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Abstract

Background: Chitin, after cellulose the second most abundant polysaccharide in nature, is an essential component of
exoskeletons of crabs, shrimps and insects and protects these organisms from harsh conditions in their environment.
Unexpectedly, chitin has been found to activate innate immune cells and to elicit murine airway inflammation. The skin
represents the outer barrier of the human host defense and is in frequent contact with chitin-bearing organisms, such as
house-dust mites or flies. The effects of chitin on keratinocytes, however, are poorly understood.

Methodology/Principal Findings: We hypothesized that chitin stimulates keratinocytes and thereby modulates the innate
immune response of the skin. Here we show that chitin is bioactive on primary and immortalized keratinocytes by triggering
production of pro-inflammatory cytokines and chemokines. Chitin stimulation further induced the expression of the Toll-like
receptor (TLR) TLR4 on keratinocytes at mRNA and protein level. Chitin-induced effects were mainly abrogated when TLR2
was blocked, suggesting that TLR2 senses chitin on keratinocytes.

Conclusions/Significance: We speculate that chitin-bearing organisms modulate the innate immune response towards
pathogens by upregulating secretion of cytokines and chemokines and expression of MyD88-associated TLRs, two major
components of innate immunity. The clinical relevance of this mechanism remains to be defined.
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Introduction

Chitin, after cellulose the second most abundant polysaccharide

in nature, is an essential component of exoskeletons of insects and

protects these organisms from the harsh conditions in their

environment [1–3]. Although the relevance of chitin for humans is

poorly understood, chitin exposition is relevant at host-pathogen

interfaces, such as the lung, the gut and the skin. In mice, chitin

airway challenge was found to activate the innate immune system

[4] and chitin was found to modulate alveolar macrophage

activation in vitro [5]. In contrast, the potential effect of chitin on

the skin is incompletely understood. Since chitin is a component of

several microorganisms that are known to trigger skin allergies,

such as cockroaches, and house dust mites [6,7], keratinocyte-

chitin interactions may play a key role in the regulation of

epidermal immunity of the skin.

The immune system recognizes pathogens via distinct pattern

recognition receptors (PRRs), prototypically Toll-like receptors

(TLRs) [8]. TLRs act as sensors of microbial pathogens and trigger

downstream immune responses, aiming to eliminate the invading

pathogen [9]. Therefore, TLRs represent key receptors at host-

pathogen interfaces, such as the skin. Ten different human and

twelve murine TLRs have been identified so far [8]. Immortalized

keratinocytes have been described to express TLR1-5 and TLR10

at mRNA level [10], while primary keratinocytes were found to

mainly express TLR1, TLR2, TLR3, TLR5 and TLR9 but not

TLR4, TLR6, TLR7, TLR8, or TLR10 [11,12]. Other studies

reported TLR1, 2 and 5 [13] or TLR2 and TLR4 [14–16] being

the predominant receptors expressed. When viewed in combina-

tion, previous studies provided evidence that keratinocytes express

a variety of mainly anti-bacterial (MyD88-dependent) TLRs that

may serve as microbial sensors and modulators of host-pathogen

interactions. Therefore, the understanding of the regulation of

TLRs in keratinocytes is essential for innate immunity of the skin.

We hypothesized that chitin exposure activates innate immune

responses of keratinocytes by modulating chemokine secretion and

TLR expression. To test this hypothesis we utilized both

immortalized and primary human keratinocytes as modeling

systems and analyzed the effect of chitin on cytokines and

chemokines release and MyD88-associated TLR expression at

mRNA and protein level. These studies demonstrate that chitin

modulates epithelial immunity of the skin by upregulating cytokine

and chemokine production and increasing TLR4 expression on

keratinocytes.

Methods

Cell culture
The immortalized keratinocyte cell line HaCat or primary

human keratinocytes (HEK cells) were cultivated similarly as

described previously [10,12]. In brief, HaCaT cells were cultivated

in DMEM medium supplemented with 10% FCS, 1% Antibiotic-
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Mixture (Penicillin, Streptomycin, Neomycin) and 2 mM gluta-

mine. Primary human keratinocytes (HEK cells) were cultivated in

EpiLife MEPI500CA medium supplemented with EDGS, EpiLife

defined growth supplement and gentamycin/amphotericin. For

HEK cell culture, flasks were precoated with coating-matrix 1:10.

