A) Pathogenicity test of gene deletion mutants on the rice
cultivar CO-39. The SAGE down-regulated gene deletion mutants
were inoculated by spraying conidia suspensions on the four-week
old rice cultivar CO-39 for 7 days and then photographed. (B)
Pathogenicity test of Mossadh and Moact mutants on the rice
cultivar CO-39 at 7 dpi with mycelial plugs.

Found at: doi:10.1371/journal.ppat.1001302.s012 (3.10 MB TIF)

Table S1 Categorization of MoAP] regulated genes with known
function.

Found at: doi:10.1371/journal.ppat.1001302.s013 (2.18 MB
DOC)

Table 82 Primer pairs used in this paper.

Found at: doi:10.1371/journal.ppat.1001302.s014 (0.14 MB
DOC)
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