Unless otherwise indicated, primary keratinocytes and HaCaT

cells at 80–90% confluency and a density of 36104 cells per well

were stimulated for the indicated conditions prior to RT-PCR,

FACS or ELISA. All cell culture products were from Gibco

(Invitrogen/Cascade Biologics) unless stated otherwise. Chitin

fragments (intermediate chitin fragments) were generated as

described previously [17]. The chitin used was LPS free based

on Limulus assays (below the limits of detection). Chitin fragments

were incubated with cells for 48 hours at three different

concentrations (C 500 = 0.22 mg/ml; C 1000 = 0.5 mg/ml and

C 2000 = 2.0 mg/ml). These concentrations were chosen since (i)

previously published studies used these concentrations [17] and (ii)

initial experiments in our experimental setting prior to this study

demonstrated that lower chitin concentrations were inert on

keratinocytes, that is had no effect on chemokine secretion,

whereas higher concentrations induced keratinocyte necrosis, as

assessed by propidium iodide staining and LDH release.

ELISA
The concentrations of CXCL8 (IL-8), Thymic stromal lympho-

poietin (TSLP) and Interleukin 6 (IL-6) in the medium after

48 hours of medium or TLR ligand stimulation was quantitated in

triplicates by enzyme-linked immunosorbent assay (ELISA; R&D,

Wiesbaden, Germany).

Q-PCR
RNA was isolated from HaCat cells or HEK cells using the

High Pure RNA Isolation Kit (Roche). Total RNA was isolated

according to the manufacturer’s instructions, treated with DNase

and immediately reverse transcribed by means of random

hexamer primers (Roche) and Superscript II RT (Invitrogen, Life

Technologies). Contamination with genomic DNA was controlled

by cDNA synthesis reaction without reverse transcriptase.

Expression levels of TLRs were quantified in triplicate by real-

time quantitative RT-PCR (Q-PCR) with the use of SYBR green

and the iCycler iQ detection system (Biorad, Hercules, CA, USA).

Cycle threshold (Ct) values for genes of interest were normalized to

b-actin and used to calculate the relative quantity of mRNA

expression by the DDCT method. b-actin was selected as

normalizing gene, because it was stable under the in vitro

conditions tested. A melting curve analysis was performed at the

end of each run to rule out contamination with unspecific by-

products that affect the quantitation of the PCR product. Primers

are listed in table 1.

FACS
Freshly obtained HaCat cells or HEK cells were incubated with

the respective monoclonal antibodies for 40 min, washed three

times and analyzed by flow cytometry (FACSCalibur, Becton-

Dickinson, Heidelberg, Germany). Ten thousand cells were

analyzed per sample. Propidium iodide (PI, 5 mg/ml; Sigma, St.

Louis, MO, USA) and Annexin V-FITC (5 mg/ml; Boehringer

Mannheim, Mannheim, Germany) were used to exclude apoptotic

(Annexin V+, PI2) and necrotic (Annexin V+, PI+) leukocytes.

Only viable cells were included in the analysis. The following

labelled monoclonal anti-human antibodies were from eBioscience

(San Diego, CA, USA): mouse IgG1 TLR1-PE, mouse IgG2a

TLR2-fluorescein isothiocyanate (FITC), mouse IgG1 TLR4-PE

and rat IgG2a TLR9-PE. Mouse IgG2a TLR5-PE was from

Imgenex (San Diego, CA, USA). The following labelled

monoclonal anti-human antibodies were from BD Pharmingen

(San Diego, CA, USA), mouse IgG1-APC, mouse IgG1-PE, mouse

IgG2a-PE, mouse IgG2a-FITC and rat IgG2a-PE. For TLR9

detection, permeabilized cells and intracellular staining techniques

were used. Isotype controls were subtracted from the respective

specific antibody expression and the results were reported as mean

fluorescence intensity (MFI). Calculations were performed with

Cell Quest analysis software (Becton-Dickinson, Heidelberg,

Germany).

Functional assays
To assess the functional relevance of TLR4 on HEK cells,

lipopolysaccharide (LPS, Sigma Aldrich) was used at 100 ng/ml to

stimulate cultured keratinocytes. A mouse anti-human TLR2

antibodies with neutralizing/blocking characteristics (Abcam) was

used to assess whether chitin binds through TLR2 at keratinocytes.

Statistics
Data are shown as means 6 standard error of the mean (SEM).

Comparisons among all groups were performed with ANOVA

and comparisons between two groups were performed with the

two-sided t test as described previously [18]. Correlation analysis

was performed by calculating the two-tailed Pearson correlation

coefficient. A P value of ,0.05 was considered to be significant. A

correlation was assumed when the correlation coefficient was

.0.3. Statistical analysis was performed with Prism 4.0 (Graph

Pad Software, San Diego, CA, USA) and STATA version 8.2 for

Windows (STATA Corporation, College Station, TX, USA).

Results

Chitin is bioactive on keratinocytes and triggers cytokine
and chemokine release

First, we stimulated immortalized and primary keratinocytes

with different concentrations of chitin fragments and analyzed

whether keratinocytes responded with secretion of a prototypical

innate immune chemokine, CXCL8 (IL-8), known to be released

by activated keratinocytes and recruiting neutrophils to the site

of infection. Our studies demonstrated that chitin dose-

dependently induced CXCL8 protein production by both

primary (Figure 1A) and immortalized (Figure 1B) keratinocytes,

with a stronger effect seen on primary (HEK) cells. This effect

was not specific for CXCL8, since also other pro-inflammatory

mediators (IL-6, TSLP) were induced by chitin stimulation

(Figure 1A and B). Further studies showed that chitin had a

distinct effective concentration range of pro-inflammatory

Table 1. Primers.

Gene Forward Reverse

b-actin CTCCGTGGCCTTAGCTGTG TTTGGAGTACGCTGGATAGCCT

TLR1 CTGGTATCTCAGGATGGTGTGC TTGGAGTTCTTCTAAGGGTATGTTCC

TLR2 GGCCAGCAAATTACCTGTGTG AGGCGGACATCCTGAACCT

TLR4 CTGCAATGGATCAAGGACCA TTATCTGAAGGTGTTGCACATTCC

TLR5 TCGAGCCCCTACAAGGGAA CACTGAGACTCTGCTATACAAGCTA

TLR9 TGGTGTTGAAGGACAGTTCTCTC CACTCGGAGGTTTCCCAGC

NOD1 GAGCAAAGTCGTGGTCAACA ACAGCACGAACTTGGAGTCA

NOD2 GCAACAGAGTGGGTGACGA CACACTGCCAATGTTGTTCC

doi:10.1371/journal.pone.0016594.t001
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bioactivity, as higher chitin concentrations induced keratinocyte

cell necrosis (LDH release and propidium iodide staining),

whereas lower concentrations had no bioactive effect and were

inert (data not shown). These studies demonstrate that chitin

fragments are bioactive on keratinocytes by inducing cytokine

and chemokine production and suggest that skin contact with

chitin-bearing microorganisms could act pro-inflammatory by

triggering neutrophilic inflammation.

Previous studies indicated that chitin is sensed through TLR2

[17]. Therefore, we blocked TLR2 on keratinocytes using

antibodies prior to chitin treatment and found that the chitin-

induced effects were largely abrogated when TLR2 was blocked

(Table S1).

Chitin upregulates TLR and NOD gene expression in
keratinocytes

TLRs modulate the innate immunity toward pathogen and

danger-associated molecular pattern by promoting production of

pro-inflammatory chemokines. Therefore, we tested whether the

chitin-induced cytokine and chemokine secretion was associated

with a modulation of TLR expression pattern by keratinocytes. In

primary keratinocytes, chitin significantly upregulated TLR4

mRNA expression, whereas other TLR or NOD gene expression

levels were unaffected (Figure 2A). Consistently in HaCaT cells,

chitin increased TLR4 mRNA expression dose-dependently, but

also enhanced gene expression of TLR2 and, to a lesser extent,

the non-TLR PRR NOD2 (Figure 2B). Increases in TLR4

mRNA expression levels correlated positively with increases in

TLR4 protein expression levels for individual experiments

(r = 0.87, * p,0.05). These studies demonstrate that chitin

modulates gene expression of pattern recognition receptors, in

particular TLR4.

Chitin upregulates TLR4 protein expression in
keratinocytes

To investigate whether chitin-induced modulation of mRNA

expression is also reflected by protein expression changes, we

quantified TLR and NOD protein expression using flow

cytometry. In primary keratinocytes, chitin treatment dose-

dependently upregulated TLR4 surface expression, while chitin

had no significant effects on other TLR receptors (Figure 3A and

Figure 4). Similarly in HaCat cells, chitin dose-dependently

upregulated TLR4 expression without modulating other TLR

receptors. Comparing intracellular (cytosolic) and membranous

(surface) receptor pools, we found that chitin-induced TLR4

upregulation was not due to increased translocation from

intracellular receptor storage pools (data not shown), suggesting

that chitin mediated its effects at the transcriptional level. These

studies confirmed our gene expression results and show that chitin

modulates innate immune pathways by upregulation of TLR4

protein expression. To test whether the upregulation of TLR4

protein on keratinocytes had any functional relevance, we

stimulated keratinocytes after chitin treatment with the TLR4

ligand LPS and quantified chemokines release as functional read-

out. These studies demonstrated that LPS triggered chemokine

release after chitin-induced TLR4 upregulation, but not without

prior chitin priming (Table S1). When viewed in combination,

these studies indicate that chitin is sensed through TLR2 and

induces chemokine release and TLR4 expression by keratinocytes.

Discussion

The skin represents the body’s interface between the outer

environment and epithelial innate immunity, where intimate

interactions between keratinocytes and microorganisms take place.

Figure 1. CXCL8 secretion. Figure A shows primary keratinocytes, Figure B immortalized HaCaT cells. CXCL8, TSLP and IL-6 secretion was
measured in triplicates in supernatants after 48 h in medium or chitin-treated cells using ELISA. Chitin fragments were incubated with cells for
48 hours at three different concentrations (C 500 = 0.22 mg/ml; C 1000 = 0.5 mg/ml and C 2000 = 2.0 mg/ml). * p,0.05 of medium compared to
chitin treated cells.
doi:10.1371/journal.pone.0016594.g001
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Chitin is an ubiquitous environmental polysaccharide. Both insects

and allergen-inducing microorganisms, such as house-dust mites

or Aspergillus fungi, contain chitin [2,3,19]. Traditionally, chitin has

been assumed to have no effect on human immune responses, but

recent studies challenged this notion by demonstrating that chitin

fragments act as a pro-inflammatory stimulus on macrophages [4].

We hypothesized that chitin fragments stimulate keratinocytes

and thereby modulates the innate immune response of the skin.

Here we show that chitin is bioactive on primary and

immortalized keratinocytes by triggering production of pro-

inflammatory cytokines and chemokines. Paralleled with cyto-

kine/chemokine induction, chitin stimulation upregulated the

expression of TLR4 on primary and immortalized keratinocytes at

mRNA and protein level and enabled functional responses of

keratinocytes towards TLR4 ligands. Based on these findings, we

speculate that chitin-bearing organisms modulate the innate

immune response towards pathogens by upregulating production

of chemokines and by increasing TLR4 surface expression.

Accordingly, chitin contact may prime neutrophilic inflammation

and thereby boost innate immunity against Gram-negative

pathogens.

Despite previously described anti-viral and anti-tumor activities

of chitin derivatives, such as chitosan, limited data is available

regarding the immunological effects of chitin fragments that are

generated at sites of infection and inflammation [1,4,19,20].

Recently, studies demonstrated that chitin fragments modulate

innate and adaptive immune responses by activating innate

immune cells and inducing cytokine and chemokine production

through distinct pattern recognition cell surface receptors in

particular macrophage mannose receptor, TLR-2 and/or Dectin-

1 [1,4,17,19]. Based on these previous findings that chitin might be

sensed through TLR2, we blocked TLR2 and found that the

chitin-mediated effects were largely abrogated. Several studies

analyzed the effect of chitin on macrophages in vitro [17,21] and in

vivo [4,22] and showed that chitin stimulated macrophage IL-17A

production and upregulated IL-17A receptor expression [17].

These studies further demonstrated that these effects were TLR-2

and MyD88-dependent. Additionally, these investigations demon-

Figure 2. Q-PCR results. Figure A shows primary keratinocytes, Figure B immortalized HaCaT cells. Relative gene expression was analyzed using
quantitative real-time RT-PCT (Q-PCR) and was normalized to b-actin as housekeeping gene. Chitin fragments were incubated with cells for 48 hours
at three different concentrations (C 500 = 0.22 mg/ml; C 1000 = 0.5 mg/ml and C 2000 = 2.0 mg/ml). Shown is the fold increase of relative gene
expression chitin compared to medium treated cells. * p,0.05 of medium compared to chitin treated cells.
doi:10.1371/journal.pone.0016594.g002
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strated that IL-17A pathway activation was essential for some

chitin-induced effects. Administration of chitin particles triggered

activation of alveolar macrophages and triggered the expression of

IL-12, tumor necrosis factor (TNF)-a, and IL-18 [5]. The latter

studies also provided evidence that the chitin-induced effects on

cytokine productions were mediated by a macrophage mannose-

receptor (MMR) dependent phagocytic mechanism [23].

Recently, Reese et al. investigated the in vivo immune effects of

chitin in airway inflammation [4]. In these studies, chitin coated

beads administered into the airways of mice induced the

accumulation of IL-4 expressing cells and the authors attributed

these cells to eosinophils by using distinct cell surface markers, in

particular siglec F+IL-4+ for eosinophils and basophils IgE+
cKit2IL-4+. Furthermore, chitin treatment triggered alternative

macrophage activation. This study suggested that chitin is involved

in the pathogenesis of allergic/Th2 responses. This latter notion is

challenged by studies that orally administered chitin inhibited

allergen-induced IgE production [22]. Instillation of chitin micro-

particles into the airways significantly down-regulated allergic

responses to Dermatophagoids pteronyssinus (Der p) and Aspergillus

fumigatus including IgE levels, IL-4 production, eosinophilia,

airway hyper-responsiveness, and lung inflammation [24].

In contrast to the evidence of chitin in macrophage activation

and Th2 immune responses in the airways, the potential effect of

chitin on keratinocytes has not been defined so far. However,

chitin contact may play a critical role in skin immunity since

allergens such as house dust mites, fungi or insects contain chitin

that is sensed by the epidermal cell layer through PRRs [1,19].

Therefore, we studied the effects of chitin fragments on

keratinocyte cytokine/chemokine secretion and TLR expression,

two major components of innate immunity. These studies

demonstrated that chitin dose-dependently upregulated secretion

of CXCL8, a potent chemoattractant for neutrophils, that

promotes bacterial clearance at sites of infection [25]. Accordingly,

our studies imply that contact with chitin-bearing microbes could

induce CXCL8 secretion at host-pathogen contact sites. The

immunological consequences of CXCL8 increase at sites of chitin-

skin interactions, however, could be two-faced: On the one hand,

increased CXCL8 levels could feed the chemotactic gradient from

skin-blood-bone marrow, thereby lowering the threshold for

neutrophil recruitment upon later bacterial infections; on the

other hand, chronic chitin stimulation may pave the way for the

establishment and maintenance of auto-inflammatory skin inflam-

mation. The duration of pathogen contact and the amount of

microbial chitin required to elicit these responses remains to be

defined. The hypothesis that chitin contact may favor neutrophilic

inflammation is supported by the observation that epicutaneous

sensitization with a chitin-bearing dust mite allergen resulted in

localized dermatitis characterized by pronounced infiltration of

neutrophils [26]. Nevertheless, the precise association between

chitin exposure and CXCL8/neutrophilic inflammations remains

to be characterized in future studies. Besides CXCL8, we found

that chitin triggered increased production of TSLP by keratino-

cytes. The cytokine TSLP has been involved in the pathogenesis of

allergic Th2-driven diseases and triggers the release of the

chemokines CCL17 and CCL22. Based on our finding that chitin

upregulated TSLP production we speculate that chitin – skin

interaction modulates both neutrophilic as well as Th2-associated

immune mechanisms.

Paralleled by the increase in CXCL8 secretion, we found that

chitin modulated the innate immune sensing system of the skin.

Chitin upregulated the LPS receptor TLR4 dose-dependently.

This effect was consistent at RNA and protein level for both

primary and immortalized keratinocytes, whereas for other TLR

and non-TLR (NODs) receptors, the effects of chitin were either

low or not consistent. The upregulation of TLR4 protein was

functionally relevant since upregulated TLR4 receptors enabled

LPS responsiveness by keratinocytes. These results tempt us to

speculate that chitin exposure may shape the recognition of Gram

negative pathogens, such as Pseudomonas aeruginosa, an opportunistic

pathogen, commonly found in ulcerous skin lesions of the skin and

sensed through MyD88-dependent pathways [27-31]. By upregu-

lating TLR4, chitin may enhance innate immunity against Gram

negative pathogens and may, in concert with CXCL8-mediated

neutrophil recruitment, boost neutrophilic innate host defence in

bacterial skin infections. This mechanisms may also have

relevance for fungi, since human epithelial cells were reported to

establish direct antifungal defense through TLR4-mediated

signalling, a mechanism that involved neutrophilic inflammation

[32]. Besides pathogen-associated molecular patterns (PAMPs),

TLR4 has been reported to recognize also damage (host)-

associated molecular patterns (DAMPs) [8]. Thus, the chitin-

Figure 3. FACS results. Figure A shows primary keratinocytes, Figure
B immortalized HaCaT cells. Chitin fragments were incubated with cells
for 48 hours at three different concentrations (C 500 = 0.22 mg/ml; C
1000 = 0.5 mg/ml and C 2000 = 2.0 mg/ml). Shown is the % increase of
TLR surface (TLR1, TLR2, TLR4, TLR5) or intracellular (TLR9, NOD1, NOD2)
expression of chitin treated cells compared to medium treated cells.
* p,0.05 of medium compared to chitin treated cells.
doi:10.1371/journal.pone.0016594.g003
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mediated effects could have an impact on disease conditions

characterized by extracellular matrix break-down and tissue

remodelling beyond infection.

In summary, we found that chitin is bioactive on keratinocytes

by triggering production of pro-inflammatory cytokines and

chemokines and by upregulating the expression of TLR4 on

primary and immortalized keratinocytes at mRNA and protein

level. We speculate that chitin-bearing organisms modulate the

innate immune response towards pathogens and should be

regarded as modulators of innate immunity of the skin.

Supporting Information

Table S1 Data is shown for HEK cells. LPS was used at 100 ng/

ml; Chitin at 2 mg/ml, Anti-TLR2 blocking antibodies (Abcam) at

20 mg/ml. CXCL8 levels were quantified by ELISA. *p,0.05

compared to medium.

(DOC)

Acknowledgments

We thank Klaus Freimüller for excellent technical support.

Author Contributions

Conceived and designed the experiments: BK HCK TR. Performed the

experiments: BK ASMW RR. Analyzed the data: BK. Contributed

reagents/materials/analysis tools: BK RR. Wrote the paper: BK ASMW

RR HCK TR.

References

1. Lee CG, Da Silva C, Dela Cruz CS, Ahangari F, Ma B, et al. (2010) Role of

Chitin, Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling,

and Injury. Annu Rev Physiol 19.

2. Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8:

1988–2012.

3. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure,

function and regulation of chitin synthases and chitinases. J Exp Biol 206:

4393–412.

4. Reese TA, Liang HE, Tager AM, Luster AD, Voehringer D, et al. (2007) Chitin

induces accumulation in tissue of innate immune cells associated with allergy.

Nature 447: 92–96.

5. Shibata Y, Foster LA, Metzger WJ, Myrvik QN (1997) Alveolar macrophage

priming by intravenous administration of chitin particles, polymers of N-acetyl-

D-glucosamine, in mice. Infect Immun 65: 1734–41.

6. Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87:

171–84.

7. Elias JA, Homer RJ, Hamid Q, Lee CG (2005) Chitinases and chitinase-like

proteins in T(H)2 inflammation and asthma. J Allergy Clin Immunol 116:

497–500.

8. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking

innate and acquired immunity. Nat Immunol 2: 675–80.

9. Zhang Z, Schluesener HJ (2006) Mammalian toll-like receptors: from

endogenous ligands to tissue regeneration. Cell Mol Life Sci 63: 2901–7.

10. Kollisch G, Kalali BN, Voelcker V, Wallich R, Ring J, et al. (2005) Various

members of the Toll-like receptor family contribute to the innate immune

response of human epidermal keratinocytes. Immunology 114: 531–41.

11. Terhorst D, Kalali BN, Ollert M, Ring J, Mempel M (2010) The role of toll-like

receptors in host defenses and their relevance to dermatologic diseases. Am J Clin

Dermatol 11: 1–10.

12. Mempel M, Voelcker V, Kollisch G, Plank C, Gerhard M, et al. (2003) Toll-like

receptor expression in human keratinocytes: nuclear factor kappaB controlled

gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like

receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol

121: 1389–96.

13. Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L (2003) Normal

keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of

TLR expression in chronic plaque psoriasis. Br J Dermatol 148: 670–679.

14. Pivarcsi A, Kemeny L, Dobozy A (2004) Innate immune functions of the

keratinocytes. A review. Acta Microbiol Immunol Hung 51: 303–10.

15. Pivarcsi A, Koreck A, Bodai L, Szell M, Belso N, et al. (2004) Differentiation-

regulated expression of Toll-like receptors 2 and 4 in HaCaT keratinocytes.

Arch Dermatol Res 296: 120–124.

16. Pivarcsi A, Bodai L, Rethi B, Kenderessy-Szabo A, Szell M, et al. (2003)

Expression and function of Toll-like receptors 2 and 4 in human keratinocytes.

Int Immunol 15: 721–30.

17. Da Silva CA, Hartl D, Liu W, Lee CG, Elias JA (2008) TLR-2 and IL-17A in

chitin-induced macrophage activation and acute inflammation. J Immunol 181:

4279–86.

18. Motulsky H (1995) Intuitive biostatistics. New York: Oxford University Press.

19. Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA (2008) Chitin regulation of

immune responses: an old molecule with new roles. Curr Opin Immunol 20:

684–89.

Figure 4. Representative FACS result. Representative FACS histograms of medium and chitin treated primary keratinocytes (HEK cells). MFI:
mean fluorescence intensity. The unfilled histograms represents the respective isotype controls, the filled histograms the specific antibody stainings
for medium- or chitin-treated cells. Note: chitin treatment upregulates TLR4 surface expression on keratinocytes.
doi:10.1371/journal.pone.0016594.g004

Chitin and Innate Immunity

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e16594



20. Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic

inflammation and tissue remodelling. Yonsei Med J 50: 22–30.
21. Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, et al. (2009) Chitin is a

size-dependent regulator of macrophage TNF and IL-10 production. J Immunol

182: 3573–82.
22. Shibata Y, Foster LA, Bradfield JF, Myrvik QN (2000) Oral administration of

chitin down-regulates serum IgE levels and lung eosinophilia in the allergic
mouse. J Immunol 164: 1314–21.

23. Shibata Y, Metzger WJ, Myrvik QN (1997) Chitin particle-induced cell-

mediated immunity is inhibited by soluble mannan: mannose receptor-mediated
phagocytosis initiates IL-12 production. J Immunol 159: 2462–67.

24. Strong P, Clark H, Reid K (2002) Intranasal application of chitin microparticles
down-regulates symptoms of allergic hypersensitivity to Dermatophagoides

pteronyssinus and Aspergillus fumigatus in murine models of allergy. Clin Exp
Allergy 32: 1794–800.

25. Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, et al. (2007) Cleavage of

CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease.
Nat Med 1423-30.

26. Huang CH, Kuo IC, Xu H, Lee YS, Chua KY (2003) Mite allergen induces

allergic dermatitis with concomitant neurogenic inflammation in mouse. J Invest

Dermatol 121: 289–93.

27. Reynolds P (2000) Understanding Pseudomonas aeruginosa. Nurs Times 96:

6–8.

28. Wolfson JS, Sober AJ, Rubin RH (1983) Dermatologic manifestations of

infection in the compromised host. Annu Rev Med 34: 205–17.

29. White A, Crowder JG (1975) Pseudomonas diseases. Adv Intern Med 20: 23–35.

30. Nathan P, Holder IA, MacMillan BG (1973) Burn wounds: microbiology, local

host defenses, and current therapy. CRC Crit Rev Clin Lab Sci 4: 61–100.

31. Young LS, Armstrong D (1972) Pseudomonas aeruginosa infections. CRC Crit

Rev Clin Lab Sci 3: 291–347.

32. Weindl G, Naglik JR, Kaesler S, Biedermann T, Korting HC, et al. (2007)

Human epithelial cells establish direct antifungal defense through TLR4-

mediated signaling. J Clin Invest 117: 3664–72.

Chitin and Innate Immunity

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16594


